
The Backbone of the Travelling Salesperson

Philip Kilby
ANU

Canberra, Australia
Philip.Kilby@anu.edu.au

John Slaney
NICTA and ANU

Canberra, Australia
John.Slaney@anu.edu.au

Toby Walsh
NICTA and UNSW
Sydney, Australia

tw@cse.unsw.edu.au

Abstract

We study the backbone of the travelling salesper-
son optimization problem. We prove that it is in-
tractable to approximate the backbone with any
performance guarantee, assuming that P6=NP and
there is a limit on the number of edges falsely re-
turned. Nevertheless, in practice, it appears that
much of the backbone is present in close to optimal
solutions. We can therefore often find much of the
backbone using approximation methods based on
good heuristics. We demonstrate that such back-
bone information can be used to guide the search
for an optimal solution. However, the variance in
runtimes when using a backbone guided heuristic is
large. This suggests that we may need to combine
such heuristics with randomization and restarts. In
addition, though backbone guided heuristics are
useful for finding optimal solutions, they are less
help in proving optimality.

1 Introduction

In recent years, there has been much research into what makes
a search problem hard. In decision problems, we now have
a rich picture based upon rapid transitions in solubility and
a corresponding thrashing in search algorithms for the crit-
ical constrained problems close to such “phase transitions”
[Cheeseman et al., 1991; Mitchell et al., 1992]. The picture
is much less clear for optimization. Optimization problems
do not have a transition in solubility, since optimal solutions
always exist. A strong candidate to replace the transition in
solubility is a transition in the backbone size [Monasson et
al., 1998]. In this paper, we study the complexity of comput-
ing and of approximating the backbone. We also look at us-
ing such backbone information to help find optimal solutions,
and to prove optimality. Throughout this paper, we focus
on the symmetric travelling salesperson (TSP) optimization
problem. This is the problem of computing the shortest tour
which visits every city, where the inter-city distance matrix is
symmetric. However, most of our results easily generalise to
the asymmetric case.

2 Backbones
In decision problems, the concept of the backbone has proven
to be very useful in understanding problem hardness. For ex-
ample, the backbone of a satisfiability (SAT) problem is the
set of literals which are true in every model [Monasson et al.,
1998]. Backbone size appears closely correlated to problem
hardness [Parkes, 1997; Monasson et al., 1998]. If a SAT
problem has a large backbone, there are many opportunities
to assign variables incorrectly. Such problems tend to be hard
therefore for systematic methods like Davis-Putnam. A large
backbone also means that solutions are clustered. Such prob-
lems therefore can be hard to solve with local search methods
like WalkSAT.

Backbones have been less well studied in the context of
optimization. In [Slaney and Walsh, 2001], the backbone of
an optimization problem is defined to be the frozen decisions:
those with fixed outcomes for all optimal solutions. For ex-
ample, the backbone of a TSP problem is the set of edges
which occur in all tours of minimal cost. Such a concept
again seems useful in understanding problem hardness. For
instance, the cost of finding optimal (or near optimal) solu-
tions is positively correlated with backbone size [Slaney and
Walsh, 2001].

3 Computing the Backbone
It is not difficult to see that it is NP-hard to find the backbone
of a TSP problem. If the optimal tour is unique, then the
backbone is complete. A procedure to compute the backbone
then trivially gives the optimal tour length. Complications
arise when the optimal tour is not unique and the backbone is
incomplete. For example, suppose there are two disjoint but
optimal tours. The backbone is then empty. Nevertheless, we
can find the optimal tour length using a polynomial number
of calls to a procedure that determines backbone edges.

Theorem 1 The TSP BACKBONE problem (the problem of
deciding if an edge is in the backbone of a TSP problem) is
NP-hard.

Proof: We rescale the TSP problem so that only one opti-
mal tour remains. Without loss of generality, we assume that
inter-city distances are integers. First, for a problem with n
cities, we multiply each inter-city distance by 2n(n+1). This
gives n(n + 1) new bits in the least significant digits of each

number. Note that this only requires polynomial space. We
divide these new bits into n sections, one for each city, of
length n + 1 bits. For the inter-city distance between city i
and city j, we set the jth bit in the ith section and the ith bit in
the jth section. Each tour length now encodes the list of edges
visited. In particular, the ith section of the tour length has two
bits, say, j and k set. This represents the fact that the tour in-
cludes edges from j to i and then to k. Even if the old distance
matrix had several optimal tours, the new distance matrix
only has one of them. Let ci be the two cities on a tour con-
nected to the ith city. Then the optimal and unique tour of the
rescaled problem is the optimal tour of the unrescaled prob-
lem in which 〈max(c1), min(c1), . . . , max(cn), min(cn)〉 is
lexicographically least. As the optimal tour is now unique,
the backbone is complete. We can compute this by a polyno-
mial number of calls to a procedure for deciding if an edge is
in the backbone. 2

It remains open whether the TSP BACKBONE problem is
NP-complete or not. Completeness would seem to require a
short witness that a tour was optimal. We can, however, say it
is both NP-hard and NP-easy. It is NP-easy as deciding if an
edge is in the backbone can be reduced to a polynomial num-
ber of calls to a TSP decision procedure. Garey and Johnson
suggest that problems which are both NP-hard and NP-easy
might be called NP-equivalent [Garey and Johnson, 1979].
Although this class contains problems which do not belong to
NP, the class has the property of NP-complete decision prob-
lems that: unless P=NP, no problem in the class can be solved
in polynomial time, and if P=NP then all problems in the class
can be solved in polynomial time. In other words, the TSP
BACKBONE problem is polynomial if and only if P=NP.

4 Approximating the Backbone
Even though computing the backbone is intractable in gen-
eral, might we be able to approximate it?

4.1 Sound approximation
Suppose that we have an approximation procedure that re-
turns some subset of the backbone edges. It is easy to see
that, assuming P 6= NP, no such procedure can be guaranteed
to return a fixed fraction of the backbone in polynomial time:
First, we rescale the distance matrix as before so that the op-
timal tour is unique and the backbone complete. The sound
approximation procedure could be called to return at least one
backbone edge - say (a, b). Create a new TSP by collapsing a
and b into a single node a′. The cost c(a′, x) for node x would
be set to MIN (c(a, x), c(b, x)); all other costs as before. The
procedure could be repeatedly called to construct the optimal
tour edge by edge in polynomial time.

A similar argument shows that no sound approximation
procedure can be guaranteed to return at least one backbone
edge if the backbone is non-empty in polynomial time.

4.2 Unsound approximation
Suppose that edges returned by an approximation procedure
are not guaranteed to be in the backbone. If we do not limit
the number of edges incorrectly returned, then there exists
a polynomial time approximation that meets any approxima-
tion ratio (that is, returns any given fraction of the backbone).

For example, the approximation procedure that returns all
O(n2) possible edges returns all the backbone. We therefore
consider approximation procedures which limit the number
of edges falsely assigned to the backbone. An approxima-
tion procedure is a “majority-approximation” iff, when the
backbone is non-empty, more edges are returned that come
from the backbone than do not come from the backbone. If
the backbone is empty, any number of edges can be falsely
returned.

Theorem 2 If P 6= NP then no majority-approximation pro-
cedure can be guaranteed to return a fixed fraction α or
greater of the backbone edges in polynomial time.

Proof: We show how such a procedure could determine if a
graph (V, E) has a Hamiltonian path with a designated start-
ing and ending vertex in polynomial time, contradicting P 6=
NP. We construct a TSP problem which can have two sorts of
shortest tours. For every Hamiltonian path between the start-
ing and ending vertex, there is a corresponding tour of length
n − 1 where |V | = n. These tours have a non-empty set of
backbone edges taken from some set S. On the other hand, if
there is no Hamiltonian path between the starting and ending
vertex, the shortest tour is of length n, and has a non-empty
set of backbone edges (denoted T) disjoint with S.

Since the approximation procedure returns at least a fixed
fraction of the backbone, it returns at least one correct back-
bone edge. As it is a majority-approximation procedure, the
number of edges in the backbone correctly returned is more
than the number incorrectly returned. By computing the ra-
tio of the number of edges of the two types returned, we can
determine if the backbone is drawn from edges in S or from
those in T . That is, we can determine if there is a Hamiltonian
path or not in polynomial time.

We need two special gadgets. The first is a “backbone free”
connector. This connects together two nodes without intro-
ducing any backbone edges. For example, to connect node i
to node j, we use the following small circuit which introduces
3 new intermediate nodes: k1, k2 and k3. All marked edges
are of cost 0, and all unmarked edges are of cost n2:

i j

k3

k2

k1j j
j
j
j

�
�

@
@

@
@

�
�

$
%

A tour from i to j goes through some permutation of k1, k2,
k3. No edge is in all possible tours, and thus no edge ap-
pears in the backbone. Note that we can modify this (and the
other circuits) to have non-zero edges costs by increasing all
other edge costs appropriately. We will draw this gadget as a
rectangular box between nodes i and j.

The second gadget is a “switch” circuit. This uses three
of the backbone free connector gadgets. Four edges go into
this circuit, two horizontally and two vertically. The switch
has two modes. In the first mode, the tour enters and exits
by the vertical edges. In the other mode, the tour enters and
exits by the horizontal edges. The switch circuit contains 15
nodes, all of which are visited in both modes. Note that no
backbone edges are common between the two modes. The

gadget is show below in a). As before, all marked edges are
of cost 0, and all unmarked edges are of cost n2. We give the
two different modes of the circuit in b) and c). We will draw
this switch gadget as a square box containing an “x”.

f f���XXX
f ff f

f fXXX
f ff f

f f���
f ff f

a) b) c)

We use these gadget to construct a TSP problem with the
required shortest tours. The problem has 16(n−1)+1 nodes,
n of which correspond to vertices in the graph (V, E) and the
rest are in n − 1 switch gadgets. If the graph (V, E) has an
edge between vertex i and j then the TSP problem has an edge
of cost 1 between node i and j. We shall assume that the
starting and ending vertices/nodes are 1 and n respectively.
To finish the tour, we put a zero cost edge between node 1
and n. There are also n − 1 switch circuits. The horizon-
tal wires in the ith switch circuit are connected to node i and
i + 1 (1 ≤ i ≤ n − 1). The vertical wires in the jth switch
circuit are connected to the j − 1th and j + 1th switch circuit
(1 < j < n − 1). The vertical wires in the 1st switch cir-
cuit are connected to node 1 and the 2nd switch circuit. The
vertical wires in the n − 1th switch circuit are connected to
the n − 2th switch circuit and to node n. All edge costs be-
tween switch circuits and nodes, and between switch circuits
are zero except for the edge between node 1 and the horizon-
tal input to the 1st switch circuit which has cost n. The cost
between any two unmarked nodes is n2 as before.

We give an example for n = 4 in which the graph (V, E)
has edges between nodes 1 and 2, 3 and 4, and 2 and 4:

m4
m2 m3

m1
��

@@��

m4
m3
m2
m1

x

x

x
ZZ

ZZ

ZZ

��

��

��

The TSP Problem Derived graph

If there is a Hamiltonian path in the graph, we follow the
corresponding path in the TSP starting with node 1 and ending
at node n. We then exit from node n, and enter the vertical
wire in the n − 1th switch, and continue through the vertical
wires to switch 1 where we exit and take the zero cost edge
back to node 1. This completes a tour of length n − 1. On
the other hand, if there is not a Hamiltonian path, the shortest
tour visits nodes 1 to n by alternating with the n − 1 switch
circuits. It then takes the zero cost edge from node n back to
node 1. This completes a tour of length n. 2

Similar arguments show that if P 6= NP then no majority-
approximation procedure can be guaranteed to return at least
one backbone edge when the backbone is non-empty in poly-
nomial time

5 Epsilon Backbone
Despite these negative complexity results, backbones may
still be easy to compute in practice. We study here the pos-
sibility of using approximation procedures. We define the ε-
backbone of a TSP problem as the set of edges which occur
in all tours within a factor (1 + ε) of the optimal. In Figure 1,
we plot the fractional size of the ε-backbone (that is, the size
of the ε-backbone normalized by n) against 1 + ε for random
Euclidean TSP problems.

1 1.01 1.02 1.03 1.04 1.05 1.06
Approximation Ratio

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n

of
 n

od
es

 in
 e

ps
ilo

n-
ba

ck
bo

ne

Trial data
Regression line (degree 6)

Epsilon vs Size of Backbone
100 trials, random Euclidean TSP, n = 100

Figure 1: Fractional size of the ε-backbone (y-axis) plotted
against approximation ratio (= 1 + ε) for 100 random Eu-
clidean TSP problems with 100 nodes. Degree 6 regression
line fitted.

We see that tours within 5% of optimal have approximately
40% of the backbone of optimal tours. We observe similar
results with non-random instances taken from TSPLib. It ap-
pears that much of the backbone of a TSP problem is present
when we are near to the optimal solution. As heuristics can
often find near optimal solutions in a short time, it may be
easy to compute a large part of the backbone in practice.

6 Approximation Methods
We now see if TSP heuristics can be used as the basis of an
approximation method for computing the backbone. To com-
pute if an edge is in the backbone or not, we can commit to
the edge and compute the optimal tour, and then throw the
edge out and re-compute the optimal tour. The edge is in the
backbone iff the first tour is shorter in length than the sec-
ond. Suppose now that instead of computing the two optimal
tour lengths, we run some good heuristic method like [Lin
and Kernighan, 1973] for a polynomially bounded time. If it
is true that the heuristic is good, it will frequently find close
to optimal length tours (though we have no guarantee that it
does). This yields a simple approximation method for com-
puting edges that are likely to be in the backbone.

Tests were run on random Euclidean TSP problems of size
100, 250 and 500 nodes. Most problems have unique solu-
tions, and hence complete backbones. Exceptions were: 6
problems of size 100, 16 of size 250 and 19 of size 500 had
backbones of size < n. Table 1 shows the percentage of the
backbone correctly identified using the heuristic proceedure,
as well as the percentage of “false positive” results. The Lin-
Kernighan heuristic is very accurate at these problem sizes, so

n = 100 n = 250 n = 500
Ave Approx Ratio 1.0000 1.0002 1.0008
Correct 10% 99.0 69.4 28.8

(%) Median 100.0 100.0 75.8
90% 100.0 100.0 100.0

False 10% 0.0 0.0 0.0
Positive Median 0.0 0.0 0.0

(%) 90% 1.0 0.4 0.6

Table 1: Estimation of backbone using the Lin-Kernighan
heuristic. 100 trials of random Euclidean TSP prob-
lems at each size. Approx Ratio is mean (heuristic-
solution)/(optimal-solution) of original problem.

approximation ratios were small. The heuristic is very good
at identifying backbone edges and gives few false-positives.
Its main weakness is missing backbone edges.

7 Backbone Guided Heuristics
One motivation for identifying backbone is to try to reduce
search. For example, Climer and Zhang use backbone vari-
ables in asymmetric TSP problems to preprocess and simplify
[Climer and Zhang, 2002]. As a second example, Dubois and
Dequen use a backbone guided heuristic to solve 700 variable
hard random 3 SAT problems [Dubois and Dequen, 2001]. In
the following section, we show that whilst backbone guided
heuristics can be helpful in finding optimal solutions, we must
use them with care. Median runtime are good, but there are
a few long runs (suggesting that a randomization and restarts
strategy may be useful). In addition, we show both exper-
imentally and theoretically, that backbone guided heuristics
can be very poor when it comes to proving optimality. To
make the demonstration very direct, we use a method for
solving TSP problems that relies heavily on the branching
heuristic. The method does not use the “cuts” that charac-
terise state-of-the-art solvers. However, it lets us compare
directly the efficacy of various branching decisions.

We use a branch and bound solver with lower bounds pro-
vided by Lagrangean relation with 1-trees [Reinelt, 1994].
Upper bounding is by a single, deterministic run of Or-opt
[Or, 1976] testing all forward and reverse moves of blocks of
size n/2 down to 1. The MST bound is enhanced by elim-
inating all other edges into a node if two incident edges are
already forced into the solution. Depth-first search is used,
with the node having the least lower bound explored. The
algorithm branches on an edge currently in the tour repre-
senting the upper bound. The edge can be chosen in one of
several ways:

bb We exclude in turn every possible edge from the solu-
tion. A comparison is then made between the new objective
and the current upper bound. If the new objective is reduced,
then an improvement to the upper bound has been found. If
such an improving move is found, the edge giving the largest
improvement is chosen. If no such improvement is found,
then the edge giving the largest increase in objective is most
likely to be in the backbone, so that edge is chosen.

freqbb A frequency table is kept during search. As each
new upper-bound tour is created, the frequency of appearence

Mean Median
Method Times/s Nodes Time/s Nodes
bb 60.9 685.8 3.0 5.0
freqbb 98.5 1618.1 5.0 174.0
long 34.0 436.8 0.0 4.0
longish 21.8 332.0 0.0 5.0
next 38.0 642.8 1.0 19.0
rand 58.1 980.5 2.0 40.0
short 61.1 909.8 7.0 113.0

Table 2: Branching heuristics – finding the optimal solution

Mean Median limit
Method Time/s Nodes Time/s Nodes exceeded
bb 199.1 2559.8 35.0 244.0 12
freqbb 206.5 3284.9 28.5 422.0 14
long 360.3 4816.7 51.6 755.0 26
longish 87.7 1946.1 12.5 130.0 4
next 93.7 1775.3 10.1 108.0 4
rand 179.1 2859.3 24.4 348.0 10
short 199.8 2921.9 35.8 413.0 11

Table 3: Branching heuristics – proving optimality

of each edge is updated. Edges with higher frequency are
more likely to be backbone edges, so the branch choice is the
edge with the greatest frequency.

next The next unused edge in the tour is chosen
long The longest unused edge in the tour is chosen
short The shortest unused edge in the tour is chosen
longish A method suggested by the results of this test.

Use long for the first n branches, then use next.
rand A random edge is chosen. As this is non-

deterministic, the heuristic was run five times on each prob-
lem.

A branch-and-bound solver has two phases: finding the op-
timal solution, and proving optimality. Different heuristics do
better in different phases, so we report the results separately
in Table 2, and Table 3. We used 50 node random Euclidean
TSP problems with a time limit of 1000 seconds on each run.
Table 3 shows the number of times this limit was exceeded.
The time and node results include problems for which the
time limit was exceeded.

These results show a “heavy-tailed” distribution [Gomes et
al., 2000] with many problems being solved quickly (hence
a low median) but a few taking a very long time (hence
a high average). Randomised algorithms and restarts have
been shown to reduce the average time in NP-hard problems
[Meisels and Kaplansky, 2004; Selman et al., 1994]. How-
ever, we wished to look at the “pure” algorithms for compar-
ison.

These results show that the bb heuristic is quite effective at
finding the optimal in terms of the median number of nodes
visited. However, the average is quite large, indicating the
method could benefit from multiple restarts. This reduced
number of nodes comes at a price in terms of runtime. Other
methods, such as long outperform it in runtime. In terms

of proving optimality, the bb heuristic performed relatively
poorly, being little better than random.

8 Pathological Example
As a further caution to using backbone guided branching
heuristics, we present a pathological instance of the TSP
problem. If we branch on a non-backbone edge, this instance
can be solved in a single branch. However, if we branch
first on backbone edges, we visit an exponential number of
branches before proving optimality. Since a search space
is defined by a particular algorithm, we must define a solu-
tion method. The following algorithm is sensible, but simple
enough that we can predict its behavior theoretically. It lacks
the refined LP-based cuts that allow modern TSP codes to
solve huge problems, but is a fairly standard basic algorithm
([Reinelt, 1994]). It has the following features:

1. Uses branch and bound.

2. Stops when the lower bound equals the upper bound.

3. Upper bound provided by current best tour.

4. Lower bound provided by 1-tree relaxation. A 1-tree is
simply a minimum spanning tree (MST) with one extra
edge added from a leaf to another node already in the
tree. The 1-tree contains exactly one cycle, which may
be a complete tour.

5. If two edges are forced to be incident to a single node,
then the lower-bounding procedure does not consider
any other edges incident to that node.

6. Preprocessing identifies nodes which have only two
“useful” incident edges. These two are forced into the
solution. A “useful” edge here is defined to be an edge
with cost less than any available upper bound (an edge
with cost greater than an estimate for the entire tour will
never be used in an optimal solution). An initial upper
bound can be calculated using the tour (1, 2, 3, ...).

The TSP problem is given in Figure 2(a). Node 6 can be
“cloned” arbitrarily many times, and has been cloned at nodes
7 and 8. The clones connect to each neighbour at cost 20,
node 1 at cost 10, and all other clones at cost 21. Arcs not
shown have cost 1000 + 20n, and hence will never be used in
an optimal solution. The upper bound for this graph is given
by the tour 1, 2, .. 10, 1 with cost 200. The minimum span-
ning tree is shown in Figure 2(b) and has cost 130. The bold
edges (10,1) and (10,9) are fixed in due to the preprocessing.
The one-tree adds, for example (3,4) at cost 20. The lower
bound is therefore 150.

Forcing the non-backbone edge (1,2) excludes the “spoke”
edges at nodes 1, as node 1 now has 2 edges incident. The
MST (shown in Figure 3(a)) now has cost 180, and the 1-tree
bound (using edge (8,9) or (3,4) to connect) is 200. As the
lower bound is the same as the upper bound, the branch and
bound algorithm completes. So if (1,2) (or, by a symmetric
argument (1,3)) were chosen as the branch node, the proce-
dure terminates immediately. On the other hand, branching
on backbone edges would force in edges like (5,6). If 6 were
cloned as described above, there could be arbitrarily many of
these edges. Figure 3(b) shows the effect on the lower bound

20

20
10

20

20

10

10

4

1

35

7

8

2

20 20

20

10

9

10

20

20

6
21

21

21
10

30 30

20

10

10

10

4

1

35

7

8

2

20

20

10

9

10
6

10

20

(a) (b)
TSP problem. Optimal tour
is 1,2,...,10 – cost 200

The Minimum Spanning
Tree – cost 130

Figure 2: The TSP problem, and its MST

20

20

20

20

10

10

4

1

35

7

8

2

20

20

9

10

20

20

6

30

20

20
10

20

10

10

4

1

35

7

8

2

20

20

9

10
6

10

(a) (b)
Force (1,2) – MST cost 180,
1-tree bound 200

Force (5,6) – MST cost 120,
1-tree bound 140

Figure 3: Forcing edges. Forced edges in bold.

of forcing edgec (5,6) into the solution. Forcing (5,6) gives
an MST with cost 140. The 1-tree is connected using an edge
like (6,7) or (3,4) with cost 20, giving a lower bound of 160.
If there were other clones of 6, when they were forced into
the solution, then the lower bound would not approach the
upper bound until edges between all clones have been forced.
Forcing out (5,6) leaves a problem that looks very similar to
the original. It still has backbone edges round the perimeter,
but an MST/1-tree which uses the “spoke”-type edges around
node 1 and hence gives an unachievable lower bound.

On backtracking, forcing out (5,6) gives the same lower
bound as the parent problem. A new upper bound can be
found using the cost 21 edges. As the lower-bound is still less
than the upper, we can not stop. A recursive argument shows
that the right branch must be completely explored before it
can be excluded. It is not until all backbone edges are forced
in, or forced out, and the algorithm moves on to branch on
edge (1,2) or (1,3) that the optimal is deterimend. Hence the
backbone heursitic would need to visit an exponential number
of branches to solve the problem.

9 Related Work
Slaney and Walsh demonstrated that the cost of finding op-
timal (or near optimal) solutions is postively correlated with
backbone size [Slaney and Walsh, 2001]. However, they also
showed that the cost of proving optimality is negatively cor-

related with backbone size. If we have a small backbone, then
there are many optimal and near-optimal tours. An algorithm
like branch and bound has to do a lot of work to ensure there
are no shorter tours.

Zhang has shown that asymmetric random TSP problems
undergo a phase transition in the tour cost and backbone
size as the precision of the distance matrix is varied [Zhang,
2004]. He argues that similar results hold for the symmet-
ric TSP problem, and for structured TSP problems provided
distances are drawn from a common distribution. The search
cost of his branch-and-bound solver also changes from easy
to hard as the precision of the distance matrix is increased and
the backbone size increases.

Climer and Zhang used an approximation method they call
“limit-crossing” to identify backbone variables in asymmetric
TSP problems (as well as their dual, “fat” variables which are
not part of any optimal solution) [Climer and Zhang, 2002].
By committing to backbone variables and eliminating fat, we
can reduce the size of the problem and thereby reduce search.

Beacham has considered the complexity of computing the
backbone for a range of decision problems like the satisfia-
bility and Hamiltonian path problem [Beacham, 2000]. He
considers a slightly modified definition of backbone: the set
of decisions whose negation give an unsatisfiable subprob-
lem. This definition is equivalent to the usual one for satis-
fiable problems only. He shows that recognising when the
backbone is empty is NP-complete.

Zhang has demonstrated experimentally that there is a
sharp transition in the size of the backbone of random MAX
3SAT problems [Zhang, 2001]. This appears to be correlated
with the transition in the random 3SAT decision problem.

10 Conclusion
We have looked at the backbone of the travelling salesper-
son problem. It is not hard to see that computing the back-
bone is NP-hard. However, we have also shown that it is hard
to approximate the backbone with any performance guaran-
tee (assuming P6=NP and there is a limit on the number of
edges falsely returned). Nevertheless, in practice, it appears
that much of the backbone is present in close to optimal solu-
tions. Approximation methods based on good heuristics can
often therefore find much of the backbone. Such backbone
information can be used to guide the search for an optimal
solution. However, it should be used with care as the vari-
ance in runtimes when using a backbone guided heuristic is
large. In addition, backbone guided heuristics are less good
at proving optimality.

What general lessons can be taken from this study? First,
these intractability results are likely to generalize to other
problems domains. We conjecture that it will also be hard to
compute or approximate the backbone in other optimization
problems (both fundamental theoretical problems like MAX-
SAT, and more practical problems like job shop scheduling).
Second, we predict that much of the backbone will also be
present in close to optimal solutions in these other domains.
Approximation based methods may also work well in these
cases. Third, whilst backbones are a useful concept in ex-
plaining some aspects of problem hardness in optimization, it

is clear that other concepts are still needed. A number of can-
didate measures have been proposed for decision problems
(e.g. backdoor variables) that have yet to be explored for op-
timization.

References
[Gomes et al., 2000] Carla Gomes, Bart Selman, Nuno Crato, and

Henry Kautz. Heavy-tailed phenomena in satisfiability and con-
straint satisfaction problems. Journal of Automated Reasoning,
24(1/2):67–100, 2000.

[Lin and Kernighan, 1973] S. Lin and B. Kernighan. An effective
heuristic for the traveling salesman problem. Operations Re-
search, 21:498–516, 1973.

[Meisels and Kaplansky, 2004] Amnon Meisels and Eliezer Ka-
plansky. Iterative restart technique for solving timetabling prob-
lems. European Journal of Operational Research, 153(1):41–50,
2004.

[Or, 1976] I. Or. Travelling Salesman-Type Combinatorial Prob-
lems and Their Relation to the Logistics of Blood-Banking. PhD
thesis, Dept of Industrial Eng. and Management Sciences, North-
west University, Evanston, IL., 1976.

[Reinelt, 1994] Gerhard Reinelt. The Travelling Salesman. Compu-
tational Solutions for TSP Applications, Lecture Notes in Com-
puter Science vol. 840 Springer-Verlag, 1994.

[Beacham, 2000] A.J. Beacham. The complexity of problems with-
out backbones. Master’s thesis, Dept. of Computing Science,
University of Alberta, 2000.

[Cheeseman et al., 1991] P. Cheeseman, B. Kanefsky, and W.M.
Taylor. Where the really hard problems are. In Proc. of 12th
IJCAI, pages 331–337. 1991.

[Climer and Zhang, 2002] S. Climer and W. Zhang. Searching for
backbones and fat: A limit-crossing approach with applications.
In Proc. of 18th National Conf. on AI. 2002.

[Dubois and Dequen, 2001] O. Dubois and G. Dequen. A
backbone-search heuristic for efficient solving of hardn 3-SAT
formulae. In Proc. of 17th IJCAI, pages 248–253. 2001.

[Garey and Johnson, 1979] M.R. Garey and D.S. Johnson. Comput-
ers and intractability : a guide to the theory of NP-completeness.
W.H. Freeman, 1979.

[Mitchell et al., 1992] D. Mitchell, B. Selman, and H. Levesque.
Hard and Easy Distributions of SAT Problems. In Proc. of 10th
National Conf. on AI, pages 459–465. 1992.

[Monasson et al., 1998] R. Monasson, R. Zecchina, S. Kirkpatrick,
B. Selman, and L. Troyansky. Determining computational com-
plexity for characteristic ‘phase transitions’. Nature, 400:133–
137, 1998.

[Parkes, 1997] A. Parkes. Clustering at the phase transition. In
Proc, of the 14th National Conf. on AI, pages 340–345. 1997.

[Selman et al., 1994] Bart Selman, Henry A. Kautz, and Bram Co-
hen. Noise strategies for improving local search. In Proceedings
of AAAI’94), pages 337–343, 1994.

[Slaney and Walsh, 2001] J. Slaney and T. Walsh. Backbones in
optimization and approximation. In Proceedings of 17th IJCAI.
2001.

[Zhang, 2001] W. Zhang. Phase transitions and backbones of 3-
SAT and Maximum 3-SAT. In Proc. of 7th Int. Conf. on
Principles and Practice of Constraint Programming (CP2001).
Springer, 2001.

[Zhang, 2004] W. Zhang. Phase transitions and backbones of the
asymmetric traveling salesman problem. Journal of Artificial In-
telligence Research, 21:471–497, 2004.

