
Constraint-based Preferential Optimization∗

S. Prestwich
University College Cork, Ireland

s.prestwich@cs.ucc.ie

F. Rossi and K. B. Venable
University of Padova, Italy

{frossi,kvenable}@math.unipd.it

T. Walsh
NICTA and UNSW, Australia

tw@cse.unsw.edu.au

Abstract

We first show that the optimal and undominated outcomes of
an unconstrained (and possibly cyclic) CP-net are the solu-
tions of a set of hard constraints. We then propose a new algo-
rithm for finding the optimal outcomes of a constrained CP-
net which makes use of hard constraint solving. Unlike pre-
vious algorithms, this new algorithm works even with cyclic
CP-nets. In addition, the algorithm is not tied to CP-nets, but
can work with any preference formalism which produces a
preorder over the outcomes. We also propose an approxima-
tion method which weakens the preference ordering induced
by the CP-net, returning a larger set of outcomes, but provides
a significant computational advantage. Finally, we describe a
weighted constraint approach that allows to find good solu-
tions even when optimals do not exist.

Introduction
Preferences and constraints occur together in many prob-
lems. For instance, in product configuration, there are phys-
ical constraints on what can be built (e.g. a convertible car
cannot have a roof rack), as well as the user’s preferences (if
the car is a convertible, then I prefer a boot rack to no boot
rack). Preferences have been widely studied in decision-
theoretic AI. However, much less is known about reason-
ing simultaneously with preferences and constraints, as in
the product configuration example above. Constrained pref-
erence optimization is a challenging problem as often the
most preferred outcome is not feasible, and not all feasible
outcomes are equally preferred.

An elegant formalism to represent conditional and quali-
tative preferences is CP-nets (Boutilier et al. 1999; Domsh-
lak & Brafman 2002; Boutilier et al. 2004a). These model
statements of qualitative and conditional preference which
are interpreted under the ceteris paribus (that is, “all else
being equal”) assumption. Preference elicitation in such a
framework appears to be natural and intuitive.

In this paper, we consider how to reason with CP-nets
in the presence of hard constraints. We will show how to
replace preferences by hard constraints (called “optimality

∗Partially supported by Science Foundation Ireland under Grant
No. 00/PI.1/C075, ASI project ARISCOM, and MIUR project
AIDA.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

constraints”) that encode the relevant preference informa-
tion. We will prove that the solutions of such hard con-
straints are the optimal solutions of the CP-net. This ap-
proach works for any CP-net, even cyclic ones.

The presence of cycles in a CP-net occurs often in real-
life situations. In fact, a cycle may denote inconsistent or
contradicting information, which may be present when the
preferences of several agents are collected, or when a sin-
gle agent gives a description of his preferences through a
sequence of interactions with a system. In fact, in this case
it is easy to generate contradicting information. Moreover,
a cycle can also be intrinsic in the description of the pref-
erences. For example, it may be natural to give preferences
over wine depending on the main course, and vice versa.
This may be interpreted as the fact that the two features are
equally important but dependent on each other.

A constrained CP-net is a CP-net plus a set of hard con-
straints, and its optimal outcomes (called “feasible Pareto
optimals” in (Boutilier et al. 2004b)) are all the outcomes
which are feasible and not dominated in the CP-net by any
other feasible outcome. We propose an algorithm, based
on the optimality constraints, which obtains all the opti-
mal outcomes in a constrained CP-net. Such an algorithm
achieves the same task as algorithm Search-CP (Boutilier
et al. 2004b), but works also for cyclic CP-nets and any
other preference formalism which produces a preorder over
the outcomes. In well defined cases, it can also avoid domi-
nance testing.

In addition, we propose an approximation method to find
a superset of the feasible Pareto optimals, which offers com-
putational savings by weakening the induced preference or-
dering. This approximation method again uses hard con-
straint solving, and never needs dominance testing.

Finally, we describe a weighted CSP approach which
finds feasible Pareto optimals, or optimals according to the
approximation method, with no dominance tests. Moreover,
if there are no feasible Pareto optimals, while all existing
algorithms stop returning no solution, it finds the outcomes
which are best w.r.t. both feasibility and preferences.

CP-nets
CP-nets (Boutilier et al. 1999; 2004a) (for Conditional Pref-
erence nets) are a graphical model for compactly represent-
ing conditional and qualitative preference relations. They

exploit conditional preferential independence by decompos-
ing an agent’s preferences via the ceteris paribus (cp) as-
sumption. Informally, CP-nets are sets of ceteris paribus
(cp) preference statements. For instance, the statement “I
prefer red wine to white wine if meat is served.” asserts that,
given two meals that differ only in the kind of wine served
and both containing meat, the meal with a red wine is prefer-
able to the meal with a white wine.

CP-nets bear some similarity to Bayesian networks. Both
utilize directed graphs where each node stands for a domain
variable, and assume a set of features F = {X1, . . . , Xn}
with finite domains D(X1), . . . ,D(Xn). For each feature
Xi, each user specifies a set of parent features Pa(Xi)
that can affect her preferences over the values of Xi. This
defines a dependency graph in which each node Xi has
Pa(Xi) as its immediate predecessors. Given this struc-
tural information, the user explicitly specifies her prefer-
ence over the values of Xi for each complete assignment
on Pa(Xi). This preference is assumed to take the form
of total or partial order over D(Xi) (Boutilier et al. 1999;
2004a). An acyclic CP-net is one in which this dependency
graph is acyclic. A CP-net need not be acyclic. For example,
my preference for entree may depend on the choice of main
course, and my preference for a main course may depend on
the choice of entree. In fact, one of our contributions here
is to permit the user to have a cyclic dependency graph by
proposing new algorithms for reasoning with cyclic CP-nets.

Consider a CP-net whose features are A, B, C, and D,
with binary domains containing f and f if F is the name of
the feature, and with the preference statements as follows:
a � a, b � b, (a∧b)∨(a∧b) : c � c, (a∧b)∨(a∧b) : c � c,
c : d � d, c : d � d. Here, statement a � a represents
the unconditional preference for A = a over A = a, while
statement c : d � d states that D = d is preferred to D = d,
given that C = c.

The semantics of CP-nets depends on the notion of a
worsening flip. A worsening flip is a change in the value of
a variable to a value which is less preferred by the cp state-
ment for that variable. For example, in the CP-net above,
passing from abcd to abcd is a worsening flip since c is bet-
ter than c given a and b. We say that one outcome α is better
than another outcome β (written α � β) iff there is a chain
of worsening flips from α to β. This definition induces a
preorder over the outcomes.

In general, finding optimal outcomes and testing for op-
timality in this ordering is NP-hard. However, in acyclic
CP-nets, there is only one optimal outcome and this can be
found in linear time (Boutilier et al. 1999; 2004a). We sim-
ply sweep through the CP-net, following the arrows in the
dependency graph and assigning at each step the most pre-
ferred value in the preference table. For instance, in the CP-
net above, we would choose A = a and B = b, then C = c
and then D = d. The optimal outcome is therefore abcd.

Determining if one outcome is better than another accord-
ing to this ordering (a dominance query) is NP-hard even for
acyclic CP-nets. Whilst tractable special cases exist, there
are also acyclic CP-nets in which there are exponentially
long chains of worsening flips between two outcomes. In

the CP-net of the example, abcd is worse than abcd.

Optimality and eligibility in CP-nets
Hard constraints are enough to find optimals of a CP-net and
to test whether the CP-net has some optimal outcomes. In
fact, it is possible to define a set of hard constraints (that we
call the “optimality constraints”) from a CP-net, such that
their solutions are the optimal outcomes of the CP-net.

Consider a set of cp statements N which define a partial
order � over the elements in the domain of a variable x un-
der the condition ϕ of an assignment of values to other vari-
ables. Then, for each of such statements, the corresponding
optimality constraint is ϕ →

∨
j x = aj , where the aj’s are

the undominated elements of the partial order �. The op-
timality constraints opt(N) corresponding to the entire set
N are the optimality constraints corresponding to all the cp
statements in N .

For example, the cp statements a � a and (a ∧ b) : c � c
map to the hard constraints a and (a ∧ b) → c respectively.
These constraints map directly to SAT clauses, so SAT is a
convenient technology for solving these problems.

It is not hard to show that an outcome is optimal in the
ordering induced by a CP-net N iff it is a satisfying assign-
ment for opt(N).

A CP-net is eligible iff it has undominated outcomes (el-
igibility is called consistency in (Domshlak et al. 2003)).
Even if the preorder induced by a CP-net has cycles, it may
still be useful if it is eligible. Trivially, all acyclic CP-nets
are eligible as they have an unique optimal (and hence un-
dominated) outcome.

Given the optimality constraints described above, we can
thus test eligibility of any (even cyclic) CP-net by testing
the consistency of the optimality constraints opt(N). Thus
a CP-net N is eligible iff opt(N) is consistent.

When considering CP-nets with Boolean features and to-
tal orders over the domains of the features, the approach de-
scribed in this section coincides with the one in (Brafman &
Dimopoulos 2004).

Finding feasible Pareto optimals
As argued in the introduction, many problems contain both
preferences and constraints. A constrained CP-net is a CP-
net with some additional constraints on assignments. These
constraints can be expressed by generic relations on partial
assignments or, in the case of binary features, by a set of
Boolean clauses. We consider here just hard constraints but
many of our results generalize to soft constraints. (Boutilier
et al. 2004b) gives a natural semantics for constrained CP-
nets in which the optimal solutions are feasible and Pareto
optimal. Given a set of hard constraints C and a CP-net N ,
an outcome is feasible Pareto optimal iff it is feasible for
C and there is no other feasible outcome which is better in
the CP-net N .

For acyclic CP-nets, an algorithm to find the feasi-
ble Pareto optimal outcomes has been proposed called
Search-CP (Boutilier et al. 2004b). The algorithm starts
with an empty set of solutions to which it adds new non-
dominated solutions which are feasible. At each stage, each

new candidate is tested against all the solutions generated up
that point, and is added to the set only if no existing member
dominates it. To find the first optimal outcome, the algo-
rithm uses branch and bound and thus may require an ex-
ponential number of steps. Then, to find other optimal out-
comes, it needs to perform dominance tests (as many as the
number of optimal outcomes already computed).

We now present a new algorithm, which we call
Hard-Pareto, for finding the feasible Pareto optimal out-
comes. Unlike Search-CP, this new algorithm works even
if the CP-net is cyclic. In fact, it works with any preference
formalism which produces a preorder over the outcomes. In
addition, we will see that this new algorithm offers compu-
tational advantages over Search-CP.

Briefly, algorithm Hard-Pareto finds all feasible Pareto
optimals by first finding the outcomes which are both fea-
sible and optimal in the CP-net (that is, the solutions of
C ∪ opt(N)). If there are optimals for the CP-net and they
are all feasible, then there are no other feasible Pareto op-
timals and thus the algorithm may stop. Otherwise, it must
perform dominance testing over the feasible outcomes.

Pseudo-code of Hard-Pareto
1. Input CP-net N and set of hard constraints C;
2. Sopt ← ∅;
3. if (C inconsistent) return Sopt;
4. else
5. Sopt ← sol(C ∪ opt(N));
6. if (Sopt = sol(C)) return Sopt;
7. if (sol(opt(N)) 6= ∅ and Sopt = sol(opt(N))) return Sopt;
8. S ← sol(C)− Sopt;
9. do {Choose o ∈ S;
10. if (∀o′ ∈ sol(C)− {o}, o′ 6� o)
11. then Sopt ← Sopt ∪ {o};
12. S ← S − {o};}
13. while (S 6= ∅);
14. return Sopt;

Figure 1: Hard-Pareto: given a CP-net and a set of hard
constraints, the algorithm finds all the feasible Pareto opti-
mal solutions.

The pseudo-code for the algorithm Hard-Pareto is given
in Figure 1. The algorithm takes as input a set of hard con-
straints C and a CP-net N (line 1). It then initializes the
set of feasible Pareto optimal outcomes Sopt to the empty
set (line 2). If the set of hard constraints is not consistent,
i.e. there are no feasible outcomes, then the algorithm re-
turns the empty set (line 3). Otherwise it puts in Sopt the
set of solutions of the set of hard constraints C ∪ opt(N),
denoted in line 5 with sol(C ∪ opt(N)). If such a set of
solutions, Sopt, is equal either to the set of solutions of the
hard constraints alone, sol(C), or to the set of solutions of
the optimality constraints alone, sol(opt(N)), then it returns
Sopt (lines 6 and 7). Otherwise the algorithm considers all
the feasible outcomes that are dominated in the CP-net (line
8) and for each of them it tests whether the outcome is domi-
nated in the CP-net by any other feasible outcome. It adds to
Sopt only those outcomes which are not dominated by any

other feasible one (lines 9-13). Once all the feasible dom-
inated outcomes have been considered, it returns Sopt (line
14).

We will now show that Hard-Pareto is a sound and com-
plete algorithm for finding all feasible Pareto optimal solu-
tions. Clearly, if the set of hard constraints C has no so-
lution then there are no feasible outcomes and, thus, there
are no feasible Pareto optimals. In such case the algorithm
will stop in line 3. Otherwise, if there are feasible outcomes
that are solutions of the optimality constraints of the CP-net,
then such outcomes are feasible Pareto optimal outcomes as
shown by the following theorem.

Theorem 1 Let sol(C) be the set of solutions of C,
sol(opt(N)) be the set of solutions of opt(N), and Sopt =
sol(C ∪ opt(N)). If Sopt 6= ∅ then it contains only feasible
Pareto optimal solutions.

Notice that if the set sol(C ∪ opt(N)), computed in line
5, is not empty then it contains feasible Pareto optimal so-
lutions, which can thus be found without doing dominance
testing.

Moreover, if sol(C ∪ opt(N)) is equal to the set of so-
lutions Sol(C), i.e. sol(C) ⊆ sol(opt(N)), then the fea-
sible outcomes are a subset of the undominated outcomes
of the CP-net. In such a situation the set of solutions of
C is the set of all feasible Pareto optimals. In fact, since
sol(C) ⊆ sol(opt(N)) then each feasible is undominated in
the CP-net and all other outcomes, even if undominated in
the CP-net, are not feasible. If this is the case the algorithm
will stop in line 6 and no dominance test is required to find
all the feasible Pareto optimal solutions.

A similar reasoning applies when the set sol(C∪opt(N))
is equal to the set of undominated outcomes of the CP-net,
that is, sol(opt(N)) and such set is not empty. This happens
iff all the undominated outcomes of the CP-net are feasi-
ble, sol(opt(N)) ⊆ sol(C). In this case we can conclude
that the sol(opt(N)) is the set of all feasible Pareto opti-
mals. In fact each undominated outcome is also feasible and
all other feasible outcomes are dominated by at least one of
the undominated outcomes of the CP-net. In this situation
the algorithm will stop in line 7, allowing to find the set of
feasible Pareto optimals with no dominance test.

Notice, however, that if sol(opt(N)) is empty, that is
the CP-net has no undominated outcome (e.g. when all
the outcomes are in a cycle), then, trivially sol(opt(N)) =
sol(C ∪ opt(N)) but it is not possible to conclude that there
are no feasible Pareto optimals. This is the case, for ex-
ample, if there is a cycle of outcomes such that every other
outcome (not belonging to the cycle) is dominated only by
an outcome in the cycle, and all the outcomes in the cycle
are infeasible. In such a case the feasible outcomes outside
the cycle are feasible Pareto optimals.

If sol(opt(N)) = ∅ or if sol(C ∪ opt(N)) ⊂ sol(C)
and sol(C ∪ opt(N)) ⊂ sol(opt(N)), in order to find
all feasible Pareto optimal outcomes, other than those in
sol(C ∪ opt(N)), all those feasible outcomes for C that are
undominated in the CP-net by other feasible outcomes must

be found. In this case the algorithm stops in line 14, as the
following theorem shows.

Theorem 2 Let sol(C) be the set of solutions of C, and
sol(opt(N)) be the set of solutions of opt(N). Let Sopt =
sol(C ∪ opt(N)). Then if sol(C) 6= ∅, Sopt ⊂ sol(C),
and (sol(opt(N)) = ∅ or Sopt ⊂ sol(opt(N))), then set
Sopt ∪ {o ∈ sol(C) − Sopt|∀o

′ ∈ sol(C).o′ 6� o} is the set
of all feasible Pareto optimal solutions.

Example 1 Consider the following set of statements defin-
ing the cyclic CP-net shown in Figure 2, with three Boolean
features A, B, and C: {c : a � ā, c̄ : ā � a, (a∧c)∨(ā∧ c̄) :
b � b̄, (a ∧ c̄) ∨ (ā ∧ c) : b̄ � b, b : c � c̄, b̄ : c̄ � a}.

B C

Pa(A) A
c a > a

Pa(C) C
b c > c

A

b c > c

c a > a

Pa(B) B
a /\ c b > b

a /\ c b > b
a /\ c b > b

a /\ c b > b

Figure 2: The dependence graph and preference statements
for the CP-net in Example 1.

Figure 3 shows the induced preference ordering of the CP-
net in Figure 2. The induced ordering contains cycles, but is
eligible since outcome abc is undominated.

a b c

a b c

a b c a b c

a b c
a b c

a b c

a b c

Figure 3: The induced preference ordering of the CP-net in
Example 1. As it can be seen, it contains cycles.

The optimality constraints corresponding to the CP-net
are: c→ a, c̄→ ā, (a∧c)∨(ā∧c̄) → b, (a∧c̄)∨(ā∧c) → b̄,
b→ c, and b̄→ c̄.

Consider the following set of hard constraints C =
{b ∨ c}. In this case, sol(C) ∩ sol(opt(N)) = {abc} =
sol(opt(N)). Thus, we can conclude that {abc} is the only
feasible Pareto optimal outcome without doing the domi-
nance test against {ābc}. On this instance Hard-Pareto
stops in Line 7.

Consider now a different set of constraints C ′ = {b̄}. In
this case, all the feasible outcomes, ab̄c, āb̄c, āb̄c̄, and ab̄c̄
are in a cycle. Thus, there is no feasible Pareto optimal.
Hard-Pareto will return the empty set at Line 13.

Notice that algorithm Search-CP cannot be applied to
these examples since the CP-net is cyclic.

Unlike Search-CP, Hard-Pareto works with cyclic CP-
nets. Moreover, if Hard-Pareto stops in line 6 or 7, because
all feasible are undominated or all undominated are feasible
then the complexity to find all feasible Pareto optimal solu-
tions is the same as finding just one and no dominance test-
ing is required. Search-CP by comparison will always re-
quire dominance testing if more than one solution is needed.
On the other hand, if no undominated outcomes are feasi-
ble, then Hard-Pareto may require dominance testing just
to find the first solution, while Search-CP merely performs
branch and bound. Wilson shows that it is possible to modify
the algorithm Search-CP by replacing each dominance test
by an easier test in a different partial order (Wilson 2004).
This procedure is guaranteed to compute a non empty subset
of the feasible Pareto optimal solutions. However, this ap-
proach again requires that the dependence graph be acyclic,
whilst Hard-Pareto works with cyclic CP-nets.

We can easily modify algorithm Hard-Pareto to find just
one feasible Pareto optimal of a possibly cyclic CP-net.
However, it has to be noted that in some cases dominance
testing may be necessary for Hard-Pareto even to find one
optimal. On the other hand, algorithm Search-CP cannot
help us if we look for one optimal of a cyclic CP-net. In
the restrictive case of an acyclic CP-net, then Search-CP
is more convenient if we look for one optimal only. How-
ever, even in this case, if we need more than one optimal,
then Hard-Pareto may find many of them, even all, with-
out dominance testing, while Search-CP needs dominance
testing for each of them.

Finding approximately optimal outcomes
In some situations, both Search-CP or Hard-Pareto may
be computationally too expensive. For example, in online
configuration, we may need very fast algorithms to perform
constrained preferential optimization. To deal with such sit-
uations, we propose an “approximation” of the usual seman-
tics of constrained CP-nets that is less expensive to compute.

We begin by weakening the preference ordering. The
main difference with respect to the usual ordering is that we
now restrict ourselves to chains of feasible outcomes.

Given a constrained CP-net 〈N,C〉, outcome O1 is ap-
proximately better than outcome O2 (written O1 �∗ O2)
iff there is a chain of flips from O1 to O2, where each flip is
worsening for N and each outcome in the chain satisfies C.

We say that an outcome is approximately optimal iff no
other outcome is approximately better. For example, assume
we have a CP-net with two Boolean features, A and B, and
the following CP statements: a � a, a : b � b, a : b �
b, and the constraint a ∨ b which rules out ab. Then, the
CP-net orders outcomes as follows: ab � ab � ab � ab.
Both ab and ab are approximately optimal, but only ab is
feasible Pareto optimal. This is true also in general: the set

of approximately optimal outcomes is a superset of the set
of feasible Pareto optimal outcomes.

This change has some beneficial effects. First, we observe
that the �∗ relation is still a preorder. Second, checking if
an outcome is approximately optimal is linear: we merely
need to check it is feasible and any flip to a feasible out-
come is worsening. By comparison, checking if an outcome
is optimal is NP-hard. Third, adding constraints to an acyclic
CP-net does not eliminate all the approximately optimal out-
comes, unless it eliminates all outcomes. By comparison,
adding constraints to a CP-net may make all optimal out-
comes infeasible. For example, if we have O1 � O2 � O3

in a CP-net, and the constraints makeO1 infeasible, thenO2

is approximately optimal, but no feasible outcome is opti-
mal.

Theorem 3 A constrained and acyclic CP-net either has no
feasible outcomes or has at least one feasible and approxi-
mately optimal outcome.

To find approximately optimal outcomes, we use “op-
timality constraints” which generalize the optimality con-
straints used to find (unconstrained) optimal outcomes in
Section . For simplicity, we will first describe the con-
struction for Boolean features where the constraints are
given in conjunctive normal form. Given a constrained
CP-net 〈N,C〉, the approximate optimality constraints
opt∗(N,C) are {optC(p) | p ∈ N}.

Function optC maps the conditional preference statement
ϕ : a � a onto the hard constraint:

(ϕ ∧
∧

ψ∈C,a∈ψ

ψ|a=true) → a

where ψ|a=true is the clause ψ where we have deleted a.
The purpose of ψ|a=true is to identify what has to be true so
that we can safely assign a to true, its more preferred value.
Suppose we have the constrained CP-net 〈N,C〉 whereN =
{a : b � b, a : b � b, b : a � a. b : a � a} and C =
{a ∨ b}. The optimality constraints corresponding to this
constrained CP-net are the following clauses: (a ∧ a) → b,
(b∧b) → a, a→ b, b→ a. These simplify to: a→ b, True,
a → b, b → a. The only satisfying assignment for these
constraints, plus the constraint in C, is ab. This is also the
only approximately optimal outcome of the constrained CP-
net. In general, the satisfying assignments ofC∪opt∗(N,C)
are exactly the feasible and approximately optimal outcomes
of the constrained CP-net.

The above construction can be extended to non-Boolean
features. Notice that in this case the constraints are no longer
clauses but hard constraints over a set of variables with a cer-
tain domain. Given a constrained CP-net 〈N,C〉, consider
any conditional preference statement p for feature x in N of
the form ϕ : a1 � a2 � a3. For simplicity, we consider
just 3 values. However, all the constructions and arguments
extend easily to more values. The approximate optimality
constraints corresponding to this preference statement are:

ϕ ∧ (Cx ∧ x = a1) ↓var(Cx)−{x}→ x = a1

ϕ ∧ (Cx ∧ x = a2) ↓var(Cx)−{x}→ x = a1 ∨ x = a2

where ↓ X projects onto the variables in X , and Cx is the
subset of constraints in C which involve variable x. We now
show that this construction gives all the approximately opti-
mal outcomes.

Theorem 4 Given a (possibly cyclic) constrained CP-net
〈N,C〉 an outcome is feasible and approximately optimal
for 〈N,C〉 iff it satisfies C ∪ opt∗(N,C).

It immediately follows that we can test if an outcome is
feasible and approximately optimal in polynomial time: we
just need to test the satisfiability of the approximate opti-
mality constraints. On the other hand, determining if a con-
strained CP-net has any feasible and approximately optimal
outcomes is NP-complete. To find such outcomes, we can
use any existing constraint or satisfiability solver on the ap-
proximate optimality constraints, including local search al-
gorithms.

An obvious drawback of our approximation is that it gen-
erates a possibly large superset of the set of feasible Pareto
optimal. Thus some of the returned outcomes could be not
desired. For example, consider the following constrained
CP-net: a � a, a : b � b, a : b � b, a ∨ b. Both ab and
āb̄ are approximately optimal but only ab is feasible Pareto
optimal.

However, it is possible to improve the approximation by
excluding at least some of the undesired outcomes. More
precisely, we can have a hierarchy of approximations that
come arbitrarily close to the feasible Pareto optimal seman-
tics. In brief, while our approximation just checks one flip
away, others can check k flips away for k > 1. The larger
the k is, the closer the approximation is to defining the feasi-
ble Pareto optimal semantics. Given any k, it is also possible
to define constraints similar to the optimality constraints in
opt∗(N,C), and depending on k, such that their solutions
are the feasible Pareto optimals plus those outcomes which
are undominated in the CP-net if looking just k improving
flips away. If k is larger than the length of the longest im-
proving flip sequence, then the approximation returns a set
of optimals which coincides with the set of feasible Pareto
optimals.

A Weighted CSP approach
Not every constrained CP-net has a feasible Pareto optimal
solution. For example, if we consider the CP-net in Figure 2
and a constraint which eliminates the outcome abc, then we
can see in Figure 3 that there is no feasible Pareto optimal.

If there are some feasible Pareto optimals, then we can
use algorithm Hard-Pareto to find them, or our less costly
approximation technique to find a superset of them. If they
do not exist, then we can still use the approximation tech-
nique to find the solutions of C ∪ opt∗(N,C), which are
feasible outcomes which are undominated by one-flip-away
outcomes. However, to know whether feasible Pareto out-
comes exist or not may be costly. Another possibility is that
no approximately optimal solutions exist even though C is
satisfiable. In this case we may wish to find an outcome

that is feasible and satisfies as many preferences as possible.
Again, it may be very costly to prove that no approximately
optimal solutions exist. Thus we have a hierarchy of de-
sirability of outcomes, but we do not know in advance the
properties of the problem.

We will now propose a technique which follows the rea-
soning above and returns the best outcomes w.r.t. both con-
straints and preferences even if there are no feasible Pareto
optimals. The technique is based on a reformulation of
the problem of finding optimal outcomes of a (cyclic) con-
strained CP-net as a Weighted Constraint Satisfaction Prob-
lem (WCSP). A WCSP is a set of variables plus a set of
constraints where each constraint has a weight representing
the cost of violating it. An optimal solution of a WCSP is
an assignment of values to all the variables which minimizes
the sum of the costs of the violated constraints.

The WCSP corresponding to a constrained CP-net is con-
structed in such a way that more desirable outcomes have
lower weight, and a WCSP solver can be used to find as de-
sirable an outcome as possible.

Given a constrained CP-net 〈N,C〉, we construct a WCSP
P = C ∪ opt(N)∪ opt∗(N,C), using weight 1 for opt(N)-
constraints, weightA for opt∗(N,C)-constraints and weight
B for C-constraints, where A,B are constants satisfying
A > |opt(N)| and B > A × |opt∗(N,C)| + |opt(N)|. To
solve P , we must minimize the sum of the weights of the
unsatisfied constraints.

Given an optimal solution S with weight wS , the follow-
ing properties hold:

• If wS = 0, then S is a feasible Pareto optimal. This hap-
pens when Sol(opt(N)) ∩ Sol(C) 6= ∅. The set of all
optimal solutions is then Sol(opt(N)) ∩ Sol(C), which
is a subset of the feasible Pareto optimals.

• If 0 < wS < A, then S is an approximately optimal solu-
tion. The reason is that it violates only some constraints in
opt(N). In this case, S could be feasible Pareto optimal
but we cannot be sure.

• If A ≤ wS < B, then S is a feasible solution which
satisfies the maximum number of constraints in opt(N).
The reason is that it violates at least one constraint in
opt∗(N,C), possibly some constraints in opt(N) (the
minimum number since it is optimal), but no constraint
in C. Notice that this case occurs when all solutions are
in a cycle. In this case opt∗(N,C) has no solution, so
there is no feasible Pareto optimal. However, the optimal
solutions of the weighted constraints are the best among
the feasible outcomes w.r.t. the preferences.

• If B ≤ wS , then S satisfies the maximum number of
constraints in C, and then the maximum number of con-
straints in opt(N). In this case C has no solution, so
again there is no feasible Pareto optimal. However, the
optimal solutions of the weighted constraints are the best
outcomes w.r.t. first feasibility and then preferences.

If we find all the optimal solutions of the WCSP, we ob-
tain either a subset (if the optimal weight is 0) or a superset
(if the optimal weight is between 1 andA−1) of the feasible
Pareto optimals, if they exist. However, if they do not exist,

then we obtain all the best solutions w.r.t. first feasibility
and then preferences. To do this, we never use dominance
testing, and the complexity is that of solving a WCSP.

If instead we find just one optimal solution of the WCSP,
then by looking at the weight of such a solution we can de-
rive some knowledge about the given constrained CP-net. In
particular, if the weight is 0, we know that there are feasi-
ble Pareto optimals, and the solution found is one of them.
On the other hand, if the weight is at least A, then we know
that there are no feasible Pareto optimals, but the solution
found is the best outcome with respect to constraints and/or
preferences. Last, if the weight is positive but lower than A,
then we don’t know if there are feasible Pareto optimals, but
at least we know that the solution found is approximately
optimal.

Future work
We plan to generalize the solver Hard-Pareto by replacing
the hard constraints with soft constraints. We have already
generalized the approximate method to constrained CP-nets
where the constraints are soft rather than hard. In this case,
the optimality constraints are still hard constraints but de-
pend on the highest level of consistency of the soft con-
straints. Finding optimals is now as hard as solving a set
of hard and soft constraints, while testing optimality is still
easy. Finally, we plan to study the impact of trade-offs, as
introduced in (Brafman & Domshlak 2002).

References
Boutilier, C.; Brafman, R. I.; Hoos, H. H.; and Poole, D.
1999. Reasoning with conditional ceteris paribus prefer-
ence statements. In UAI ’99, 71–80. Morgan Kaufmann.
Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H. H.;
and Poole, D. 2004a. CP-nets: A tool for representing
and reasoning with conditional ceteris paribus preference
statements. J. Artif. Intell. Res. (JAIR) 21:135–191.
Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos,
H. H.; and Poole, D. 2004b. Preference-based constraint
optimization with CP-nets. Computational Intelligence
20(2):137–157.
Brafman, R., and Dimopoulos, Y. 2004. Extended seman-
tics and optimization algorithms for cp-networks. Compu-
tational Intelligence 20, 2:218–245.
Brafman, R. I., and Domshlak, C. 2002. Introducing vari-
able importance Tradeoffs into CP-nets. In UAI ’02, 69–76.
Morgan Kaufmann.
Domshlak, C., and Brafman, R. I. 2002. CP-nets: Reason-
ing and consistency testing. In KR-02, 121–132. Morgan
Kaufmann.
Domshlak, C.; Rossi, F.; Venable, K. B.; and Walsh, T.
2003. Reasoning about soft constraints and conditional
preferences: complexity results and approximation tech-
niques. In IJCAI-03, 215–220. Morgan Kaufmann.
Wilson, N. 2004. Extending CP-nets with stronger condi-
tional preference statements. In AAAI-04, 735–741. AAAI
Press / The MIT Press.

