
Journal of Arti�cial Intelligence Research 4 (1996) 209-235 Submitted 1/96; published 4/96A Divergence Critic for Inductive ProofToby Walsh toby@itc.itIRST, Location Pant�e di PovoI38100 Trento, ITALY AbstractInductive theorem provers often diverge. This paper describes a simple critic, a com-puter program which monitors the construction of inductive proofs attempting to identifydiverging proof attempts. Divergence is recognized by means of a \di�erence matching"procedure. The critic then proposes lemmas and generalizations which \ripple" these dif-ferences away so that the proof can go through without divergence. The critic enables thetheorem prover Spike to prove many theorems completely automatically from the de�ni-tions alone.1. IntroductionTwo key problems in inductive theorem proving are proposing lemmas and generalizations.A prover's divergence often suggests to the user an appropriate lemma or generalizationthat will enable the proof to go through without divergence. As a simple example, considerthe theorem, 8n : dbl(n) = n+ n:This is part of a simple program veri�cation problem (Dershowitz & Pinchover, 1990).Addition and doubling are de�ned recursively by means of the rewrite rules,X + 0 = XX + s(Y ) = s(X + Y )dbl(0) = 0dbl(s(X)) = s(s(dbl(X)))where s(X) represents the successor of X (that is, X + 1). I have adopted the Prologconvention of writing meta-variables like X and Y in upper case.The theorem prover Spike (Bouhoula, Kounalis, & Rusinowitch, 1992) fails to provethis theorem. The proof attempt begins with a simple one step induction on x. The basecase is trivial. In the step case, the induction hypothesis is,dbl(x) = x+ xAnd the induction conclusion is, dbl(s(x)) = s(x) + s(x):To ease presentation, variables in this paper are, as here, sometimes renamed from thoseintroduced by Spike. This has no e�ect on the results as the prover and divergence criticc
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Walshboth alpha convert variable names where necessary. Rewriting the induction conclusionwith the recursive de�nitions of dbl and + gives,s(s(dbl(x))) = s(s(x) + x):The outermost successor functions on either side of the equality are now cancelled,s(dbl(x)) = s(x) + x:The prover then fertilizes with the induction hypothesis on the left hand side,s(x+ x) = s(x) + x:This equation cannot be simpli�ed further so another induction is performed. Unfortunately,this generates the diverging sequence of subgoals,s(x+ x) = s(x) + xs(s(x+ x)) = s(s(x)) + xs(s(s(x+ x))) = s(s(s(x))) + xs(s(s(s(x+ x)))) = s(s(s(s(x)))) + xs(s(s(s(s(x+ x))))) = s(s(s(s(s(x))))) + x...The problem is that the prover repeatedly tries an induction on x but is unable to simplifythe successor functions that this introduces on the �rst argument position of +. The proofwill go through without divergence if we have the rewrite rule,s(X) + Y = s(X + Y ):This rule \ripples" accumulating successor functions o� the �rst argument position of +.This rewrite rule is derived from the lemma,8x; y : s(x) + y = s(x+ y):This is the commuted version of the recursive de�nition of addition and is, coincidently, ageneralization of the �rst subgoal. This lemma can be proved without divergence as theinduction variable, y occurs just in the second argument position of +.In this paper I describe a simple \divergence critic", a computer programwhich attemptsto automate this process. The divergence critic identi�es when a proof attempt is divergingby means of a \di�erence matching" procedure. The critic then proposes lemmas andgeneralizations which hopefully allow the proof to go through without divergence. Althoughthe critic is designed to work with the prover Spike, it should also work with other inductionprovers (Walsh, 1994). Spike is a rewrite based theorem prover for �rst order conditionaltheories. It contains powerful rules for case analysis, simpli�cation and implicit inductionusing the notion of a test set. Unfortunately, as is the case with other inductive theoremprovers, its attempts to prove many theorems diverge without an appropriate generalizationor the addition of a suitable lemma. 210



A Divergence CriticIn Section 2, I describe di�erence matching and rippling, the two key ideas at the heartof the divergence critic. I then outline how di�erence matching identi�es the accumulatingterm structure which is causing divergence (Section 3). In Section 4 and 6, I show howlemmas are speculated which \ripple" this term structure out of the way. In Section 5,I describe the heuristics used in generalizing these lemmas. Finally, implementation andresults are described in Sections 7 and 8.2. Di�erence matching and ripplingRippling is a powerful heuristic developed at Edinburgh for proving theorems involvingexplicit induction (Bundy, Stevens, van Harmelen, Ireland, & Smaill, 1993) and is imple-mented in the Clam theorem prover (Bundy, van Harmelen, Horn, & Smaill, 1990). In thestep case of an inductive proof, the induction conclusion typically di�ers from the inductionhypothesis by the addition of some constructors or destructors. Rippling uses annotationsto mark these di�erences and applies annotated rewrite rules to remove them.As a simple example, consider again the theorem discussed in the introduction. In thestep case, the induction hypothesis is,dbl(x) = x+ xAnd the induction conclusion is, dbl(s(x)) = s(x) + s(x):If we \di�erence match" the induction conclusion against the induction hypothesis (Basin& Walsh, 1992), we obtain the following annotated induction conclusion,dbl( s(x) ) = s(x) + s(x) :An annotation consists of a wave-front, a box with a wave-hole, an underlined term. Wave-fronts are always one functor thick (Basin & Walsh, 1994). That is, every wave-front hasone immediate subterm that is annotated with a wave-hole. To make presentation simpler,we display adjacent wave-fronts merged. Thus, s(s(x)) is just syntactic sugar for theannotated term, s( s(x) ) . Wave-fronts can also include up and down arrows to indicatewhether they are moving towards the top of the term tree or down towards the leaves. Thisextension can, however, be safely ignored here.The skeleton of an annotated term is formed by deleting everything that appears inthe wave-front but not in the wave-hole. The erasure of an annotated terms is formed bydeleting the annotations but not the terms they contain. In this case, the skeleton of theannotated induction conclusion is identical to the induction hypothesis, and the erasureof the annotated induction conclusion is the unannotated induction conclusion. Di�erencematching guarantees this; that is, di�erence matching the induction conclusion with theinduction hypothesis annotates the induction conclusion so that its skeleton matches theinduction hypothesis.Formally, r is a di�erence match of s with t with substitution � i� �(skeleton(r)) = tand erase(r) = s where skeleton(r) and erase(r) build the skeleton and erasure of the211



Walshannotated term r. Di�erence matching is not unitary. That is, two terms can have morethan one di�erence match. For example, both s(s(x)) and s( s(x) ) are di�erence matchesof s(s(x)) with s(x). The number of di�erence matches can be reduced if we compute justthe maximal di�erence match in which wave-fronts are as high as possible in the term tree.A formal de�nition of such a well founded ordering on annotated terms has been given byBasin and Walsh (1994).The aim of rippling is to rewrite the annotated induction conclusion so that the skeleton,the induction hypothesis, is preserved and the di�erences, the wave-fronts are moved toharmless places (for example, to the top of the term). If this rewriting succeeds, we willthen be able to appeal to the induction hypothesis. To rewrite the annotated inductionconclusion, we use the following annotated rewrite rules, or wave rules:dbl( s(X) ) = s(s(dbl(X))) (1)X + s(Y ) = s(X + Y ) (2)s(X) + Y = s(X + Y ) (3)The �rst two of these annotated rewrite rules are derived from the recursive de�nitions of dbland + whilst the second is derived from the lemma proposed at the end of the introduction.Each of these annotated rewrite rules preserves the skeleton of the term being rewritten,and moves the wave-fronts higher up the term tree. Wave rules guarantee this: a wave ruleis an annotated rewrite rule with an identical skeleton on left and right hand sides thatmoves wave-fronts in a well founded direction like, for instance, to the top of the term tree(Basin & Walsh, 1994).Rippling on the left hand side of the annotated induction conclusion using (1) yields,s(s(dbl(x))) = s(x) + s(x) :Then rippling on the right hand side with (2) gives,s(s(dbl(x))) = s( s(x) + x) :Finally rippling with (3) on the right hand side yields,s(s(dbl(x))) = s(s(x+ x)) :As the wave-fronts are at the top of each term, we have successfully rippled both sides ofthe equality. We can now appeal to the induction hypothesis on the left hand side giving,s(s(x+ x)) = s(s(x+ x)) :This is a simple identity and the proof is complete. Note that to complete the proof, weneeded to rewrite with a lemma, (3). The aim of the divergence critic described in thispaper is to propose such lemmas. 212



A Divergence CriticRippling has several desirable properties. It is highly goal directed, manipulating justthe di�erences between the induction hypothesis and the induction conclusion. As theannotations restrict the application of the rewrite rules, rippling also involves little or nosearch. Di�erence matching and rippling have proved useful in domains outside of explicitinduction. For example, they have been used to sum series (Walsh, Nunes, & Bundy, 1992)and to prove limit theorems (Yoshida, Bundy, Green, Walsh, & Basin, 1994). In the restof the paper, I show that di�erence matching and rippling are also useful in identifyingand correcting divergence in a prover that neither uses explicit rules of induction nor usesannotations to control rewriting.3. Divergence AnalysisThe initial problem is recognizing when the proof is diverging. Various properties of rewriterules have been identi�ed which cause divergence like, for example, forwards and backwardscrossed systems (Hermann, 1989). However, these properties fail to capture all divergingrewrite systems since the problem is, in general, undecidable. The divergence critic insteadstudies the proof attempt looking for patterns of divergence; no attempt is made to analysethe rewrite rules themselves for structures which give rise to divergence. The advantage ofthis approach is that the critic need not know the details of the rewrite rules applied, nor thetype of induction being performed, nor the control structure used by the prover. The criticcan thus recognise divergence patterns arising from complex mutual or multiple inductionswith little more di�culty than divergence patterns arising from simple straightforwardinductions. The disadvantage of this approach is that the critic can identify a \divergence"pattern when none exists. Fortunately, such cases appear to be rare, and even when theyoccur, the critic usually suggests a lemma or generalization which gives a shorter and moreelegant proof (see Section 8 for an example).To illustrate the ideas behind the critic's divergence analysis, consider again the theoremfrom the introduction, 8n : dbl(n) = n+ n:The divergence critic �rst partitions the sequence of equations which the prover attempts toprove by induction. This is necessary since several diverging sequences may be interleavedin the prover's output. Several heuristics can be used to reduce the number of partitionsconsidered. The most useful heuristic is parentage in which the sequence is partitionedso that each equation is derived from the previous one. That is, the equations lie on asingle branch of the proof tree. In particular, the base case and step case of an inductionare partitioned into di�erent sequences. Other heuristics which can be used include: thefunction and constant symbols which occur in one equation occur in the next equationin the partition, and the weights of the equations in a partition form a simple arithmeticprogression. In this case, there is just a single open branch in the proof tree,s(x+ x) = s(x) + xs(s(x+ x)) = s(s(x)) + xs(s(s(x+ x))) = s(s(s(x))) + x...213



WalshThe critic then attempts to �nd the accumulating and nested term structure in eachsequence which is causing divergence. In this case, successor functions are accumulatingon the �rst argument of +. To identify this accumulating term structure, the critic usesdi�erence matching. Di�erence matching successive equations gives the annotated sequence,s(x+ x) = s(x) + xs(s(x+ x)) = s(s(x)) + xs(s(s(x+ x))) = s(s(s(x))) + x...This is the unique maximal di�erence match.The critic then tries to speculate a lemma which can be used as a rewrite rule to movethe accumulating and nested term structure out of the way. In this case, the critic speculatesa rule for moving a successor function o� the �rst argument of +. That is, the rule,s(X) + Y = s(X + Y ) :With this rule, Spike is able to prove the dbl theorem without divergence. In addition, thisrule is su�ciently simple that it can be proved without assistance. The heuristics used bythe critic to perform this lemma speculation are described in more detail in the next twosections.The divergence analysis performed by the critic is summarised in Figure 1. In analysing1. There is a sequence of equations si = ti which theprover attempts to prove by induction (i = 0, 1 ...);2. There exists (non trivial) G;H such that for each j, themaximal di�erence match has sj = G(Uj), and sj+1 =G( H(Uj) ).Figure 1: Preconditions to the divergence criticthe divergence, we consider all the equations which the prover attempts to prove by induc-tion. This includes those equation where the induction proof succeeds as these can oftensuggest useful patterns. By \non-trivial" I wish to exclude �z : z, the identity substitu-tion. H is thus the accumulating and nested term structure that appears to be causingdivergence. For the dbl example, H is �z : s(z), G is �z : z + x, and U0 is s(x). AlthoughG and H are second order variables, the second order nature of the divergence analysisis limited. Indeed, the implementation of the critic merely requires �rst order di�erencematching which is polynomial. For simplicity, the preconditions ignore the orientation ofequations. In addition, the preconditions can be easily generalised to include multiple and214



A Divergence Criticnested annotations. This allows the critic to recognise multiple sources of divergence in thesame equation. Techniques which identify accumulating term structure by most speci�cgeneralization (Dershowitz & Pinchover, 1990) cannot cope with divergence patterns thatgive rise to nested annotations (see Section 9 for more details).The speci�cation of the preconditions has left the length of sequence unde�ned. If thesequence is of length 2, then the critic is preemptive. That is, it will propose a lemma justbefore another induction is attempted and divergence begins. Such a short sequence risksidentifying divergence when none exists. On the other hand using a long sequence is expen-sive to test and allows the prover to waste time on diverging proof attempts. Empirically,a good compromise appears to be to look for sequences of length 3. This is both cheapto test and reliable. To identify accumulating term structure, it appears to be su�cientto use ground di�erence matching with alpha conversion of variable names. There existsa fast polynomial algorithm to perform such di�erence matching based upon the grounddi�erence matching algorithm using dynamic programming (Basin & Walsh, 1993). Sincethe skeleton must be well typed (along with the erasure), the algorithm is extended to usesort information to prune potential di�erence matches.4. Lemma SpeculationOne way of removing the accumulating and nested term structure is to propose a wave rulewhich moves this di�erence to the top of the term leaving the skeleton unchanged. We hopeeither that it will then cancel against wave-fronts on the other side of the equality or thatit will disappear in the process of being moved. For the dbl theorem, after generalization(which is discussed in the next section) the divergence pattern suggests a rule of the form,s(X) + Y = F (X + Y )where F is a second order variable which we need to instantiate. Instantiating F is ulti-mately a di�cult synthesis problem so we can only hope to have heuristics that will worksome of the time. Two of the heuristics used by the divergence critic to instantiate F arecancellation and petering out.The cancellation heuristic uses di�erence matching to identify term structure accumu-lating on the opposite side of the sequence which would allow cancellation to occur. Failingthat, the cancellation heuristic looks for suitable term structure to cancel against in a newsequence (the original sequence is usually a divergence pattern of a step case, whilst thenew sequence is usually a divergence pattern of a base case). In the dbl example, successorfunctions accumulate at the top of the left hand side of the diverging equations,s(x+ x) = s(x) + xs(s(x+ x)) = s(s(x)) + xs(s(s(x+ x))) = s(s(s(x))) + x...215



WalshThis divergence pattern suggests that F should be instantiated to �z : s(z) to enable imme-diate cancellation. Thus, as required, the cancellation heuristic suggests the rule,s(X) + Y = s(X + Y ) :The other heuristic used to instantiate the right hand side of speculated lemmas ispetering out. In moving the di�erences up to the top of the term, they may disappearaltogether. Consider, for example, the theorem,8l : sorted(isort(l)) = truewhere isort is insertion sort and sorted is true i� a list is sorted into order. These are de�nedby the conditional rewrite rules, sorted(nil) = truesorted(cons(X; nil)) = trueX < Y ! sorted(cons(X; cons(Y; Z))) = sorted(cons(Y; Z))isort(nil) = nilisort(cons(X; Y )) = insert(X; isort(Y ))where insert(X;Z), which inserts the element X into the list Z in order, and X < Y arede�ned by the rewrite rules, 0 < X = trues(X) < 0 = falses(X) < s(Y ) = X < Yinsert(X; nil) = cons(X; nil)X < Y ! insert(X; cons(Y; Z)) = cons(X; cons(Y; Z)):(X < Y )! insert(X; cons(Y; Z)) = cons(Y; insert(X;Z))Divergence analysis of Spike's attempt to prove this theorem suggests the need for arule of the form, sorted( insert(Y;X) ) = F (sorted(X) :The petering out heuristic instantiates F to the identity function �z : z. This gives the rule,sorted( insert(Y;X) ) = sorted(X):This rule allows the proof to go through without divergence.As a more complex example, consider the theorem,8i; j; l : nth(i; nth(j; l)) = nth(j; nth(i; l))where nth is de�ned by the rewrite rules,nth(0; L) = Lnth(N; nil) = nilnth(s(N); cons(H; T )) = nth(N; T ):216



A Divergence CriticSpike's diverging attempt to prove this theorem generates the equations,nth(s(i); nth(j; x)) = nth(s(j); nth(i; x))nth(s(s(i)); nth(j; cons(y; x))) = nth(s(j); nth(i; x))nth(s(s(s(i))); nth(j; cons(z; cons(y; x)))) = nth(s(j); nth(i; x))...Divergence analysis identi�es term structure accumulating in two di�erent places,nth(s(i); nth(j; x)) = nth(s(j); nth(i; x))nth( s(s(i)) ; nth(j; cons(y; x) )) = nth(s(j); nth(i; x))nth( s(s(s(i))) ; nth(j; cons(z; cons(y; x)) )) = nth(s(j); nth(i; x))...This is the unique maximal di�erence match. This divergence pattern suggests the need fora rewrite rule of the form,nth( s(I) ; nth(J; cons(Y;X) )) = F (nth(I; nth(J;X))) :The petering out heuristic instantiates F to the identity function �z : z giving the rule,nth( s(I) ; nth(J; cons(Y;X) )) = nth(I; nth(J;X)):This rule allows the proof to go through without divergence.Since the erasure of the wave rule must be properly typed, sort information can be usedto prune inappropriate instantiations for F . All speculated lemmas are therefore �lteredthrough a type checker. Speculated lemmas are also �ltered through a conjecture disprover.When a con
uent set of rewrite rules exists for ground terms, exhaustive normalizationof some representative set of ground instances of the equations is used to �lter out non-theorems. Alternatively, the prover itself could be used to �lter out non-theorems. Unlikemany other induction theorem provers, Spike can refute conjectures since its inferencerules are refutationally complete for conditional theories in which the axioms are groundconvergent and de�ned functions are completely de�ned over free constructors (Bouhoula &Rusinowitch, 1995a). Other techniques for disproving conjectures are described by Protzen(1992).The critic's lemma speculation is summarized in Figure 2 (using the same variablenames as the preconditions). This speci�cation again uses second order variables in alimited manner. First order di�erence matching is merely required to construct lemmas.As with the preconditions, the speci�cation of the postconditions can be easily extendedto deal with multiple and nested wave-fronts (as in the nth(i; nth(j; l)) = nth(j; nth(i; l))example). Since the rules proposed by the critic move the wave-fronts to top of the term,they usually only introduce fresh divergence in the rare cases that cancellation or fertilizationfails. This is unlikely since the cancellation and petering out heuristics attempt to ensureprecisely that cancellation or fertilization can take place.217



Walsh1. The critic proposes a rule of the form,G( H(U0) ) = F (G(U0))2. F is instantiated by the cancellation or petering outheuristics;3. Lemmas are �ltered through a type checker and a con-jecture disprover;4. If several lemmas are suggested, the critic deletes anythat are subsumed.Figure 2: Postconditions to the divergence critic5. GeneralizationA major cause of divergence is the need to generalize. Most of the lemmas proposedby the critic �x divergence, but attempting to prove the lemmas themselves can causefresh divergence. In addition, several speculated lemmas can sometimes be replaced bya single generalization. Generalized lemmas also can lead to shorter, more elegant andnatural proofs. The critic therefore attempts to generalize the lemma speculated, using theconjecture disprover to guard against over-generalization.The main heuristic used for generalization is an extension of the primary term heuristic(Aubin, 1976). The primary terms are those terms encountered as a term is explored fromthe root to the leaves ignoring non-recursive argument positions to functions. The samenotion of recursive argument position is used by the critic as de�ned by Bouhoula andRusinowitch (1995a) and as used by Spike for performing inductions.Consider, for example, the theorem,8a; b : len(a) + len(b) = len(app(a; b))where + is again de�ned recursively on its second argument, and len and app are de�nedby means of the rewrite rules, len(nil) = 0len(cons(H;T)) = s(len(T))app(nil;T) = Tapp(cons(H;T);R) = cons(H; app(T;R)):This problem is taken from the Clam library corpus (Bundy et al., 1990). Spike's attemptto prove this theorem diverges. One of the sequences of equations generated is,0 + len(b) = len(b)218



A Divergence Critics(0) + len(b) = s(len(b))s(s(0)) + len(b) = s(s(len(b)))...Di�erence matching identi�es the term structure causing divergence,0 + len(b) = len(b)s(0) + len(b) = s(len(b))s(s(0)) + len(b) = s(s(len(b)))...This is the unique maximal di�erence match. These annotations suggest the need for thewave rule, s(0) + len(B) = s(0 + len(B)) :A set of candidate terms for generalization is constructed by computing the intersection ofthe primary terms of the two sides of this rule. In this case, the primary terms of the lefthand side are the set fs(0) + len(B); len(B);Bg, and the primary terms of the right handside are the set fs(0+ len(B)); 0+ len(B); len(B);Bg. The intersection of the primary termsis thus the set flen(B);Bg. The critic picks members of the intersection to generalize to newvariables. Picking B justs gives an equivalent lemma up to renaming of variables. Pickinglen(B) gives the generalization, s(0) + Y = s(0 + Y) :The reason for considering just primary terms is that the recursive de�nitions typicallyprovide wave rules for removing term structure which accumulates at these positions. Inaddition to primary terms, the divergence critic therefore also considers the positions ofthe wave-holes (but not wave-fronts) in the skeleton of the lemma being speculated. Themotivation for this extension is that the speculated lemma will allow accumulating termstructure to be moved from the wave-hole positions; such positions are therefore also can-didates for generalization. Positions of the wave-fronts are not included since we want tospeculate a lemma that will move the term structure at such positions.For instance, because of the wave-hole on the �rst argument of + in the last example,0 is also included in the intersection set of candidate terms for generalization. Picking 0 togeneralize gives, s(X) + Y = s(X+ Y) :The speculated lemma is now as general as is possible. This rule allows the proof to gothrough without divergence.The critic also has a heuristic for merging speculated lemmas. For instance, with thetheorem sorted(isort(x)), the critic speculates several rules including,sorted( insert(0;X) ) = sorted(X)sorted( insert(s(Y);X) ) = sorted(X)219



WalshAs f0; s(Y)g is a cover set for the natural numbers, these two rules can be merged to give,sorted( insert(Y;X) ) = sorted(X):6. Transverse Wave RulesThe lemmas speculated so far have moved accumulating term structure directly to the topof the term where it is removed by cancellation or petering out. An alternative way ofremoving accumulating term structure is to move it onto another argument position where:either it can be removed by matching with a \sink", a universally quanti�ed variable inthe induction hypothesis; or it can be moved upwards by rewriting with the recursivede�nitions. Annotated rewrite rules which preserve the skeleton and move wave-frontsacross to other argument positions are called transverse wave rules (Bundy et al., 1993).Theorems involving functions with accumulators provide a rich source of examples wheresuch rewrite rules prevent divergence.Consider, for example, a theorem about the correctness of tail recursive list reversal,8a; b : qrev(a; b) = app(rev(a); b)where both a and b are universally quanti�ed, rev is naive list reversal using append, andqrev is tail recursive list reversal building the reversed list on the second argument position.These functions are de�ned by the rewrite rules,rev(nil) = nilrev(cons(H;T)) = app(rev(T); cons(H; nil))qrev(nil;R) = Rqrev(cons(H;T);R) = qrev(T; cons(H;R)):Spike's attempt to prove this theorem diverges generating the following sequence of equa-tions which the prover attempts to show by induction,qrev(a; b) = app(rev(a); b)qrev(a; cons(c; b)) = app(app(rev(a); cons(c; nil)); b)qrev(a; cons(c; cons(d; b))) = app(app(app(rev(a); cons(c; nil)); cons(d; nil)); b)...Di�erence matching identi�es the term structure accumulating within these equations thatis causing divergence, 220



A Divergence Criticqrev(a; b) = app(rev(a); b)qrev(a; cons(c; b) ) = app( app(rev(a); cons(c; nil)) ; b)qrev(a; cons(c; cons(d; b)) ) = app( app(app(rev(a); cons(c; nil)); cons(d; nil)) ; b)...This is the unique maximal di�erence match. Rather than move the accumulating termstructure on the right hand side of the equations to the top of the term, it is much simplerto move the accumulating term structure from the �rst onto the second argument of theoutermost append. The critic therefore proposes a transverse wave rule, which preservesthe skeleton but moves the di�erence onto a di�erent argument position. In this example,this is a rule of the form,app( app(rev(A); cons(C; nil)) ;B) = app(rev(A); F (B) ):In moving the di�erence onto another argument position, the di�erence may change syn-tactically. The right hand side of the lemma is therefore only partially determined. Toinstantiate F , the critic uses two heuristics: fertilization and simpli�cation.The fertilization heuristic uses matching to �nd an instantiation for F which enablesimmediate fertilization. In this case, matching against the universally quanti�ed variable bin the induction hypothesis suggests,app( app(rev(A); cons(C; nil)) ;B) = app(rev(A); cons(C;B) ):Finally the critic generalizes the lemma using the same extended primary term heuristic asbefore (i.e., augmenting recursive positions with wave-hole positions). This gives the rule,app( app(A; cons(C; nil)) ;B) = app(A; cons(C;B) ):This is exactly the rule needed by Spike to complete the proof. In addition, it is simpleenough to be proved by itself without divergence; this is not true of the ungeneralized rule.The other heuristic used to instantiate the right hand side of the speculated lemma isthe simpli�cation heuristic. The heuristic uses regular matching to �nd an instantiation forF which will enable the wave-front to be simpli�ed using one of the recursive de�nitions.Consider again the dbl theorem from the introduction. Divergence analysis identi�es suc-cessor functions accumulating on the �rst argument position of +. This accumulating termstructure can either be moved to the top of the term tree or alternatively onto the secondargument position of + using a transverse wave rule of the form,s(X) + Y = X + F (Y ) :The right hand side of this transverse wave rule is instantiated by the simpli�cation heuristic.The wave-front on the right hand side can be simpli�ed by the rewrite rule recursivelyde�ning + if F is instantiated by �z : s(z). That is, if we have the rule,s(X) + Y = X + s(Y ) :221



WalshThis rule allows the proof to go through without divergence.Speculated transverse wave rules are generalized using the extended primary termsheuristic described in Section 5. The divergence critic also generalizes transverse waverules by means of an equality heuristic. This heuristic attempts to cancel equal outermostfunctors where possible. For example, consider the theorem,8x; y : (x+ y)� x = ywhere addition is de�ned recursively on its second argument position and subtraction isde�ned by the rewrite rules, X � 0 = X0�X = 0s(X)� s(Y) = X� Y:Spike's attempt to prove this theorem diverges generating (amongst others) the goals,(x+ y)� x = y(s(x) + y)� x = s(y)(s(s(x)) + y)� x = s(s(y))...Divergence analysis identi�es accumulating term structure within these equations,(x+ y)� x = y( s(x) + y)� x = s(y)( s(s(x)) + y)� x = s(s(y))...This is the unique maximal di�erence match. These annotations suggest the need for thetransverse rule, ( s(X) + Y )�X = (X + s(Y ) )�X:The equality heuristic deletes the equal outermost function, �z : z�X . This gives the moregeneral lemma, s(X) + Y = X + s(Y ) :All speculated lemmas are �ltered through a type checker to ensure that their erasureis well typed. Speculated lemmas are also �ltered through a conjecture disprover to guardagainst over-generalization.The actions of the critic are summarized in Figure 3. The speci�cation of preconditionsand postconditions again uses second order variables but in a limited manner. The imple-mentation merely requires second order matching and �rst order di�erence matching. Thepreconditions and postconditions can be easily generalised to include multiple and nested222



A Divergence CriticPreconditions:1. There is a sequence of equations si = ti which theprover attempts to prove by induction (i = 0, 1 ...);2. There exists (non trivial) G;H such that for each j,the maximal di�erence match has sj = G(Uj ; Acc) andsj+1 = G( H(Uj) ; Acc).Postconditions:1. The critic proposes a rule of the form,G( H(U0) ; Acc) = G(U0; F (Acc) )2. F is instantiated by the fertilization or simpli�cationheuristics;3. The lemma is generalized using the (augmented) pri-mary terms and equality heuristics;4. Generalized lemmas are �ltered through a type checkerand a conjecture disprover;5. If several lemmas are suggested, the critic deletes anythat are subsumed.Figure 3: Speculation of transverse wave rules.annotations. We could also speculate hybrid wave rules which ripple part of the wave-frontacross and part of it up the term tree. However, such rules appear to be rare. In addition,such hybrid wave rules can often be decomposed into a pair of wave rules, one of whichmoves some of the wave-fronts up the term tree, and another which moves the wave-frontsacross.7. ImplementationThe divergence critic described in the previous sections has been implemented in Prolog.The system consists of 787 lines of code de�ning approximate 100 di�erent Prolog pred-icates. More recently a cut down version has been incorporated directly within the Spikesystem which is written in Caml Light (Bouhoula & Rusinowitch, 1995b). The outputof Spike is parsed to generate input to the critic. The input consists of: the equationswhich the prover attempts to prove by induction; sort information (for the type checkerand di�erence matcher); the recursive argument positions (for constructing primary terms);and the rewrite rules de�ning the theory (used by the conjecture disprover).223



Walsh% compiling file /home/dream5/tw/work/Spike/diverge/data.double.x+x% data.double.x+x compiled in module user, 0.233 sec 1,612 bytes| ?- speculate.Equations input:double(x1)=x1+x1s(x1+x1)=s(x1)+x1s(s(x1+x1))=s(s(x1))+x1s(s(s(x1+x1)))=s(s(s(x1)))+x1Lemmas speculated:s(x1)+x1=s(x1+x1)s(x1)+x99=s(x1+x99)s(x99)+x1=s(x99+x1)s(x99)+x100=s(x99+x100)s(x1)+x1=x1+s(x1)s(x1)+x99=x1+s(x99)s(x99)+x1=x99+s(x1)s(x99)+x100=x99+s(x100)Deleting lemmas subsumed:s(x1)+x99=s(x1+x99)s(x1)+x99=x1+s(x99)Merging remaining lemmas:s(x1)+x99=s(x1+x99)s(x1)+x99=x1+s(x99)yes| ?- Figure 4: Example output of the divergence critic.Figure 1 gives the divergence critic's output on the problem discussed in the introduction.Either of the proposed lemmas when used as a rewrite rule is adequate to �x divergence. Inaddition, the proposed lemmas are su�ciently simple to be proved automatically withoutintroducing fresh divergence. The �rst lemma is a rewrite rule for moving accumulatingsuccessor functions from the �rst argument position of + to the top of the term tree. Thesecond lemma is a transverse wave rule discussed in Section 6 for moving accumulatingsuccessor functions from the �rst argument position of + to the second argument position.224



A Divergence CriticThe critic is successful at identifying divergence and proposing appropriate lemmas andgeneralizations for a signi�cant number of theorems. Divergence analysis is very quick onmost examples. The divergence pattern is recognized usually in less than a second. Mostof the time is spent looking for generalizations and refuting over-generalizations with theconjecture disprover. This usually takes between 1 and 100 seconds. Additional heuristicsfor preventing over-generalization and a more e�cient implementation of the conjecturedisprover would speed up the critic considerably.8. ResultsTable 1 lists 30 theorems that cause Spike to diverge and the lemmas speculated by thedivergence critic after analysing the diverging proof attempts. These problems provide arepresentative sample of the type of theorems for which the cause of divergence can beidenti�ed and an appropriate lemma or generalization speculated. Many of these problemscome from the Clam library corpus. Part of this table has appeared before (Walsh, 1994).Times are for the divergence critic to speculate the lemmas and are for the average of 10runs on a Sun 4 running Quintus 3.1.1.Spike's proof attempt diverges on each example when given the de�nitions alone. Ineach of the 30 cases, the critic is quickly able to suggest a lemma which overcomes divergence.When multiple lemmas are proposed (with the exception of 20) any one on its own issu�cient to �x divergence. In every case (except 13 and 24) the lemmas proposed aresu�ciently simple to be proved automatically without introducing fresh divergence. In themajority of cases, the lemmas proposed are optimal; that is, they are the simplest possiblelemmas which �x divergence. In the cases when the lemma is not optimal, they are usuallyonly slightly more complex than the simplest lemma which �xes divergence. In many of theexamples, other lemmas are conjectured by the divergence analysis but these are quicklyrejected by the conjecture disprover. For example, in example 16, divergence analysis andthe petering out heuristic suggest the rule,## len( app(X; cons(Y; nil)) ) = len(X) ##However, this is refuted by exhaustive normalization using any ground terms for X and Y .In this case, the cancellation heuristic identi�es the required lemma,len( app(X; cons(Y; nil)) ) = s(len(X)) :Some of the examples deserve additional comment. In example 1, the divergence criticidenti�es that successor functions are accumulating on the �rst argument position of +.The critic speculates a lemma for moving these successor functions either to the top of theterm (so that immediate cancellation can occur) or onto to the second argument position(so that simpli�cation with the recursive de�nition of + can occur). The �rst lemmaspeculated is in fact a generalization of the theorem being proved. Example 2 is a simpleprogram veri�cation problem taken from Dershowitz and Pinchover (1990). The forwarddirection of this theorem was discussed in the introduction. Similar divergence occurs as inexample 1 and, after generalization, the same lemmas are speculated.Example 3 caused divergence in the beta-version of Spike available in the summer of1994. The proof rules in Spike have since been strengthened and this example no longer225



WalshNo Theorem Lemmas speculated Time/s1 s(x)+x=s(x+x) s(X)+Y=s(X+Y) 7.8s(X)+Y=X+s(Y)2 dbl(x)=x+x $ s(X)+Y=s(X+Y) 8.2dbl(0)=0, dbl(s(x))=s(s(dbl(x))) s(X)+Y=X+s(Y)3 len(x@y)=len(y @x) len(X@ (Z ::Y))=s(len(X @Y)) 3.6len(X@ (Z ::Y))=len((W ::X)@Y)4 len(x@ y)=len(x)+len(y) s(X)+Y=s(X+Y) 7.2s(X)+Y=X+s(Y)5 len(x@x)=dbl(len(x)) len(X@ (Z ::Y))=s(len(X @Y)) 11.6len(X@ (W ::Z ::Y))=s(len(X @ (W ::Y)))6 even(x+x) even(s(s(X))+Y)=even(X+Y) 5.47 odd(s(x)+x) odd(s(s(X))+Y)=odd(X+Y) 16.08 evenm(x+x) evenm(s(s(X))+Y)=evenm (X+Y) 28.4oddm(s(s(X))+Y)=oddm (X+Y)9 oddm(s(x)+x) evenm(s(s(X))+Y)=evenm (X+Y) 65.5oddm(s(s(X))+Y)=oddm (X+Y)10 evenm(x) ! half(x)+half(x)=x s(X)+Y=s(X+Y) 6.0s(X)+Y=X+s(Y)11 half(x+x)=x s(s(X))+Y=X+s(s(Y)) 11.1half(s(s(X))+Y)=half(X+Y)12 half(s(x)+x)=x s(s(X))+Y=X+s(s(Y)) 31.0half(s(s(X))+Y)=half(X+Y)13 rot(len(x),x)=x rot(len(X),X@ [Y])=Y :: rot(len(X),X) 2.414 len(rot(len(x),x))=len(x) len(rot(X,Z@ [Y]))=s(len(rot(X,Z))) 4.815 rot(len(x),x@ [y])=y :: rot(len(x),x) (X@ [Y])@ Z=X@(Y ::Z) 86.3rot(len(X),(X@ [Y])@ Z)=Y :: rot(len(X),X@Z)16 len(rev(x))=len(x) len(X@ [Y])=s(len(X)) 2.017 rev(rev(x))=x rev(X@ [Y])=Y :: rev(X) 1.218 rev(rev(x) @ [y])=y :: x rev(X@ [Y])=Y :: rev(X) 16.019 rev(rev(x) @ [y])=y :: rev(rev(x)) rev(X@ [Y])=Y :: rev(X) 18.620 len(rev(x @y))=len(x)+len(y) len(X@ [Y])=s(len(X)) 10.0s(X)+Y=s(X+Y)s(X)+Y=X+s(Y)21 len(qrev(x,[]))=len(x) len(qrev(X,Z ::Y))=s(len(qrev(X,Y))) 2.222 qrev(x,y)=rev(x) @y (X@ [Y])@ Z=X@(Y ::Z) 3.423 len(qrev(x,y))=len(x)+len(y) s(X)+Y=s(X+Y) 12.0s(X)+Y=X+s(Y)24 qrev(qrev(x,[]),[])=x qrev(qrev(X,[Y]),Z)=Y :: qrev(qrev(X,[]),Z) 5.025 rev(qrev(x,[]))=x rev(qrev(X,[Y]))=Y :: rev(qrev(X,[])) 5.826 qrev(rev(x),[])=x qrev(X@ [Y],Z)=Y:: qrev(X,Z) 5.227 nth(i,nth(j,x))=nth(j,nth(i,x)) nth(s(I),nth(J,Y ::X))=nth(I,nth(J,X)) 7.428 nth(i,nth(j,nth(k,x)))=nth(k,nth(j,nth(i,x))) nth(s(I),nth(J,Y ::X))=nth(I,nth(J,X)) 7.629 len(isort(x))=len(x) len(insert(Y,X))=s(len(X)) 2.030 sorted(isort(x)) sorted(insert(Y,X))=sorted(X) 114sorted(insert(Y,insert(Z,X)))=sorted(X)Table 1: Some lemmas speculated by the divergence critic.Notes: :: is written for in�x cons, @ for in�x append, [] for nil, and [x] for cons(x,nil). Inaddition, even is de�ned by a s(s(x)) recursion, evenm by a mutual recursion with oddm,and rot(n; l) rotates a list l by n elements. 226



A Divergence Criticcauses divergence in the current release. The speculated lemmas do, however, simplify theproof. Example 4 was used in the text to illustrate the generalization heuristics. The secondlemma in example 5 is perhaps a little surprising,len(app(X; (cons(W; cons(Z; Y ) )))) = s(len(app(X; cons(W;Y )))) :Although it is more complex than the �rst lemma, it is nearly as good at �xing divergence.In example 6, the lemma proposed,even( s(s(X)) + Y ) = even(X + Y )is not optimal. That is, it is not the simplest possible lemma that �xes divergence. To �xdivergence, we merely need one of the rules, s(X) + Y = s(X + Y ) or s(X) + Y = X +s(Y ). Either of these will ripple the successor functions accumulating on the �rst argumentposition of +. The divergence critic attempts to construct a lemma to ripple two successorfunctions across from the �rst to the second argument positions of +. Unfortunately, thecritic fails to �nd an appropriate instantiation for the right hand side of such a lemma. Thecritic instead proposes a rule to move the two successor functions up to the top of the termwhere the wave-front can peter out. Example 7 is very similar to example 6.Examples 8 to 10 demonstrate that the critic can cope with divergence in theories involv-ing mutual recursion. In example 8, Spike attempts to prove by induction the equations,evenm(x+ x) = trueoddm(s(x) + x) = trueevenm(s(s(x)) + x) = trueoddm(s(s(s(x))) + x) = trueevenm(s(s(s(s(x)))) + x) = true...The critic identi�es two inter-linking divergence patterns,evenm(x+ x) = true oddm(s(x) + x) = trueevenm( s(s(x)) + x) = true oddm( s(s(s(x))) + x) = trueevenm( s(s(s(s(x)))) + x) = true oddm( s(s(s(s(s(x))))) + x) = true... ...The critic therefore proposes rules which ripple this accumulating term structure up to thetop of the term where it peters out,evenm( s(s(X)) + Y ) = evenm(X + Y )oddm( s(s(X)) + Y ) = oddm(X + Y )227



WalshJust as in examples 6 and 7, these are not the optimal rules for �xing divergence. Neverthe-less, either of the proposed rules �x divergence and both can be proved without di�cultyby Spike. Example 9 is very similar to example 8.Examples 10 to 12 require little comment. In example 13, the proposed lemma is toodi�cult to be proved automatically. However, the divergence critic is able to identify thecause of this di�culty and propose a lemma which allows the proof to go through (example15). In example 14, the speculated lemma is not optimal. The simpler lemma speculated inexample 13 would be adequate to prove this theorem without divergence. The speculatedlemma is not optimal because the divergence critic attempts to ripple the accumulatingterm structure over two functors, len and rot to the top of the term tree. However, it issu�cient on this problem to ripple it up over just one functor, rot.Examples 16 to 19 are straightforward and do not require discussion. In example 20, thecritic identi�es two separate divergence patterns. To overcome divergence, the �rst lemmaplus one or other of the second and third are therefore needed. The �rst divergence patternoccurs in the sequence of subgoals, len(rev(x)) = 0 + len(x)len( app(rev(x); cons(y; nil)) ) = s(0 + len(x))len( app(app(rev(x); cons(y; nil)); cons(z; nil)) ) = s(s(0 + len(x)))...Term structure is accumulating on the second argument of append. Such term structure isremoved by the �rst rule,len( app(X; cons(Y; nil)) ) = s(len(X))The second divergence pattern occurs in the sequence of subgoals,s(x) + len(y) = s(x+ len(y))s(s(x)) + len(y) = s(s(x+ len(y)))s(s(s(x))) + len(y) = s(s(s(x+ len(y))))...Term structure is accumulating on the �rst argument of +. This is removed by one or otherof the second and third rules, s(X) + Y = s(X + Y )s(X) + Y = X + s(Y )Examples 21 and 23 are reasonably straightforward. The lemma speculated in example22 is a special case of the associativity of append. More powerful generalization heuristicscould have speculated the associativity of append. However, such heuristics would also228



A Divergence Criticspeculate more non-theorems. Further research into the optimal strength of generalizationheuristics would be valuable.Example 24 is the only disappointment; the lemma proposed �xes divergence but istoo di�cult to be proved automatically, even with the assistance of the divergence critic.See example 34 at the end of this section for more details. Example 25 is discussed inmore detail in the related work in Section 9 as it demonstrates the superiority of di�erencematching over generalization techniques for divergence analysis. Examples 26 to 28 requirelittle discussion. Finally, examples 29 and 30 demonstrate that the critic can cope withdivergence in moderately complex theories containing conditional equations.The results are very pleasing. Using the divergence critic, the 30 theorems listed (withthe exception of 24) can all be proved from the de�nitions alone. To provide an indicationof the di�culty of these theorems, the Nqthm system (Boyer & Moore, 1979), which isperhaps the best known explicit induction theorem prover, was unable to prove more thanhalf these theorems from the de�nitions alone. To be precise, Nqthm failed on 5, 6, 7, 8, 9,11, 12, 13, 14, 15, 18, 19, 21, 22, 24, 25, 26, 27 and 28. Of course, with the addition of somesimple lemmas, Nqthm is able to prove all these theorems. Indeed, in many cases, Nqthmneeds the same lemmas as those proposed by the divergence critic and required by Spike.This suggests that the divergence critic is not especially tied to the particular prover usednor even to the implicit induction setting.To test this hypothesis, I presented the output of a diverging proof attempt fromNqthmto the critic. I chose the commutativity of multiplication as this is perhaps the simplesttheorem which causes Nqthm to diverge. The critic proposed the lemma,(EQUAL (TIMES Y (ADD1 X)) (PLUS Y (TIMES Y X))))where TIMES and PLUS are primitives of Nqthm's logic recursively de�ned on their �rstarguments. This is exactly the lemma needed by Nqthm to prove the commutativity ofmultiplication. Nqthm fails on many of the other examples for similar reasons to Spike,and divergence analysis identi�es an appropriate lemma. This supports the suggestion thatthe divergence critic is likely to be useful for a wide variety of provers.The divergence critic has several limitations. Recognizing divergence is, in general,undecidable since it reduces to the halting problem. The divergence critic will thereforesometimes fail to identify a diverging proof attempt. In addition, the critic will sometimesidentify a \divergence" pattern when the proof attempt is not diverging. Even when di-vergence is correctly identi�ed, the critic will sometimes fail to speculate an appropriatelemma. Finally, the critic only speculates wave-rules. Whilst many theories contain a largenumber of wave-rules, and these are often very useful for �xing divergence, other types oflemma can be needed.Table 2 lists four theorems on which the divergence critic fails. These problems arerepresentative of the di�erent ways in which the critic can fail. The two main cause offailure are overlapping divergence patterns, and the inability of the heuristics to speculatean appropriate right hand side for a lemma. Again times are those to speculate lemmasand not to �nd a proof of the theorem.Example 31 is a commuted version of the recursive de�nition of multiplication (� isde�ned recursively on its second argument position). Spike's attempt to prove this theorem229



WalshNo Theorem Lemmas speculated Time/s31 s(x) � y=y+(x � y) { n/a32 x � y=y � x s(X)+Y=X+s(Y) 8.033 x+(y+(z+(v+w))) = w+(x+(y+(z+v))) s(X)+Y=s(X+Y) 17.7s(X)+Y=X+s(Y)34 qrev(qrev(x,[y]),z)=y :: qrev(qrev(x,[]),z) qrev(Y,X ::Z)) = qrev(X ::Y,Z) 9.6qrev(qrev(X,Y ::Z),W)=qrev(qrev(Y ::X,Z),W)qrev(qrev(X,Y :: [Z]),W)=Z :: qrev(qrev(X,[Y]),W)Table 2: Some of the divergence critic's failures.diverges, generating the following sequence of equations,s(y) + (x+ (x� y)) = s(y) + (y + (x� y))s(s(y)) + (x+ (x+ (x� y))) = s(x) + (s(y) + (x+ (x� y))s(s(s(y))) + (x+ (x+ (x+ (x� y)))) = s(x) + (s(s(y)) + (x+ (x+ (x� y))))...Divergence analysis of the left hand sides of these equations suggests the need for a rule ofthe form, s(Y ) + (X + Z) = F (Y + Z)Unfortunately the heuristics for lemma speculation are not su�ciently strong to suggesta suitable instantiation for F (for example, �z : s(X + z)). This lemma is rather complexand is the result of two overlapping divergence patterns. If the annotations are consideredseparately, they suggest the rules,s(X) + Y = s(X + Y )Y + (X + Z) = X + (Y + Z)With these two rules, Spike �nds a proof without di�culty.Example 32 is the commutativity of multiplication. The divergence critic identi�es adivergence pattern and proposes the transverse wave rule,s(X) + Y = X + s(Y )However, Spike is unable to prove the commutativity of multiplication with the addition ofthis rule. The proof attempt is now somewhat simpler and contains the diverging sequenceof equations, x+ (y + (x+ (x � y))) = y + (x+ (x+ (x � y)))x+ (y + (x+ (x+ (x � y))) ) = y + (x+ (x+ (x+ (x � y))))x+ (y + (x+ (x+ (x+ (x � y)))) ) = y + (x+ (x+ (x+ (x+ (x � y)))))...230



A Divergence CriticUnfortunately the heuristics for instantiating the right hand side of speculated lemmas arenot strong enough to suggest the rule,X + (Y + Z) = Y + (X + Z)With this rule, Spike �nds a proof of the commutativity of multiplication without di�culty.The di�culties in speculating this rule arise because the wave-front is stuck in a similarposition on both sides of the equality. There are few clues therefore to suggest how to rippleit up to the top of the term tree.In example 33, the divergence critic proposes a lemma where one is not needed. Spikeis able to �nd a proof of this theorem from the de�nitions alone using 16 inductions. Threeof these inductions are on the equations,0 + x = xs(0) + x = s(x)s(s(0)) + x = s(s(x))This sequence of equations satis�es the divergence critic's preconditions. The critic thereforeproposes wave rules for moving accumulating successor functions o� the �rst argumentposition of +. Although the proposed lemmas are not necessary, either give a much shorterand simpler proof needing just 7 inductions.Example 34 is the lemma speculated in example 24. Divergence analysis of Spike'sattempt to prove this theorem identi�es term structure accumulating on the second (aliasaccumulator) argument of qrev. The �rst two lemmas proposed for removing this termstructure are of no use as they are subsumed by the recursive de�nition of qrev. The thirdlemma also fails to prevent divergence. This lemma simpli�es two element lists in the secondargument position of qrev. However, divergence will still occur as the prover cannot simplifylists that occur in the second argument position of qrev which contain 3 or more elements.Divergence can be overcome if we introduce a derived function for appending onto the endof a list. This can be used to simplify terms in which a list of arbitrary size occurs on thesecond argument position of qrev. For example, we can simplify with the rule,qrev(X; Y ) = app(qrev(X; nil); Y )Unfortunately, append does not occur in the speci�cation of the theorem so it is di�cult to�nd a heuristic that would speculate such a rule.9. Related WorkCritics for monitoring the construction of proofs were �rst proposed by Ireland for the Clamprover (Ireland, 1992). In this framework, failure of one of the proof methods automaticallyinvokes a critic. Various critics for explicit induction have been developed that speculatemissing lemmas, perform generalizations, look for suitable case splits, etc. As rippling playsa central role in Clam's proof methods, many of the heuristics are similar to those describedhere (Ireland & Bundy, 1992). There are, however, several signi�cant di�erences. First, the231



Walshdivergence critic described here works in an implicit (and not an explicit) induction setting.Second, the divergence critic is not automatically invoked but must identify when the proofis failing. Third, the divergence critic is less specialized. These last two di�erences re
ect thefact that critics in Clam are usually associated with the failure of a particular preconditionto a heuristic. The same divergence pattern can, by comparison, arise for many di�erentreasons: the need to generalize variables apart, to generalize common subterms, to add alemma, etc. Fourth, the divergence critic must use di�erence matching to annotate terms; inClam, terms are usually already appropriately annotated. Finally, the divergence critic isless tightly coupled to the the theorem prover's inference rules or heuristics. The critic cantherefore exploit the strengths of the prover without needing to reason about the complexrules or heuristics being used. For instance, the divergence critic has no di�culty identifyingdivergence in complex situations like nested or mutual inductions. The critic also bene�tsfrom the powerful simpli�cation rules used by Spike.Divergence has been studied quite extensively in completion procedures. Two of themain novelties of the critic described here are the use of di�erence matching to identifydivergence, and the use of rippling in the speculation of lemmas to overcome divergence.Dershowitz and Pinchover, by comparison, use most speci�c generalization to identify diver-gence patterns in the critical pairs produced by completion (Dershowitz & Pinchover, 1990).Kirchner uses generalization modulo an equivalence relation to recognise such divergencepatterns (Kirchner, 1987); meta-rules are then synthesized to describe in�nite families ofrules with some common structure. Thomas and Jantke use generalization and inductiveinference to recognize divergence patterns and to replace in�nite sequences of critical pairsby a �nite number of generalizations (Thomas & Jantke, 1989). Thomas and Watson usegeneralization to replace an in�nite set of rules by a �nite complete set with an enrichedsignature (Thomas & Watson, 1993).Generalization modulo an equivalence enables complex divergence patters to be identi-�ed. However, it is in general undecidable. Most speci�c generalization, by comparison, ismore limited. It cannot recognize divergence patterns which give nested wave-fronts like,s( s(x) + x) :In addition, most speci�c generalization cannot identify term structure in wave-holes. Forexample, consider the divergence sequence of equations produced when Spike attempts toprove example 25 from Section 8, rev(qrev(x; nil)) = xrev(qrev(x; cons(y; nil))) = cons(y; x)rev(qrev(x; cons(z; cons(y; nil)))) = cons(z; cons(y; x))...Divergence analysis identi�es term structure accumulating within the accumulator argumentof qrev, 232



A Divergence Criticrev(qrev(x; nil)) = xrev(qrev(x; cons(y; nil) )) = cons(y; x)rev(qrev(x; cons(z; cons(y; nil)) )) = cons(z; cons(y; x))...This annotated sequence is the unique maximal di�erence match. These annotations suggestthe need for the wave rule,rev(qrev(X; cons(Y; nil) )) = cons(Y; rev(qrev(X; nil))) :This rule allows the proof to go through without divergence. By comparison, most speci�cgeneralization seems to be unable to identify this rule. The most speci�c generalization ofthe left hand side of this sequence gives the term rev(qrev(X;Z)) (or, ignoring the �rst termin the sequence, rev(qrev(X; cons(Y;Z)))). Most speci�c generalization cannot, however,identify the more useful pattern, rev(qrev(X; cons(Y; nil))).Nqthm contains a simple test for divergence based on subsumption. For instance, onexample 13 of the last section, Nqthm is unable to simplify the following subgoal in thestep case of the proof,(EQUAL (ROT (LENGTH X) (APPEND X (LIST Z)))(CONS Z (ROT (LENGTH X) X))))Note that this is the lemma speculated by the divergence critic. Nqthm generalizes (LENGTHX) in this subgoal giving the false conjecture,(EQUAL (ROT Y (APPEND X (LIST Z)))(CONS Z (ROT Y X))))After several more attempts at induction and generalization, Nqthm realizes the proof isdiverging since a subgoal is subsumed by its parent. As the proof is therefore about to loop,Nqthm gives up. No attempt is made to analyse the failed proof attempt to identify whereit started to go wrong. In addition, subsumption is a very weak test for divergence, muchweaker than tests based on di�erence matching or generalization. This subsumption testrecognizes divergence on just a small number of the failed examples in the last section.10. ConclusionsI have described a divergence critic, a computer program which attempts to identify di-verging proof attempts and to propose lemmas and generalizations which overcome thedivergence. The divergence critic has proved very successful; it enables the system Spiketo prove many theorems from the de�nitions alone. The divergence critic's success canbe largely attributed to the power of the rippling heuristic. This heuristic was originallydeveloped for proofs using explicit induction but has since found several other applications.Di�erence matching is used to identify accumulating term structure which is causing di-vergence. Lemmas and generalizations are then proposed to ripple this term structure out233
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