
Reformulating Global Grammar Constraints�

George Katsirelos1, Nina Narodytska2, and Toby Walsh2

1 NICTA, Sydney, Australia
george.katsirelos@nicta.com.au

2 NICTA and University of NSW, Sydney, Australia
ninan@cse.unsw.edu.au, toby.walsh@nicta.com.au

Abstract. An attractive mechanism to specify global constraints in rostering
and other domains is via formal languages. For instance, the REGULAR and
GRAMMAR constraints specify constraints in terms of the languages accepted
by an automaton and a context-free grammar respectively. Taking advantage of
the fixed length of the constraint, we give an algorithm to transform a context-free
grammar into an automaton. We then study the use of minimization techniques
to reduce the size of such automata and speed up propagation. We show that
minimizing such automata after they have been unfolded and domains initially
reduced can give automata that are more compact than minimizing before un-
folding and reducing. Experimental results show that such transformations can
improve the size of rostering problems that we can “model and run”.

1 Introduction

Constraint programming provides a wide range of tools for modelling and efficiently
solving real world problems. However, modelling remains a challenge even for experts.
Some recent attempts to simplify the modelling process have focused on specifying con-
straints using formal language theory. For example the REGULAR [1] and GRAMMAR

constraints [2,3] permit constraints to be expressed in terms of automata and gram-
mars. In this paper, we make two contributions. First, we investigate the relationship
between REGULAR and GRAMMAR. In particular, we show that it is often beneficial to
reformulate a GRAMMAR constraint as a REGULAR constraint. Second, we explore the
effect of minimizing the automaton specifying a REGULAR constraint. We prove that
by minimizing this automaton after unfolding and initial constraint propagation, we can
get an exponentially smaller and thus more efficient representation. We show that these
transformations can improve runtimes by over an order of magnitude.

2 Background

A constraint satisfaction problem consists of a set of variables, each with a domain of
values, and a set of constraints specifying allowed combinations of values for given
subsets of variables. A solution is an assignment to the variables satisfying the con-
straints. A constraint is domain consistent iff for each variable, every value in its do-
main can be extended to an assignment that satisfies the constraint. We will consider

� NICTA is funded by the Australian Government’s Department of Broadband, Communica-
tions, and the Digital Economy and the Australian Research Council.

W.-J. van Hoeve and J.N. Hooker (Eds.): CPAIOR 2009, LNCS 5547, pp. 132–147, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Reformulating Global Grammar Constraints 133

constraints specified by automata and grammars. An automaton A = 〈Σ, Q, q0, F, δ〉
consists of an alphabet Σ, a set of states Q, an initial state q0, a set of accepting states
F , and a transition relation δ defining the possible next states given a starting state
and symbol. The automaton is deterministic (DFA) is there is only one possible next
state, non-deterministic (NFA) otherwise. A string s is recognized by A iff starting
from the state q0 we can reach one of the accepting states using the transition rela-
tion δ. Both DFAs and NFAs recognize precisely regular languages. The constraint
REGULAR(A, [X1, . . . , Xn]) is satisfied iff X1 to Xn is a string accepted by A [1].
Pesant has given a domain consistency propagator for REGULAR based on unfolding
the DFA to give a n-layer automaton which only accepts strings of length n [1].

Given an automaton A, we write unfoldn(A) for the unfolded and layered form of
A that just accepts words of length n which are in the regular language, min(A) for
the canonical form of A with minimal number of states, simplify(A) for the simplified
form of A constructed by deleting transitions and states that are no longer reachable
after domains have been reduced. We write fA(n) � gA(n) iff fA(n) ≤ gA(n) for all
n, and there exist A such that log gA(n)

fA(n) = Ω(n). That is, gA(n) is never smaller than
fA(n) and there are cases where it is exponentially larger.

A context-free grammar is a tuple G = 〈T, H, P, S〉, where T is a set of terminal
symbols called the alphabet of G, H is a set of non-terminal symbols, P is a set of
productions and S is a unique starting symbol. A production is a rule A → α where
A is a non-terminal and α is a sequence of terminals and non-terminals. A string in
Σ∗ is generated by G if we start with the sequence α = 〈S〉 and non deterministically
generate α′ by replacing any non-terminal A in α by the right hand side of any pro-
duction A → α until α′ contains only terminals. A context free language L(G) is the
language of strings generated by the context free grammar G. A context free grammar
is in Chomsky normal form if all productions are of the form A → BC where B and
C are non terminals or A → a where a is a terminal. Any context free grammar can
be converted to one that is in Chomsky normal form with at most a linear increase in
its size. A grammar Ga is acyclic iff there exists a partial order ≺ of the non-terminals,
such that for every production A1 → A2A3, A1 ≺ A2 and A1 ≺ A3. The constraint
GRAMMAR([X1, . . . , Xn], G) is satisfied iff X1 to Xn is a string accepted by G [2,3].

Example 1. As the running example we use the GRAMMAR([X1, X2, X3], G) con-
straint with domains D(X1) = {a}, D(X2) = {a, b}, D(X3) = {b} and the grammar
G in Chomsky normal form [3] {S → AB, A → AA | a, B → BB | b}.

Since we only accept strings of a fixed length, we can convert any context free grammar
to a regular grammar. However, this may increase the size of the grammar exponentially.
Similarly, any NFA can be converted to a DFA, but this may increase the size of the
automaton exponentially.

3 GRAMMAR Constraint

We briefly describe the domain consistency propagator for the GRAMMAR constraint
proposed in [2,3]. This propagator is based on the CYK parser for context-free gram-
mars. It constructs a dynamic programing table V where an element A of V [i, j] is a

134 G. Katsirelos, N. Narodytska, and T. Walsh

non-terminal that generates a substring from the domains of variables Xi, . . . , Xi+j−1

that can be extended to a solution of the constraint using the domains of the other vari-
ables. The table V produced by the propagator for Example 1 is given in Figure 1.

A B

S
1,3

1,2 2,2

1,1

B B

2,1

A A

3,1

a a b b

D(X
1
)={a} D(X

2
)={a,b} D(X

3
)={b}

Fig. 1. Dynamic programming table produced by the propagator of the GRAMMAR constraint.
Pointers correspond to possible derivations.

An alternative view of the dynamic programming table produced by this propagator
is as an AND/OR graph [4]. This is a layered DAG, with layers alternating between
AND-NODES or OR-NODES. Each OR-NODE in the AND/OR graph corresponds to
an entry A ∈ V [i, j]. An OR-NODE has a child AND-NODE for each production A →
BC so that A ∈ V [i, j], B ∈ V [i, k] and C ∈ V [i + k, j − k]. The children of
this AND-NODE are the OR-NODES that correspond to the entries B ∈ V [i, k] and
C ∈ V [i + k, j − k]. Note that the AND/OR graph constructed in this manner is
equivalent to the table V [4], so we use them interchangeably in this paper.

Every derivation of a string s ∈ L(G) can be represented as a tree that is a subgraph
of the AND/OR graph and therefore can be represented as a trace in V . Since every
possible derivation can be represented this way, both the table V and the corresponding
AND/OR graph are a compilation of all solutions of the GRAMMAR constraint.

4 Reformulation into an Automaton

The time complexity of propagating a GRAMMAR constraint is O(n3|G|), as opposed
to O(n|δ|) for a REGULAR constraint. Therefore, reformulating a GRAMMAR con-
straint as a REGULAR constraint may improve propagation speed if it does not require a

V

V

V

V

V

V

V V

V

V

V

V V V V

S

A B

A A B B

bVVVV
baa

Fig. 2. AND/OR graph.

Reformulating Global Grammar Constraints 135

large transition relation. In addition, we can perform optimizations such as minimizing
the automaton. In this section, we argue that reformulation is practical in many cases
(sections 4.1-4.3), and there is a polynomial test to determine the size of the resulting
NFA (section 4.4). In the worst case, the resulting NFA is exponentially larger then the
original GRAMMAR constraint as the following example shows. Therefore, performing
the transformation itself is not a suitable test of the feasibility of the approach.

Example 2. Consider GRAMMAR([X1, . . . , Xn], G) where G generates L = {wwR|w
∈ {0, 1}n/2}. Solutions of GRAMMAR can be compiled into the dynamic programming
table of size O(n3), while an equivalent NFA that accepts the same language has ex-
ponential size. Note that an exponential separation does not immediately follow from
that between regular and context-free grammars, because solutions of the GRAMMAR

constraint are the strict subset of L(G) which have length n.

In the rest of this section we describe the reformulation in three steps. First, we convert
into an acyclic grammar (section 4.1), then into a pushdown automaton (section 4.2),
and finally we encode this as a NFA (section 4.3). The first two steps are well known in
formal language theory but we briefly describe them for clarity.

4.1 Transformation into an Acyclic Grammar

We first construct an acyclic grammar, Ga such that the language L(Ga) coincides with
solutions of the GRAMMAR constraint. Given the table V produced by the GRAMMAR

propagator (section 3), we construct an acyclic grammar in the following way. For
each possible derivation of a nonterminal A, A → BC, such that A ∈ V [i, j], B ∈
V [i, k] and C ∈ V [i + k, j − k] we introduce a production Ai,j → Bi,kCi+k,j−k

in Ga (lines 11- 17 of algorithm 1). The start symbol of Ga is S1,n. By construction,
the obtained grammar Ga is acyclic. Every production in Ga is of the form Ai,j →
Bi,kCi+k,j−k and nonterminals Bi,k, Ci+k,j−k occur in rows below jth row in V . Ex-
ample 3 shows the grammar Ga obtained by Algorithm 1 on our running example.

Example 3. The acyclic grammar Ga constructed from our running example.

S1,3 → A1,2B3,1 | A1,1B2,2 A1,2 → A1,1A2,1 B2,2 → B2,1B3,1

Ai,1 → ai Bi,1 → bi ∀i ∈ {1, 2, 3}
To prove equivalence, we recall that traces of the table V represent all possible deriva-
tions of GRAMMAR solutions. Therefore, every derivation of a solution can be simu-
lated by productions from GA. For instance, consider the solution (a, a, b) of
GRAMMAR from Example 1. A possible derivation of this string is S|S∈V [1,3] →
AB|A∈V [1,2],B∈V [3,1] → AAB|A∈V [1,1],A∈V [2,1],B∈V [3,1] → aAB|... → aaB|... →
aab|.... We can simulate this derivation using productions in Ga: S1,3 → A1,2B3,1 →
A1,1A2,1B3,1 → a1A2,1B3,1 → a1a2B3,1 → a1a2b3.

Observe that, the acyclic grammar Ga is essentially a labelling of the AND/OR
graph, with non-terminals corresponding to OR-NODES and productions corresponding
to AND-NODES. Thus, we use the notation Ga to refer to both the AND/OR graph and
the corresponding acyclic grammar.

136 G. Katsirelos, N. Narodytska, and T. Walsh

Algorithm 1. Transformation to an Acyclic Grammar
1: procedure CONSTRUCTACYCLICGRAMMAR(in : X, G, V ; out : Ga)
2: T = ∅ � T is the set of terminals in Ga

3: H = ∅ � H is the set of nonterminals in Ga

4: P = ∅ � P is the set of productions in Ga

5: for i = 1 to n do
6: V [i, 1] = {A|A → a ∈ G, a ∈ D(Xi)}
7: for A ∈ V [i, 1] s.t A → a ∈ G, a ∈ D(Xi) do
8: T = T ∪ {ai}
9: H = H ∪ {Ai,1}
10: P = P ∪ {Ai,1 → ai}
11: for j = 2 to n do
12: for i = 1 to n − j + 1 do
13: for each A ∈ V [i, j] do
14: for k = 1 to j − 1 do
15: for each A → BC ∈ G s.t. B ∈ V [i, k], C ∈ V [i + k, j − k] do
16: H = H ∪ {Ai,j , Bi,k, Ci+k,j−k}
17: P = P ∪ {Ai,j → Bi,kCi+k,j−k}

4.2 Transformation into a Pushdown Automaton

Given an acyclic grammar Ga = (T, H, P, S1,n) from the previous section, we now
construct a pushdown automaton Pa(〈S1,n〉 , T, T ∪H, δ, QP , FP), where 〈S1,n〉 is the
initial stack of Pa, T is the alphabet, T ∪H is the set of stack symbols, δ is the transition
function, QP = FP = {qP } is the single initial and accepting state. We use an algo-
rithm that encodes a context free grammar into a pushdown automaton (PDA) that com-
putes the leftmost derivation of a string[5]. The stack maintains the sequence of symbols
that are expanded in this derivation. At every step, the PDA non-deterministically uses
a production to expand the top symbol of the stack if it is a non-terminal, or consumes
a symbol of the input string if it matches the terminal at the top of the stack.

We now describe this reformulation in detail. There exists a single state qP which is
both the starting and an accepting state. For each non-terminal Ai,j in Ga we introduce
the set of transitions δ(qP , ε, Ai,j) = {(qP , β)|∀Ai,j → β ∈ Ga}. For each terminal
ai ∈ Ga, we introduce a transition δ(qP , ai, ai) = {(qP , ε)}. The automaton Pa accepts
on the empty stack. This constructs a pushdown automaton accepting L(Ga).

Example 4. The pushdown automaton Pa constructed for the running example.

δ(qP , ε, S1,3) = δ(qP , A1,2B3,1) δ(qP , ε, S1,3) = δ(qP , A1,1B2,2)
δ(qP , ε, A1,2) = δ(qP , A1,1A2,1) δ(qP , ε, B2,2) = δ(qP , B2,1B3,1)

δ(qP , ε, Ai,1) = δ(qP , ai) δ(qP , ε, Bi,1) = δ(qP , bi)∀i ∈ {1, 2, 3}
δ(qP , ai, ai) = δ(qP , ε) δ(qP , bi, bi) = δ(qP , ε)∀i ∈ {1, 2, 3}

4.3 Transformation into a NFA

Finally, we construct an NFA(Σ, Q, Q0, F0, σ), denoted Na, using the PDA from the
last section. States of this NFA encode all possible configurations of the stack of the
PDA that can appear in parsing a string from Ga. To reflect that a state of the NFA
represents a stack, we write states as sequences of symbols 〈α〉, where α is a possibly
empty sequence of symbols and α[0] is the top of the stack. For example, the initial

Reformulating Global Grammar Constraints 137

Algorithm 2. Transformation to NFA
1: procedure PDA TO NFA(in : Pa, out : Na)
2: Qu = {〈S1,n〉} � Qu is the set of unprocessed states
3: Q = ∅ � Q is the set of states in Na

4: σ = ∅ � σ is the set of transitions in Na

5: Q0 = {〈S1,n〉} � Q0 is the initial state in Na

6: F0 = {〈〉} � F0 is the set of final states in Na

7: while Qu is not empty do
8: if q ≡ 〈Ai,j , α〉 then
9: for each transition δ(qP , ε, Ai,j) = (qP , β) ∈ δ do
10: σ = σ ∪ {σ(〈Ai,j , α〉 , ε) = 〈β, α〉}
11: if 〈β, α〉 /∈ Q then
12: Qu = Qu ∪ {〈β, α〉}
13: Q = Q ∪ {〈Ai,j , α〉}
14: else if q ≡ 〈ai, α〉 then
15: for each transition δ(qP , ai, ai) = (qP , ε) ∈ δ do
16: σ = σ ∪ {σ(〈ai, α〉 , ai) = 〈α〉}
17: if 〈α〉 /∈ Q then
18: Qu = Qu ∪ {〈α〉}
19: Q = Q ∪ {〈ai, α〉}
20: Qu = Qu \ {q}
21: Na(Σ, Q, Q0, F0, σ) = ε − Closure(Na(Σ, Q, Q0, F0σ)).

state is 〈S1,n〉 corresponding to the initial stack 〈S1,n〉 of Pa. Algorithm 2 unfolds the
PDA in a similar way to unfolding the DFA. Note that the NFA accepts only strings of
length n and has the initial state Q0 = 〈S1,n〉 and the single final state F0 = 〈〉.

We start from the initial stack 〈S1,n〉 and find all distinct stack configurations that are
reachable from this stack using transitions from Pa. For each reachable stack configura-
tion we create a state in the NFA and add the corresponding transitions. If the new stack
configurations are the result of expansion of a production in the original grammar, these
transitions are ε−transitions, otherwise they consume a symbol from the input string.
Note that if a non-terminal appears on top of the stack and gets replaced, then it cannot
appear in any future stack configuration due to the acyclicity of Ga. Therefore |α| is
bounded by O(n) and Algorithm 2 terminates. The size of Na is O(|Ga|n) in the worst
case. The automaton Na that we obtain before line 21 is an acyclic NFA with ε transi-
tions. It accepts the same language as the PDA Pa since every path between the starting
and the final state of NA is a trace of the stack configurations of Pa. Figure 3(a) shows
the automaton Na with ε-transitions constructed from the running example. After ap-
plying the ε-closure operation, we obtain a layered NFA that does not have ε transitions
(line 21) (Figure 3(b)).

4.4 Computing the Size of the NFA

As the NFA may be exponential in size, we provide a polynomial method of computing
its size in advance. We can use this to decide if it is practical to transform it in this way.
Observe first that the transformation of a PDA to an NFA maintains a queue of states
that correspond to stack configurations. Each state corresponds to an OR-NODE in the
AND/OR graph and each state of an OR-NODE v is generated from the states of the
parent OR-NODES of v. This suggests a relationship between paths in the AND/OR
graph of the CYK algorithm and states in Na. We use this relationship to compute

138 G. Katsirelos, N. Narodytska, and T. Walsh

S1,3

B2,1, B3,1

B3,1A2,1, B3,1 <>
a1

a2
b3

b2

a1

A1,2, B3,1

S1,3

A1,1, B2,2

A1,1, A2,1, B3,1

B2,2 B2,1, B3,1

B3,1A2,1, B3,1 <>

a1 a2
b3

b2

a1

(a) (b)

Fig. 3. Na produced by Algorithm 2

a loose upper bound for the number of states in Na in time linear in the size of the
AND/OR graph by counting the number of paths in that graph. Alternatively, we com-
pute the exact number of states in Na in time quadratic in the size of the AND/OR
graph.

Theorem 1. There exists a surjection between paths in Ga from the root to OR-NODES

and stack configurations in the PDA Pa.

Proof. Consider a path p from the root of the AND/OR graph to an OR-NODE la-
belled with Ai,j . We construct a stack configuration Γ (p) that corresponds to p. We
start with the empty stack Γ = 〈〉. We traverse the path from the root to Ai,j . For every
AND-NODE v1 ∈ p, with left child vl and right child vr, if the successor of v1 in p is
vl, then we push vr on Γ , otherwise do nothing. When we reach Ai,j , we push it on Γ .
The final configuration Γ is unique for p and corresponds to the stack of the PDA after
having parsed the substring 1 . . . i−1 and having non-deterministically chosen to parse
the substring i . . . i + j − 1 using a production with Ai,j on the LHS.

We now show that all stack configurations can be generated by the procedure
above. Every stack configuration corresponds to at least one partial left most deriva-
tion of a string. We say a stack configuration 〈α〉 corresponds to a derivation dv =
〈a1, . . . , ak−1, Ak,j , α〉 if α is the context of the stack after parsing the prefix of the
string of length k + j. Therefore, it is enough to show that all partial left most deriva-
tion (we omit the prefix of terminals) can be generated by the procedure above. We
prove by a contradiction. Suppose that 〈a1, . . . , ai−1, Bi,j , β〉 is the partial left most
derivation such that Γ (p(root, Bi,j)) �= β, where p(root, Bi,j) is the path from the root
to the OR-NODE Bi,j and for any partial derivation 〈a1, . . . , ak−1, Ak,j , α〉, such that
k < i Ak,j ∈ Ga Γ (p(root, Ak,j)) = α. Consider the production rule that introduces
the nonterminal Bi,j to the partial derivation. If the production rule is D → C, Bi,j ,
then the partial derivation is 〈a1, . . . , af , D, β〉 ⇒|D→C,Bi,j 〈a1, . . . , af , C, Bi,j , β〉.
The path from the root to the node Bi,j is a concatenation of the paths from D to Bi,j

and from the root to D. Therefore, Γ (p(root, Bi,j)) is constructed as a concatenation
of Γ (p(D, Bi,j)) and Γ (p(root, D)). Γ (p(D, Bi,j)) is empty because the node Bi,j

is the right child of AND-NODE that corresponds to the production D → C, Bi,j and
Γ (p(root, D)) = β because f < i. Therefore, Γ (p(root, Bi,j)) = β. If the production
rule is D → Bi,j , C, then the partial derivation is 〈a1, . . . , ai−1, D, γ〉 ⇒|D→Bi,j ,C

〈a1, . . . , ai−1, Bi,j , C, γ〉 = 〈a1, . . . , ai−1, Bi,j , β〉. Then, Γ (p(root, D)) = γ, be-
cause i − 1 < i and Γ (p(D, Bi,j)) = 〈C〉, because the node Bi,j is the left

Reformulating Global Grammar Constraints 139

child of AND-NODE that corresponds to the production D → C, Bi,j . Therefore,
Γ (p(root, Bi,j)) = 〈C, γ〉 = β. This leads to a contradiction. �
Example 5. An example of the mapping described in the last proof is in Figure 4(a) for
the grammar of our running example. Consider the OR-NODE A1,1. There are 2 paths
from S1,3 to A1,1. One is direct and uses only OR-NODES 〈S1,3, A1,1〉 and the other uses
OR-NODES 〈S1,3, A1,2, A1,1〉. The 2 paths are mapped to 2 different stack configura-
tions 〈A1,1, B2,2〉 and 〈A1,1, A2,1, B3,1〉 respectively. We highlight edges that are inci-
dent to AND-NODES on each path and lead to the right children of these AND-NODES.
There is exactly one such edge for each element of a stack configuration. �
Note that theorem 1 only specifies a surjection from paths to stack configurations, not a
bijection. Indeed, different paths may produce the same configuration Γ .

Example 6. Consider the grammar G={S → AA, A → a|AA|BC, B → b|BB, C →
c|CC} and the AND/OR graph of this grammar for a string of length 5. The path
〈S1,5, A2,4, B2,2〉 uses the productions S1,5 → A1,1A2,4 and A2,4 → B2,2C4,2, while
the path 〈S1,5, A3,3, B3,1〉 uses the productionsS1,5 → A1,2A3,3 and A3,3 → B3,1C4,2.
Both paths map to the same stack configuration 〈C4,2〉. �
By construction, the resulting NFA has one state for each stack configuration of the PDA
in parsing a string. Since each path corresponds to a stack configuration, the number of
states of the NFA before applying ε-closure is bounded by the number of paths from
the root to any OR-NODE in the AND/OR graph. This is cheap to compute using the
following recursive algorithm [6]:

PD(v) =
{

1 If v has no incoming edges∑
p PD(p) where p is a parent of v

(1)

Therefore, the number of states of the NFA Na is at most
∑

v PD(v), where v is an
OR-NODE of Ga (Figure 4).

We can compute the exact number of paths in Na before ε-closure without construct-
ing the NFA by counting paths in the stack graph Gv for each OR-NODE v. The stack
graph captures the observation that each element of a stack configuration generated

V

V

V

V

V

V

V V

V

V

V

V V V V

S1,3

A1,2 B2,2

A1,1 A2,1
B2,1 B3,1

b3
VVVV b2a2a1

V
A1,1

V
A2,1

V
B2,2

V
B3,1

(a) (b)

Fig. 4. Computing the size of Na. (a) AND/OR graph Ga. (b) Stack graph GA1,1

140 G. Katsirelos, N. Narodytska, and T. Walsh

from a path p is associated with exactly one edge e that is incident on p and leads to the
right child of an AND-NODE. Gv contains one path for each sequence of such edges,
so that if two paths p and p′ in Ga are mapped to the same stack configuration, they
are also mapped to the same path in Gv . Formally, the stack graph of an OR-NODE

v ∈ V (Ga) is a DAG Gv , such that for every stack configuration Γ of Pa with k ele-
ments, there is exactly one path p in Gv of length k and v′ is the ith vertex of p if and
only if v′ is the ith element from the top of Γ .

Example 7. Consider the grammar of the running example and the OR-NODE A1,1 in
the AND/OR graph. The stack graph GA1,1 for this OR-NODE is shown in figure 4(b).
Along the path 〈S1,3A1,1〉, only the edge that leads to B2,2 generates a stack element.
This edge is mapped to the edge (A1,1, B2,2) in GA1,1 . Similarly, the edges that lead to
A2,1 and B3,1 are mapped to the edges (A1,1, A2,1) and (A2,1, B3,1) respectively. �
Since Gv is a DAG, we can efficiently count the number of paths in it. We construct Gv

using algorithm 3. The graph Gv computed in algorithm 3 for an OR-NODE v has as
many paths as there are unique stack configurations in Pa with v at the top.

Algorithm 3. Computing the stack DAG Gv of an OR-NODE v

1: procedure STACKGRAPH((in : Ga, v, out : Gv))
2: V (Gv) = {v}
3: label(v) = {v}
4: Q = {(v, vp)|vp ∈ parents(v)} � queue of edges
5: while Q not empty do
6: (vc, vp) = pop(Q)
7: if vp is an AND-NODE vc is left child of vp then
8: vr = childrenr (vp)

9: V (Gv) = V (Gv) ∪ {vr}
10: E(Gv) = E(Gv) ∪ {(vl, vr)|vl ∈ label(vc)}
11: label(vp) = label(vp) ∪ {vr}
12: else
13: label(vp) = label(vp) ∪ label(vc)

14: Q = Q ∪
{

(vp, v′
p)|v′

p ∈ parents(vp)
}

�

Theorem 2. There exists a bijection between paths in Gv and states in the NFA Na

which correspond to stacks with v at the top.

Proof. Let p be a path from the root to v in Ga. First, we show that every path p′ in
Gv corresponds to a stack configuration, by mapping p to p′. Therefore p′ corresponds
to Γ (p). We then show that p′ is unique for Γ (p). This establishes a bijection between
paths in Gv and stack configurations.

We traverse the inverse of p, denoted inv(p) and construct p′ incrementally. Note that
every vertex in inv(p) is examined by algorithm 3 in the construction of Gv. If inv(p)
visits the left child of an AND-NODE, we append the right child of that AND-NODE to
p′. This vertex is in Gv by line 7. By the construction of Γ (p) in the proof of theorem 1,
a symbol is placed on the stack if and only if it is the right child of an AND-NODE,
hence if and only if it appears in p′. Moreover, if a vertex is the ith vertex in a path,
it corresponds to the ith element from the top of Γ (p). We now see that p′ is unique
for Γ (p). Two distinct paths of length k cannot map to the same stack configuration,

Reformulating Global Grammar Constraints 141

because they must differ in at least one position i, therefore they correspond to stacks
with different symbols at position i. Therefore, there exists a bijection between paths
in Gv and stack configurations with v at the top. �
Hence |Q(Ng)| =

∑
v #paths(Gv), where v is an OR-NODE of Ga. Computing the

stack graph Gv of every OR-NODE v takes O(|Ga|) time, as does counting paths in
Gv . Therefore, computing the number of states in Na takes O(|Ga|2) time. We can also
compute the number of states in the ε-closure of Na by observing that if none of the
OR-NODES that are reachable by paths of length 2 from an OR-NODE v correspond
to terminals, then any state that corresponds to a stack configuration with v at the top
will only have outgoing ε−transitions and will be removed by the ε−closure. Thus, to
compute the number of states in Na after ε−closure, we sum the number of paths in Gv

for all OR-NODES v such that a terminal OR-NODE can be reached from v by a path of
length 2.

4.5 Transformation into a DFA

Finally, we convert the NFA into a DFA using the standard subset construction. This is
optional as Pesant’s propagator for the REGULAR constraints works just as well with
NFAs as DFAs. Indeed, removing non-determinism may increase the size of the au-
tomaton and slow down propagation. However, converting into a DFA opens up the
possibility of further optimizations. In particular, as we describe in the next section,
there are efficient methods to minimize the size of a DFA. By comparison, minimiza-
tion of a NFA is PSPACE-hard in general [7]. Even when we consider just the acyclic
NFA constructed by unfolding a NFA, minimization remains NP-hard [8].

5 Automaton Minimization

The DFA constructed by this or other methods may contain redundant states and transi-
tions. We can speed up propagation of the REGULAR constraint by minimizing the size
of this automaton. Minimization can be either offline (i.e. before we have the problem
data and have unfolded the automaton) or online (i.e. once we have the problem data
and have unfolded the automaton). There are several reasons why we might prefer an
online approach where we unfold before minimizing. First, although minimizing after
unfolding may be more expensive than minimizing before unfolding, both are cheap
to perform. Minimizing a DFA takes O(Q log Q) time using Hopcroft’s algorithm and
O(nQ) time for the unfolded DFA where Q is the number of states [9]. Second, thanks
to Myhill-Nerode’s theorem, minimization does not change the layered nature of the
unfolded DFA. Third, and perhaps most importantly, minimizing a DFA after unfold-
ing can give an exponentially smaller automaton than minimizing the DFA and then
unfolding. To put it another way, unfolding may destroy the minimality of the DFA.

Theorem 3. Given any DFA A, |min(unfoldn(A))| � |unfoldn(min(A))|.
Proof: To show |min(unfoldn(A))| ≤ |unfoldn(min(A))|, we observe that both
min(unfoldn(A)) and unfoldn(min(A)) are automata that recognize the same lan-
guage. By definition, minimization returns the smallest DFA accepting this language.
Hence min(unfoldn(A)) cannot be larger than unfoldn(min(A)).

142 G. Katsirelos, N. Narodytska, and T. Walsh

To show unfolding then minimizing can give an exponentially smaller sized DFA,
consider the following language L. A string of length k belongs to L iff it contains the
symbol j, j = k mod n, where n is a given constant. The alphabet of the language L
is {0, . . . , n − 1}. The minimal DFA for this language has Ω(n2n) states as each state
needs to record which symbols from 0 to n − 1 have been seen so far, as well as the
current length of the string mod n. Unfolding this minimal DFA and restricting it to
strings of length n gives an acyclic DFA with Ω(n2n) states. Note that all strings are
of length n and the equation j = n mod n has the single solution j = 0. Therefore, the
language L consists of the strings of length n that contain the symbol 0. On the other
hand, if we unfold and then minimize, we get an acyclic DFA with just 2n states. Each
layer of the DFA has two states which record whether 0 has been seen. �
Further, if we make our initial problem domain consistent, domains might be pruned
which give rise to possible simplifications of the DFA. We show here that we should
also perform such simplification before minimizing.

Theorem 4. Given any DFA A, |min(simplify(unfoldn(A)))| � |simplify(min
(unfoldn(A)))|.
Proof: Both min(simplify(unfoldn(A))) and simplify(min(unfoldn(A))) are
DFAs that recognize the same language of strings of length n. By defini-
tion, minimization must return the smallest DFA accepting this language. Hence
min(simplify(unfoldn(A))) is no larger than simplify(min(unfoldn(A))).

To show that minimization after simplification may give an exponentially smaller
sized automaton, consider the language which contains sequences of integers from 1
to n in which at least one integer is repeated and in which the last two integers are
different. The alphabet of the language L is {1, . . . , n}. The minimal unfolded DFA for
strings of length n from this language has Ω(2n) states as each state needs to record
which integers have been seen.Suppose the integer n is removed from the domain of
each variable. The simplified DFA still has Ω(2n) states to record which integers 1 to
n − 1 have been seen.On the other hand, suppose we simplify before we minimize. By
a pigeonhole argument, we can ignore the constraint that an integer is repeated. Hence
we just need to ensure that the string is of length n and that the last two integers are
different. The minimal DFA accepting this language requires just O(n) states. �

6 Empirical Results

We empirically evaluated the results of our method on a set of shift-scheduling bench-
marks [11,14] 1. Experiments were run with the Minisat+ solver for pseudo-Boolean
instances and Gecode 2.2.0 for constraint problems, on an Intel Xeon 4 CPU, 2.0 Ghz,
4G RAM. We use a timeout of 3600 sec in all experiments. The problem is to schedule
employees to activities subject to various rules, e.g. a full-time employee has one hour
for lunch. This rules are specified by a context-free grammar augmented with restric-
tions on productions [4]. A schedule for an employee has n = 96 slots of 15 minutes

1 We would like to thank Louis-Martin Rousseau and Claude-Guy Quimper for providing us
with the benchmark data.

Reformulating Global Grammar Constraints 143

represented by n variables. In each slot, an employee can work on an activity (ai), take
a break (b), lunch (l) or rest (r). These rules are specified by the following grammar:

S → RPR, fP (i, j) ≡ 13 ≤ j ≤ 24, P → WbW, L → lL|l, fL(i, j) ≡ j = 4
S → RFR, fF (i, j) ≡ 30 ≤ j ≤ 38, R → rR|r, W → Ai, fW (i, j) ≡ j ≥ 4
Ai → aiAi|ai, fA(i, j) ≡ open(i), F → PLP

where functions f(i, j) are predicates that restrict the start and length of any string
matched by a specific production, and open(i) is a function that returns 1 if the business
is open at ith slot and 0 otherwise. In addition, the business requires a certain number
of employees working in each activity at given times during the day. We minimize the
number of slots in which employees work such that the demand is satisfied.

As shown in [4], this problem can be converted into a pseudo-Boolean (PB) model.
The GRAMMAR constraint is converted into a SAT formula in conjunctive normal form
using the AND/OR graph. To model labour demand for a slot we introduce Boolean
variables b(i, j, ak), equal to 1 if jth employee performs activity ak at ith time slot. For
each time slot i and activity ak we post a pseudo-Boolean constraint

∑m
j=1 b(i, j, ak) >

d(i, ak), where m is the number of employees. The objective is modelled using the
function

∑n
i=1

∑m
j=1

∑a
k=1 bi,j,ak

. Additionally, the problem can be formulated as an
optimization problem in a constraint solver, using a matrix model with one row for
each employee. We post a GRAMMAR constraint on each row, AMONG constraints on
each column for labour demand and LEX constraints between adjacent rows to break
symmetry. We use the static variable and value ordering used in [4].

We compare this with reformulating the GRAMMAR constraint as a REGULAR con-
straint. Using algorithm 3, we computed the size of an equivalent NFA. Surprisingly,
this is not too big, so we converted the GRAMMAR constraint to a DFA then mini-
mized. In order to reduce the blow-up that may occur converting a NFA to a DFA, we
heuristically minimized the NFA using the following simple observation: two states
are equivalent if they have identical outgoing transitions. We traverse the NFA from the
last to the first layer and merge equivalent states and then apply the same procedure to
the reversed NFA. We repeat until we cannot find a pair of equivalent states. We also
simplified the original CYK table, taking into account whether the business is open or
closed at each slot. Theorem 4 suggests such simplification can significantly reduce the
size both of the CYK table and of the resulting automata. In practice we also observe a
significant reduction in size. The resulting minimized automaton obtained before sim-
plification is about ten times larger compared to the minimised DFA obtained after
simplification. Table 1 gives the sizes of representations at each step. We see from this
that the minimized DFA is always smaller than the original CYK table. Interestingly,
the subset construction generates the minimum DFA from the NFA, even in the case of
two activities, and heuristic minimization of the NFA achieves a notable reduction.

For each instance, we used the resulting DFA in place of the GRAMMAR con-
straint in both the CP model and the PB model using the encoding of the REGULAR

constraint (DFA or NFA) into CNF [10]. We compare the model that uses the PB encod-
ing of the GRAMMAR constraint (GR1) with two models that use the PB encoding of the

144 G. Katsirelos, N. Narodytska, and T. Walsh

Table 1. Shift Scheduling Problems. Ga is the acyclic grammar, Nε
a is NFA with ε-transitions, Na

is NFA without ε-transitions, min(Na) is minimized NFA, A is DFA obtained from min(Na),
min(A) is minimized A, a is the number of activities, # is the benchmark number.

#act # Ga NFAε
a NFAa min(NFAa) DFA min(DFA)

terms prods states trans states trans states trans states trans states trans
1 2/3/8 4678 / 9302 69050 / 80975 29003 / 42274 3556 / 4505 3683 / 4617 3681 / 4615
1 4/7/10 3140 / 5541 26737 / 30855 11526 / 16078 1773 / 2296 1883 / 2399 1881 / 2397
1 5/6 2598 / 4209 13742 / 15753 5975 / 8104 1129 / 1470 1215 / 1553 1213 / 1551
2 1/2/4 3777 / 6550 42993 / 52137 19654 / 29722 3157 / 4532 3306 / 4683 3303 / 4679
2 3/5/6 5407 / 10547 111302 / 137441 50129 / 79112 5975 / 8499 6321 / 8846 6318 / 8842
2 8/10 6087 / 12425 145698 / 180513 65445 / 104064 7659 / 10865 8127 / 11334 8124 / 11330
2 9 4473 / 8405 76234 / 93697 34477 / 53824 4451 / 6373 4691 / 6614 4688 / 6610

REGULAR constraint (REGULAR1, REGULAR2), a CP model that uses the GRAMMAR

constraint (GRCP
1) and a CP model that uses a REGULAR constraint (REGULARCP

1).
REGULAR1 and REGULARCP

1 use the DFA, whilst REGULAR2 uses the NFA con-
structed after simplification by when the business is closed.

The performance of a SAT solver can be sensitive to the ordering of the clauses in the
formula. To test robustness of the models, we randomly shuffled each of PB instances
to generate 10 equivalent problems and averaged the results over 11 instances. Also, the
GRAMMAR and REGULAR constraints were encoded into a PB formula in two differ-
ent ways. The first encoding ensures that unit propagation enforces domain consistency
on the constraint. The second encoding ensures that UP detects disentailment of the
constraint, but does not always enforce domain consistency. For the GRAMMAR con-
straint we omit the same set of clauses as in [4] to obtain the weaker PB encoding. For
the REGULAR constraint we omit the set of clauses that performs the backward prop-
agation of the REGULAR constraint. Note that Table 2 shows the median time and the
number of backtracks to prove optimality over 11 instances. For each model we show
the median time and the corresponding number of backtracks for the best PB encoding
between the one that achieves domain consistency and the weaker one.

Table 2 shows the results of our experiments using these 5 models. The model
REGULAR2 outperforms GR1 in all benchmarks, whilst model REGULAR1 outper-
forms GR1 in most of the benchmarks. The model REGULAR2 also proves optimality
in several instances of hard benchmarks. It should be noted that performing simpli-
fication before minimization is essential. It significantly reduces the size of the en-
coding and speeds up MiniSat+ by factor of 52. Finally, we note that the PB models
consistently outperformed the CP models, in agreement with the observations of [4].
Between the two CP models, REGULARCP

1 is significantly better than GRCP
1 , finding

a better solution in many instances and proving optimality in two instances. In addi-
tion, although we do not show it in the table, Gecode is approximately three orders of
magnitude faster per branch with the REGULARCP

1 model. For instance, in benchmark
number 2 with 1 activity and 4 workers, it explores approximately 80 million branches
with the REGULARCP

1 and 24000 branches with the GRCP
1 model within the 1 hour

timeout.

2 Due to lack of space we do not show these results.

Reformulating Global Grammar Constraints 145

Table 2. Shift Scheduling Problems. GR1 is the PB model with GRAMMAR, REGULAR1 is the
PB model with min(simplify(DFA)), REGULAR2 is the PB model with min(simplify(NFA)),
GRCP

1 is the CSP model with GRAMMAR, REGULARCP
1 is the CSP model with

min(simplify(DFA)). We show time and number of backtracks to prove optimality (the median
time and the median number of backtracks for the PB encoding over solved shuffled instances),
number of activities, the number of workers and the benchmark number #.

PB/Minisat+ CSP/Gecode
a # w GR1 REGULAR1 REGULAR2 GRCP

1 REGULAR CP
1

cost s t / b cost s t / b cost s t / b cost t / b cost t / b

1 2 4 26.00 11 27 / 8070 26.00 11 9 / 11053 26.00 11 4 / 7433 26.75 - / - 26.00 - / -
1 3 6 36.75 11 530 / 101560 36.75 11 94 / 71405 36.75 11 39 / 58914 37.00 - / - 37.00 - / -
1 4 6 38.00 11 31 / 16251 38.00 11 12 / 10265 38.00 11 6 / 7842 38.00 - / - 38.00 - / -
1 5 5 24.00 11 5 / 3871 24.00 11 2 / 4052 24.00 11 2 / 2598 24.00 - / - 24.00 - / -
1 6 6 33.00 11 9 / 5044 33.00 11 4 / 4817 33.00 11 3 / 4045 - - / - 33.00 - / -
1 7 8 49.00 11 22 / 7536 49.00 11 9 / 7450 49.00 11 7 / 8000 49.00 - / - 49.00 - / -
1 8 3 20.50 11 13 / 4075 20.50 11 4 / 5532 20.50 11 2 / 1901 21.00 - / - 20.50 92 / 2205751
1 10 9 54.00 11 242 / 106167 54.00 11 111 / 91804 54.00 11 110 / 109123 - - / - - - / -
2 1 5 25.00 11 92 / 35120 25.00 11 96 / 55354 25.00 11 32 / 28520 25.00 - / - 25.00 90 / 1289554
2 2 10 58.00 1 3161 / 555249 58.00 0 - / - 58.00 4 2249 / 701490 - - / - 58.00 - / -
2 3 6 37.75 0 - / - 37.75 1 3489 / 590649 37.75 9 2342 / 570863 42.00 - / - 40.00 - / -
2 4 11 70.75 0 - / - 71.25 0 - / - 71.25 0 - / - - - / - - - / -
2 5 4 22.75 11 739 / 113159 22.75 11 823 / 146068 22.75 11 308 / 69168 23.00 - / - 23.00 - / -
2 6 5 26.75 11 86 / 25249 26.75 11 153 / 52952 26.75 11 28 / 21463 26.75 - / - 26.75 - / -
2 8 5 31.25 11 1167 / 135983 31.25 11 383 / 123612 31.25 11 74 / 47627 32.00 - / - 31.50 - / -
2 9 3 19.00 11 1873 / 333299 19.00 11 629 / 166908 19.00 11 160 / 131069 19.25 - / - 19.00 - / -
2 10 8 55.00 0 - / - 55.00 0 - / - 55.00 0 - / - - - / - - - / -

7 Other Related Work

Beldiceanu et al [12] and Pesant [1] proposed specifying constraints using automata and
provided filtering algorithms for such specifications. Quimper and Walsh [3] and Sell-
mann [2] then independently proposed the GRAMMAR constraint. Both gave a mono-
lithic propagator based on the CYK parser. Quimper and Walsh [4] proposed a CNF
decomposition of the GRAMMAR constraint, while Bacchus [10] proposed a CNF de-
composition of the REGULAR constraint. Kadioglu and Sellmann [13] improved the
space efficiency of the propagator for the GRAMMAR constraint by a factor of n. Their
propagator was evaluated on the same shift scheduling benchmarks as here. However,
as they only found feasible solutions and did not prove optimality, their results are not
directly comparable. Côté, Gendron, Quimper and Rousseau proposed a mixed-integer
programming (MIP) encoding of the GRAMMAR constraint [14], Experiments on the
same shift scheduling problem used here show that such encodings are competitive.

There is a body of work on other methods to reduce the size of constraint represen-
tations. Closest to this work is Lagerkvist who observed that a REGULAR constraint
represented as a multi-value decision diagram (MDD) is no larger than that represented
by a DFA that is minimized and then unfolded [15]. A MDD is similar to an unfolded
and then minimized DFA except a MDD can have long edges which skip over layers. We
extend this observation by proving an exponential separation in size between such rep-
resentations. As a second example, Katsirelos and Walsh compressed table constraints
representing allowed or disallowed tuples using decision tree methods [16]. They also
used a compressed representation for tuples that can provide exponentially savings
in space. As a third example, Carlsson proposed the CASE constraint which can be

146 G. Katsirelos, N. Narodytska, and T. Walsh

represented by a DAG where each node represents a range of values for a variable, and
a path from the root to a leaf represents a set of satisfying assignments [17].

8 Conclusions

We have shown how to transform a GRAMMAR constraint into a REGULAR constraint
specified. In the worst case, the transformation may increase the space required to repre-
sent the constraint. However, in practice, we observed that such transformation reduces
the space required to represent the constraint and speeds up propagation. We argued
that transformation also permits us to compress the representation using standard tech-
niques for automaton minimization. We proved that minimizing such automata after
they have been unfolded and domains initially reduced can give automata that are ex-
ponentially more compact than those obtained by minimizing before unfolding and
reducing. Experimental results demonstrated that such transformations can improve the
size of rostering problems that can be solved.

References

1. Pesant, G.: A regular language membership constraint for finite sequences of variables. In:
Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004)

2. Sellmann, M.: The theory of grammar constraints. In: Benhamou, F. (ed.) CP 2006. LNCS,
vol. 4204, pp. 530–544. Springer, Heidelberg (2006)

3. Quimper, C.G., Walsh, T.: Global grammar constraints. In: Benhamou, F. (ed.) CP 2006.
LNCS, vol. 4204, pp. 751–755. Springer, Heidelberg (2006)

4. Quimper, C.G., Walsh, T.: Decomposing global grammar constraints. In: Bessière, C. (ed.)
CP 2007. LNCS, vol. 4741, pp. 590–604. Springer, Heidelberg (2007)

5. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation.
Addison Wesley Publishing Company, Reading (1979)

6. Darwiche, A.: On the tractable counting of theory models and its application to truth main-
tenance and belief revision. J. of Applied Non-Classical Logics 11, 11–34 (2001)

7. Meyer, A., Stockmeyer, L.: The equivalence problem for regular expressions with squaring
requires exponential space. In: 13th Annual Symposium on Switching and Automata Theory,
pp. 125–129. IEEE, Los Alamitos (1972)

8. Amilhastre, J., Janssen, P., Vilarem, M.C.: FA minimisation heuristics for a class of finite lan-
guages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp. 1–12. Springer,
Heidelberg (2001)

9. Revuz, D.: Minimization of ayclic deterministic automata in linear time. TCS 92, 181–189
(1992)

10. Bacchus, F.: GAC via unit propagation. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp.
133–147. Springer, Heidelberg (2007)

11. Demassey, S., Pesant, G., Rousseau, L.M.: Constraint programming based column generation
for employee timetabling. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524,
pp. 140–154. Springer, Heidelberg (2005)

12. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from constraint check-
ers. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 107–122. Springer, Heidelberg
(2004)

Reformulating Global Grammar Constraints 147

13. Kadioglu, S., Sellmann, M.: Efficient context-free grammar constraints. In: AAAI 2008, pp.
310–316 (2008)

14. Cote, M.C., Bernard, G., Claude-Guy, Q., Louis-Martin, R.: Formal languages for integer
programming modeling of shift scheduling problems. TR (2007)

15. Lagerkvist, M.: Techniques for Efficient Constraint Propagation. PhD thesis, KTH, Sweden,
Licentiate thesis (2008)

16. Katsirelos, G., Walsh, T.: A compression algorithm for large arity extensional constraints. In:
Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 379–393. Springer, Heidelberg (2007)

17. Carlsson, M.: Filtering for the case constraint, Talk given at Advanced School on Global
Constraints, Samos, Greece (2006)

	Reformulating Global Grammar Constraints
	Introduction
	Background
	Grammar Constraint
	Reformulation into an Automaton
	Transformation into an Acyclic Grammar
	Transformation into a Pushdown Automaton
	Transformation into a NFA
	Computing the Size of the NFA
	Transformation into a DFA

	Automaton Minimization
	Empirical Results
	Other Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

