
Decomposing Global Grammar Constraints

Claude-Guy Quimper1 and Toby Walsh2

1 Omega Omptimization
2 NICTA and UNSW

Abstract. A wide range of constraints can be specified using automata or formal
languages. The GRAMMAR constraint restricts the values taken by a sequence of
variables to be a string from a given context-free language. Based on an AND/OR
decomposition, we show that this constraint can be converted into clauses in con-
junctive normal form without hindering propagation. Using this decomposition,
we can propagate the GRAMMAR constraint in O(n3) time. The decomposition
also provides an efficient incremental propagator. Down a branch of the search
tree of length k, we can enforce GAC k times in the same O(n3) time. On spe-
cialized languages, running time can be even better. For example, propagation of
the decomposition requires just O(n|δ|) time for regular languages where |δ| is
the size of the transition table of the automaton recognizing the regular language.
Experiments on a shift scheduling problem with a constraint solver and a state
of the art SAT solver show that we can solve problems using this decomposition
that defeat existing constraint solvers.

1 Introduction

Many problems in areas like planning, scheduling, routing, and configuration can be
naturally expressed and efficiently solved using constraint programming (CP). One rea-
son for the success of CP is that it provides a simple and declarative method for solving
a wide range of difficult combinatorial problems. However, we are still some way from
the “model and run” capability of solvers for mixed integer programming (MIP) and
propositional satisfiability (SAT). A major direction of research in CP is therefore di-
rected towards developing new ways for the user to state their problem constraints that
can then be efficiently reasoned about.

One very promising method for rostering and other domains is to specify constraints
via grammars or automata that accept some language. With the REGULAR constraint
[1], we can specify the acceptable assignments to a sequence of variables by means of
a deterministic finite automaton. For instance, we might want no more than two con-
secutive shift variables to be assigned to night shifts. One limitation of the REGULAR
constraint is that we cannot compactly specify everything we might like using just de-
terministic finite automaton. For example, there are regular languages which can only
be defined by a deterministic automaton with an exponential number of states. One
extension is to consider regular languages specified by non-deterministic automata, as
such automata can be exponentially smaller [2].

Researchers have considered moving above regular languages in the Chomsky hi-
erarchy. For example, the GRAMMAR constraint [3, 2] permits us to specify constraints

using any context-free grammar. However, this generalization has appeared till now to
be mostly of theoretical interest, given the high cost of propagating the GRAMMAR
constraint. The aim of this paper is to show that the global GRAMMAR constraint has
practical promise. Context-free grammars can provide compact specifications for com-
plex constraints, making it easier both to specify the problem as well as to reason with
the constraints. For example, in the shift-scheduling benchmarks reported in this paper,
we used a grammar with a dozen or so productions, whilst the corresponding automaton
has thousand of states. The grammar is thus arguably much simpler to specify than the
automaton. In addition, we argue that, using a simple decomposition of the GRAMMAR
constraint, we can propagate such a specification efficiently and effectively.

We will show that the global GRAMMAR constraints be implemented using a simple
AND/OR decomposition based on the well known CYK parser. We prove that this de-
composition does not hinder propagation; unit propagation on the decomposition prunes
all possible values. Decomposing global constraints in this way brings several advan-
tages. First, we can easily add this global constraint to any constraint solver. Here,
for example, we use the decomposition to add the GRAMMAR constraint to both a con-
straint toolkit and a state of the art SAT solver. Second, decomposition gives an efficient
incremental propagator. The solver can simply wake up just those constraints contain-
ing variables whose domains have changed, ignoring those parts of the decomposition
that do not need to be propagated. This gives a propagator whose worst case cost down
a whole branch of the search tree is just the same as calling it once. Third, decom-
position gives a propagator which we can backtrack over efficiently. Modern SAT and
CP solvers use watch literals so that we can backtrack one level up the search tree in
constant time. This decomposition provides us with this efficiency.

2 Background

A constraint satisfaction problem (CSP) consists of a set of variables, each with a finite
domain of values, and a set of constraints. The domain of the variable X will be written
dom(X). A constraint restricts values taken by some subset of variables to a subset of
the Cartesian product of their domains. A solution is an assignment of one value to each
variable satisfying all the constraints. Systematic constraint solvers typically construct
partial assignments using backtracking search, enforcing a local consistency to prune
values for variables which cannot be in any solution. We consider one of the most
common local consistencies: generalized arc consistency. A support for a constraint C
is an assignment to each variable of a value in its domain which satisfies C. A constraint
C is generalized arc consistent (GAC) iff for each variable, every value in its domain
belongs to a support. Finally, a CSP is GAC iff each constraint is GAC.

We will consider global constraints which are specified in terms of a grammar or
automaton which accepts just valid assignments for a sequence of n variables. Such
constraints are useful in a wide range of scheduling, rostering and sequencing prob-
lems to ensure certain patterns do or do not occur over time. For example, we may
wish to ensure that anyone working three night shifts then has two or more days off.
Such a constraint can easily be expressed using a context-free language. Context-free
languages are exactly those accepted by non-deterministic push-down automaton. A

context-free language can be specified by a set of productions in Chomsky normal form
in which the left-hand side has just one non-terminal, and the right-hand have just one
terminal or two non-terminals. We will use capital letters for non-terminals and lower-
case letters for terminals. We shall also assume that S is the unique non-terminal start
symbol. Even though the production A→ Bc is not in the Chomsky normal form since
the symbol c is not a non-terminal, we will consider this production as a shorthand for
the productions A→ BZ and Z → c which are both in the Chomsky normal form.

A sequence belongs to a context-free language iff there exists a parsing tree whose
root is the start symbol S, and whose leaves in order reproduce the sequence. A parsing
tree for a non-terminal is a tree whose root is labelled with the given non-terminal,
whose leaves are labelled with terminals and whose inner-nodes are labelled with other
non-terminals. When the productions are in the Chomsky normal form, a node A in
the parsing tree either has two children B and C where A → BC is a production in
the grammar, or has one child t where A → t is again a production in the grammar
and t is a terminal. Given a grammar defining a context-free language, the GRAMMAR
constraint accepts just those assignments to a sequence of n variables which are strings
in the given context-free language [2, 3].

Example 1. Consider the following context-free grammar, G

A→ aA | a B → bB | b S → AB

Suppose X1, X2 and X4 ∈ {a, b}. Then enforcing GAC on GRAMMAR(G, [X1, X2, X3])
prunes b from X1 and a from X3 as the only supports are the sequences aab and abb.

The REGULAR constraint [1] is a special case of the GRAMMAR constraint. This
accepts just those assignments which come from a regular language. Regular languages
are strictly contained with context-free languages. A regular language can be specified
by productions in which the left-hand side has just one non-terminal, and the right-
hand has just one terminal, or one terminal and one non-terminal. Alternatively, it can
be specified by means of a (non-)deterministic finite automaton.

3 Decomposition of the GRAMMAR constraint

We show here how to propagate the GRAMMAR constraint using a simple AND/OR
decomposition based on the well known CYK parser. This parser uses dynamic pro-
gramming bottom up to construct all possible parsings for all possible sub-strings. We
backtrack over the table constructed by the parser to decompose the constraint into a
Boolean formula. We introduce two types of Boolean variables: the variables x(t, i, 1)
which are true iff Xi, the ith CSP variable, has the terminal symbol t in its domain, and
the variables x(A, i, j) which are true iff the ith to i + j − 1th symbols can be parsed
as the non-terminal A. The truth of x(A, i, j) can be expressed in terms of the truth of
other variables based on the CYK update rule: A is parsing for symbols i to i + j − 1
iff there is some production A → BC in the grammar, B is a parsing for symbols i
to i + k − 1, and C is a parsing for symbols i + k to i + j − 1. Algorithm 1 gives
an O(|G|n3) time procedure for constructing the decomposition. This algorithm takes

as input the grammar G and the constrained variables X1, . . . , Xn and returns a set of
Boolean formulae. The algorithm first creates a table V where each entry contains a
set of non-terminals such that the non-terminal A belongs to V [i, j] if A can parse the
symbols i to i + j − 1. In the second phase, the algorithm backtracks in the table V to
create a variable x(A, i, j) for each non-terminal A ∈ V [i, j] that can contribute to the
production of the non-terminal S at the top of the parsing tree.

input : A context-free grammar G in its Chomsky normal form
input : The constrained variables X1, . . . , Xn

output: A set of Boolean formulae equivalent to the GRAMMAR constraint or
“Unsatisfiable” if the constraint is unsatisfiable

for i = 1 to n do1
V [i, 1]← {A | A→ a ∈ G, a ∈ dom(Xi)} ∪ dom(Xi)2

for j = 2 to n do3
for i = 1 to n− j + 1 do4

// Store in V [i, j] all the non-terminals that can generate the sequence5
// Xi . . . Xi+j−16
V [i, j]← {A | A→ BC ∈ G, k ∈ [1, j), B ∈ V [i, k], C ∈ V [i + k, j − k]}7

if S 6∈ V [1, n] then8
return “Unsatisfiable”9

N ← {x(S, 1, n)} // Set of variables10
Y ← ∅ // Set of equivalences11
for j = n downto 2 do12

for i = 1 to n− j + 1 do13
for x(A, i, j) ∈ N do14

// Store in D the pairs of variables on which the CYK rule applies15
D ← {〈x(B, i, k), x(C, i + k, j − k)〉 | k ∈ [1, j), A→ BC ∈ G,16

B ∈ V [i, k], C ∈ V [i + k, j − k]}17
for 〈a, b〉 ∈ D do18

N ← N ∪ {a, b} // Add nodes to the decomposition19

Y ← Y ∪ {x(A, i, j) ≡
W
〈a,b〉∈D a ∧ b} // Add relation20

for i = 1 to n do21
N ← N ∪ {x(a, i, 1) | a ∈ dom(Xi), A→ a ∈ G, x(A, i, 1) ∈ N}22
Y ← Y ∪ {x(A, i, 1) ≡ x(a, i, 1) | A→ a ∈ G, x(A, i, 1) ∈ N, a ∈ dom(Xi)}23
dom(Xi)← {a | x(a, i, 1) ∈ N}24

return The set of clauses Y25

Algorithm 1: CYK-prop(G, [X1, . . . , Xn])

Example 2. Consider again the context-free grammar, G from Example 1, again applied
to a sequence of length 3.

A→ aA | a B → bB | b S → AB

Algorithm 1 constructs the following formulae:

x(A, 1, 1) ≡ x(a, 1, 1)
x(A, 2, 1) ≡ x(a, 2, 1)
x(B, 3, 1) ≡ x(b, 3, 1)

x(A, 1, 2) ≡ x(a, 1, 1) ∧ x(A, 2, 1)
x(B, 2, 2) ≡ x(b, 2, 1) ∧ x(B, 3, 1)

x(S, 1, 3) ≡ (x(A, 1, 1) ∧ x(B, 2, 2)) ∨ (x(A, 1, 2) ∧ x(B, 3, 1))

∧

∨

x(a, 1, 1) x(a, 2, 1) x(b, 2, 1) x(b, 3, 1)

∧

∨

∧ ∧

∨

x(A, 1, 2) ≡ ≡ x(B, 2, 2)

x(A, 2, 1) x(B, 3, 1)

x(S, 1, 3) ≡

x(A, 1, 1)

Fig. 1. DAG corresponding to the example grammar.

The formulae created by Algorithm 1 can be represented by a rooted DAG. Every
leaf is labelled with a variable x(t, i, 1) where t is a terminal symbol and i is an integer
between 1 and n. Every inner-node is either a conjunction or a disjunction. Formulae
of the form x ≡ b are represented by a single leaf node with two labels: x and b. For
formulae of the form x ≡ (a1 ∧ b1) ∨ . . . ∨ (ak ∧ bk), we create k and-nodes with two
children each, ai and bi. We label each and-node with the expression ai ∧ bi. The k
and-nodes have the or-node labelled with x as common parent.

Based on this DAG, we propose the following CNF decomposition. For every or-
node x with children c1, . . . , ck, we post the following constraint forcing at least one
child to be true when the or-node x is true.

¬x ∨ ci ∨ . . . ∨ ck (1)

For every and-node x with children c1 and c2, we post the following constraints to
enforce all children to be true whenever the and-node x is true.

¬x ∨ c1 (2)
¬x ∨ c2 (3)

For every node x, except the root x(S, 1, n), we post the following constraint on its
ancestors a1, . . . , ak, to force the node x to be true only if one of its ancestors is true.

¬x ∨ a1 ∨ . . . ∨ ak (4)

We force the root node x(S, 1, n) to be true. Finally, for every position 1 ≤ i ≤ n,
we force one and only one terminal to be true.∨

t

x(t, i, 1) ∀ 1 ≤ i ≤ n (5)

¬x(t, i, 1) ∨ ¬x(u, i, 1) ∀ i ∀ t 6= u (6)

Note that constraints (4) are redundant as they are logically implied by the others.
However, they are added to the encoding to ensure that unit propagation on the decom-
position prunes all possible values.

Example 3. Let w be the node x(b, 2, 1)∧x(B, 3, 1), y be the node x(A, 1, 2)∧x(B, 3, 1),
and z be the node x(A, 1, 1) ∧ x(B, 2, 2) in the DAG of Figure 1. We show the CNF
clauses constraining the variable y.

Clause (1) applied to x(S, 1, 3) becomes ¬x(S, 1, 3) ∨ y ∨ z. This ensures that if
x(S, 1, 3) is true, one of its children is also true. Clauses (2) and (3) applied to y become
¬y ∨ x(A, 1, 2) and ¬y ∨ x(B, 3, 1). If the and-node y is true, both of its children are
also true. Clause (4) constrains the variable y in three different ways. When the clause
is directly applied to y, it becomes ¬y∨x(S, 1, 3) forcing y to be true only if it produces
x(S, 1, 3). Similarly, the node x(A, 1, 2) belongs to a parsing tree only if y is true. We
therefore have ¬x(A, 1, 2) ∨ y. Finally, the node x(B, 3, 1) is true only if either of
its parents y or w is true. We therefore have ¬x(B, 3, 1) ∨ w ∨ y. There are no other
constraints on variable y.

4 Theoretical properties

We first prove that this decomposition of the global GRAMMAR constraint is correct.
The correctness follows quite quickly from the proof of the correctness of the CYK
parser, and is similar to the correctness proofs for the previous propagators for the
GRAMMAR constraint [3, 2].

Theorem 1 The GRAMMAR constraint is satisfiable iff x(S, 1, n) can be true.

Proof: Suppose the GRAMMAR constraint is satisfiable. There exists a parsing tree T
proving that the sequence X1, . . . , Xn belongs to the language. We first prove that for
every node in the parsing tree, there is a corresponding variable created by Algorithm 1.

We then show that all these variables can be set to true. The first phase of the algorithm
(line 1 to line 7) stores in V [i, j] every non-terminal that can produce the symbols for Xi

to Xi+j−1. The second phase of the algorithm (line 8 to line 24) creates a node x(A, i, j)
for every terminal A that can produce the symbols for Xi to Xi+j−1 and participates to
the production of the non-terminal S at the root of the parsing tree. The correctness of
this statement follows from [3, 2]. Therefore, for every node in the parsing tree T , we
have a corresponding variable x(X, i, j).

We prove by induction on the depth of the parsing tree that every variable corre-
sponding to a node in the parsing tree can be set to true. As a base case, the leaves of
the parsing tree correspond to the nodes x(Xi, i, 1) in the DAG that we set to true.
The other leaves of the DAG are set to false. The clauses (5) and (6) are satisfied
since there is one and only one leaf set to true at each position. Let A be a node in
the parsing tree with children B and C where A generates a sequence of length j at
position i and B generates a sequence of length k. Consequently, there exists a pro-
duction A → BC ∈ G, a variable x(A, i, j), a variable x(B, i, k), and a variable
x(C, i + k, j − k). On line 18, Algorithm 1 has made the node x(A, i, j) the parent
of the pair x(B, i, k) ∧ x(C, i + k, j − k) since the production A → BC and both
nodes x(B, i, k) and x(C, i + k, j − k) exist. By our induction hypothesis, we assume
that the variables x(B, i, k) and x(C, i + k, j − k) are true. The and-node can be set
to true while satisfying the clauses (2) and (3). Since the and-node is true, we can set
the variable x(A, i, j) to true and satisfy clause (1). Finally, the clause (4) is satisfied
for the variables x(B, i, k) and x(C, i+k, j−k) and the and-node. When applying the
induction step to all nodes in the parsing tree in post-order, we obtain that the root node
x(S, 1, n) can be set to true.

Suppose there exists a solution to the CNF clauses where x(S, 1, n) is true. Clause 1
guarantees that at least one child is also true. This child is an and-node with two children
that are also true thanks to the clauses (2) and (3). We continue this reasoning until
reaching the leaf nodes. All the visited nodes form a parsing tree whose leaves, when
listed from left to right, are a sequence satisfying the GRAMMAR constraint.

Notice that the constraint (4) was not used in the second part of proof of Theo-
rem 1. This constraint is not necessary to detect the satisfiability of the constraint. Con-
straint (4) is in fact redundant. It is however essential to prove our next result.

We show that the decomposition of the GRAMMAR constraint does not hinder prop-
agation. This is less immediate than the previous result. In particular, we find it surpris-
ing that unit propagation alone is enough to achieve GAC here. This does not follow
directly from the completeness proofs for previous GAC propagators [3, 2]. Indeed, we
had to add redundant constraints to the decomposition to give this property.

Theorem 2 Unit propagation on the CNF clauses achieves GAC on the GRAMMAR
constraint.

Proof: We assume that all CNF clauses are consistent. The constraint (4) guarantees
that every node that can be true has an ancestor that can also be true. By successively
applying the argument from a leaf node x, we obtain a path connecting the leaf x to
the root node x(S, 1, n) such that every variable on this path can be set to true. Let
x(A, i, j) be a variable on the path. Let c1, . . . , cn be the child variables of x(A, i, j) in

the DAG. From the constraint (1), we conclude that there exists at least one and-node
among the children that can be true. Let ci be one such child that has b1 and b2 as
children. The constraints (2) and (3) guarantee that both children can be true. We repeat
this argument until reaching the leaves. Every node thus explored form a parsing tree
whose leaves are a support for the variable x. Therefore, one can build a support for
every node in the DAG that can be set to true.

The constraint (5) ensures that if a character belongs to all supports, its correspond-
ing leaf is fixed to true. Finally, the constraint (6) ensures that a character fixed to true
removes all supports for the other characters at the same position.

Finally, we show that we can propagate this decomposition efficiently. The run-time
complexity of Algorithm 1 is the same as that of the CYK parser, i.e. Θ(n3|G|) where
|G| is the size of the grammar.

Theorem 3 The running time complexity of Algorithm 1 is O(|G|n3) where n is the
length of the sequence and |G| is the number of productions in the grammar.

Proof: Line 2 iterates n times over the O(|G|) productions resulting in a time complex-
ity of O(|G|n). The set V [i, j] created on line 7 tests all combinations of productions
and integers between 1 and j for a total number of O(|G|n) tests. Since there are O(n2)
sets V [i, j], the complexity sums up to O(|G|n3). The running time of the for loop on
line 12 is dominated by the computation on line 15. Let Z be the set of non-terminals
in the grammar. Let f(A) be the number of productions in the grammar G whose left
hand side is the non-terminal A. We have

∑
A∈Z f(A) = |G|. Line 15 takes O(nf(A))

time to execute as we test for each production that generates A and every integer k. The
cumulative time spent on this line is therefore given by the following expression.

O(
n∑

j=2

n−j+1∑
i=1

∑
A∈Z

nf(A)) = O(n
n∑

j=1

n∑
i=1

∑
A∈Z

f(A)) (7)

= O(|G|n3) (8)

The running time of Algorithm 1 is thus O(|G|n)+O(|G|n3)+O(|G|n3) = O(|G|n3).

The size of the graph and the number of CNF clauses are bounded by the number
of and-nodes in the DAG which is O(n3|G|). Notice that whilst Algorithm 1 performs
Θ(n3|G|) tests on line 7, not all these tests add a non-terminal to the set V [i, j]. More-
over, not all the non-terminals in V [i, j] lead to the creation of a node on lines 15 to 18.

We are now ready to analyse the running time complexity of maintaining GAC on
the decomposition. We assume that the solver wakes up a constraint only when a vari-
able in its scope is fixed to a specific value. For a CNF clause of arity k, this event occurs
at most k times down the branch of the search tree. We have no assumptions regarding
in which order the constraints are awaken. However, we assume that the propagator
of a CNF clause of arity k maintains GAC in O(k) time down a branch of the search
tree. This assumption can be satisfied by encoding the k-ary CNF clause

∨k
i=1 xi using

the following clauses: x1 ∨ y2, ¬yi ∨ xi ∨ yi+1 for 1 < i < k, and ¬yk ∨ xk. Since
each of the k clauses is awaken at most three times down a branch of the search tree

and each propagation takes constant time, propagating the original CNF clause requires
O(k) time down a branch of the search tree. Notice that other implementations of the
CNF clause propagator might be more efficient in practice. See [13] for instance for an
implementation using watched literals.

Theorem 4 Amortised over a branch of the search tree of length k, we can enforce
GAC k times on the GRAMMAR constraint using the decomposition in O(n3|G|) time.

Proof: We assume that propagating a CNF clause of arity k takes O(k) time down
a branch of the search tree. We conclude that the propagation time, down a branch
of the search tree, is proportional to the number of literals in the CNF clauses. Since
the graph inducing the CNF clauses is of size O(n3|G|), the number of literals in the
CNF clauses is also O(n3|G|). Consequently, we obtain a running time complexity of
O(n3|G|) down a branch of the search tree.

This improves upon the Θ(n3|G|) time complexity of the monolithic propagators
for the GRAMMAR constraint given in [2, 3]. We note that our decomposition is the first
incremental propagator proposed in the literature.

5 Regular languages

In some cases, we can specify problem constraints using a simple grammar. For in-
stance, we often only need a regular language [1]. Regular languages are strictly con-
tained within context-free languages. They can be specified with productions of the
form of A→ aB or A→ a. We show that for regular languages, Algorithm 1 creates a
smaller DAG, resulting in faster propagation.

Theorem 5 Unit propagation on the CNF decomposition enforces GAC on the REGULAR
constraint in O(n|G|) time.

Proof: If all productions are of the form of A → aB or A → a, a node x(A, i, j)
can belong to a parsing tree only if i = n − j + 1. The size of the graph is therefore
bounded by O(n|G|) and-nodes which limits the number of literals in the CNF clauses
to O(n|G|). Using the same assumption and argument as Theorem 4, we conclude that
propagating the CNF-clauses down a branch of the search tree takes O(n|G|) time.

The running time complexity for pruning regular languages using this decompo-
sition matches the complexity of the propagator for the REGULAR constraint based
on dynamic programming [1]. In fact, the clauses constructed by Algorithm 1 are es-
sentially the hidden variable encoding of the ternary decomposition of the REGULAR
constraint given in [2].

Example 4. The language anbm used in Example 1 can be recognized by the automaton
of Figure 2. This automaton can be translated to a regular grammar as follows.

S → aA A→ aA | bB | b B → bB | b

Algorithm 1 constructs the graph depicted in Figure 3 over a sequence of three variables.
From this graph, we construct clauses representing the Boolean formulae:

S A B
a

a

b

b

Fig. 2. Automaton recognizing the language anbm for n, m ≥ 1.

x(a, 1, 1) x(a, 2, 1) x(b, 2, 1)
x(A, 3, 1)

∧

∨

∧

∧

∨

≡ x(A, 2, 2)

x(B, 3, 1)

x(S, 1, 3) ≡

x(b, 3, 1)

Fig. 3. DAG corresponding to the regular grammar of Example 4.

x(a, 1, 1) ∧ (x(a, 2, 1) ∧ x(b, 3, 1)) ∨ (x(b, 2, 1) ∧ x(b, 3, 1))

This gives constraints logically equivalent to:

X1 = a, (X2 = a ∧X3 = b) ∨ (X2 = b ∧X3 = b)

6 Conditional productions

We have also found it useful in practice to go slightly outside context-free grammars.
These extensions permit us to specify in a simple manner that, for instance, a work day
must have a span of between 6 to 8 hours, or that a certain activity can only be executed
after 2pm. To specify such conditions, we make productions in the grammar conditional
on Boolean functions of the relevant indices. This can be quickly incorporated into our
decomposition. We attach the Boolean functions fA(i, j), fB(i, j), and fC(i, j) to every

production A→ BC ∈ G. These functions restrict where the production can be applied
in a sequence. For instance, the non-terminal A can only be produced by the production
A→ BC if A generates a sub-string of length j starting at position i where fA(i, j) is
true. Similarly, the production can be applied only if B generates a sub-string of length
j starting at position i where fB(i, j) is true. To support these constrained productions,
we change line 7 in Algorithm 1 with the following one.

V [i, j]← {A | A→ BC ∈ G, k ∈ [1, j), B ∈ V [i, k], C ∈ V [i + k, j − k],
fA(i, j) ∧ fB(i, k) ∧ fC(i + k, j − k)}

We also replace line 15 with the following one.

D ← {〈x(B, i, k), x(C, i + k, j − k)〉 | k ∈ [1, j), A→ BC ∈ G,

B ∈ V [i, k], C ∈ V [i + k, j − k], fA(i, j) ∧ fB(i, k) ∧ fC(i + k, j − k))}

Productions of the form A → a only require a function fA(i) as they necessarily
produce sequences of length one. Moreover, the production of a terminal can be con-
trolled by removing the terminal from the domain of the variables Xi. We therefore
replace line 2 with the following one.

V [i, 1]← {A | A→ a ∈ G, a ∈ dom(Xi), fA(i)} ∪ dom(Xi)

We also replace line 23 with the following one.

Y ← Y ∪ {x(A, i, 1) ≡ x(a, i, 1) | A→ a ∈ G, x(A, i, 1) ∈ N, a ∈ dom(Xi), fA(i)}

7 Experimental results

To test the practical utility of this decomposition of the GRAMMAR constraint, we ran
some experiments using the shift-scheduling benchmark introduced in [4]. The schedule
of an employee in a company is subject to the following rules. An employee either
works on an activity ai, has a break (b), has lunch (l), or rests (r). When working on an
activity, the employee works on that activity for a minimum of one hour. An employee
can change activities after a break or a lunch. A break is fifteen minutes long and a
lunch is one hour long. Lunches and breaks are scheduled between periods of work. A
part-time employee works at least three hours but less than six hours a day and has one
break. A full-time employee works between six and eight hours a day and have a break,
a lunch, and a break in that order. Employees rest at the beginning and the end of the
day. At some time of the day, the business is closed and employees must either rest,
break, or have lunch. We divide a day into 96 time slots of 15 minutes. During time slot
t, at least d(t, ai) employees must be assigned to activity ai. Our goal is to minimize
first the number of employees and then the number of hours worked.

We model the schedule of an employee with a sequence of 96 characters (one per
time slot) that must be accepted by the following grammar G.

R→ rR | r L→ lL | l Ai → aiAi | ai

W → Ai P →WbW F → PLP

S → RPR | RFR

We add some restrictions on some productions. For W → Ai, we have fW (i, j) ≡
j ≥ 4 since an employee works on an activity for at least one continuous hour. In
F → PLP , we have fL(i, j) ≡ (j = 4) since a lunch is one hour long. In S →
RPR, we have fP (i, j) ≡ 13 ≤ j ≤ 24 since a part-time employee works at least
three hours and at most six hours plus a fifteen minute break. In S → RFR, we have
fF (i, j) ≡ 30 ≤ j ≤ 38 which represents between six and eight hours of work plus
an hour and a half of idle time for the lunch and the breaks. Finally, the productions
Ak → akAk | ak are constrained with fAk

(i, j) ≡ open(i) where open(t) returns
true if t is within business hours. When solving the problem with m employees, the
model consists of m sequences S1, . . . , Sm subject to this GRAMMAR constraint. The
0/1 variable x(j, t, c) is set to 1 if the tth character of sequence Sj is c. We post the
constraint

∑
j x(j, t, ai) ≥ d(t, ai) in order to satisfy the demand for each activity ai

at time t. To break symmetry, we force the sequences to be in lexicographical order.

We implemented a program that takes as input a benchmark instance and the gram-
mar G and prepares the input for the MiniSat+ solver [5]. MiniSat+ is a pseudo-Boolean
solver that allows constraints of the form x1 + . . . + xn ≥ k where xi is a Boolean
variable. Such inequality constraints are useful to make sure that the demand d(t, ai) is
satisfied. CNF clauses are encoded with linear equations where the sum of the literals in
a clause must be equal to or greater than one. The negation of a variable x is expressed
with 1− x. We tested two CNF encodings of the GRAMMAR constraint: one encoding
that includes the redundant clause (4) allowing unit propagation to achieve GAC as well
as one encoding where the clauses (4) are omitted and GAC is not maintained.

We also implemented a CP model in ILog Solver 6.2 using either this decomposition
of the GRAMMAR constraint or the previous monolithic propagator for the GRAMMAR
constraint based on the CYK parser [2, 3]. The model has a matrix of variables where
each row corresponds to the schedule of an employee and is subject to a GRAMMAR
constraint. Each column is subject to a global cardinality constraint (GCC) to ensure
that the number of occurrences of an activity satisfies the demand. We added lexico-
graphic constraints between the rows of the column to break symmetries. We used a
static variable that was essential to the success of the experiment: we filled in the table
from left to right, and assigned variables to the values r, b, l, a1 and a2 in that order.

Our experiments used MiniSat+ on a Intel Dual Core 2.0 GHz with 1 Gb of RAM
using Mac OS X 10.4.8 and ILog Solver on a AMD Dual Core Opteron 2.2 GHz with
4 Gb of RAM. The reader should be careful when comparing the times as the clock
speeds of the computers are slightly different. MiniSat+ is halted after finding the op-
timal solution or when the search is suspended by a lack of memory. ILog solver was
halted after one hour of computation as it never proved the optimality of a solution.
Table 1 presents the results for 17 satisfiable instances of the benchmark involving one
or two activities. The CP model performed very well at finding a good solution. Many
solutions were returned after a few hundreds of backtracks. However, no solutions were
proved optimal after one hour of computation. Notice that the decomposition performs
significantly better than the monolithic propagator as it explores many more backtracks
within the same period of time. The decomposition therefore explores a larger portion
of the search tree. For some instances, it finds some satisfiable solutions within one hour
whereas the monolithic propagator does not.

|A| # m GAC SAT SAT Mono Decomp
sol time bt opt sol time bt opt sol bt sol bt

1 2 4 26.0 2666 507215
√

26.0 1998 443546
√

26.75 28072 26.25 625683
1 3 6 37.25 1128199 36.75 1953562 37.0 34788 37.0 4771577
1 4 6 38.0 256 84999

√
38.0 287 91151

√
- 15539 38.0 56488

1 5 5 24.0 153 67376
√

24.0 60 40008
√

24.0 40163 24.0 7914413
1 6 6 33.0 98 48638

√
33.0 70 40361

√
- 11537 33.0 33405

1 7 8 49.5 236066 49.5 682715 49.0 27635 49.0 2663721
1 8 3 20.5 80 36348

√
20.5 44 25502

√
21.0 24343 20.5 635589

1 10 9 54.0 202699 54.25 507749 - 9365 - 519446
2 1 5 25.0 453 146234 25.0 301 103918

√
25.0 1180 25.0 3828461

2 2 10 58.75 313644 59.0 151076 58.0 14887 58.0 2116602
2 3 6 38.25 236850 38.25 214203 41.0 1419 41.0 214201
2 4 11 71.25 230777 69.75 239519 - 9983 - 774942
2 5 4 23.75 2945 644496

√
23.75 1876 522780

√
26.5 25573 26.25 117105

2 6 5 26.75 4831 777572
√

27.25 2162816 26.75 10681 26.75 1054531
2 8 5 31.5 244837 31.75 391858 32.0 218 31.5 3771831
2 9 3 19.0 2283 701474

√
19.0 1227 481395

√
19.25 20473 19.0 45516

2 10 8 55.0 372870 55.0 333520 - 9968 - 909857
Table 1. Benchmark problems solved by MiniSat+. GAC SAT: results from MiniSat+ with all
CNF clauses; SAT: results from MiniSat+ with all CNF clauses but clause (4); Mono: results
from a CP solver using the monolithic propagator; Decomp: results from a CP solver using the
decomposition; |A|: number of activities; #: problem number; m: number of employees; sol:
number of worked hours (boldfonted if best solution found amongst the different methods); time
(s): CPU time in seconds to find and prove the optimality of a solution. Times are omitted when
the search is suspended by a lack of memory; bt: number of backtracks (boldfonted if least back-
tracks amongst methods that prove optimality); opt: solution was proved optimal. ILog solver did
not prove any problems optimal within one hour of computation.

The MiniSat+ solver returned a feasible solution for all instances regardless of the
encoding. For 8 instances, the solver also proved optimality of the solutions. However,
the two encodings we used did not prove optimality for the same instances. The main
weakness of the MiniSat+ solver was its memory consumption as 9 times out of 17, the
search was stopped by the lack of memory. Notice that the encoding that omits clauses
of the form (4) is often faster than the encoding achieving GAC. We conjecture that, in
this case, MiniSat is finding itself the redundant constraints using no-good learning.

Even though Algorithm 1 can produce a graph with up to O(n3|G|) nodes, we
noticed that in practice many nodes are never created. The size of the resulting DAG
is much smaller in practice than the theoretical bound of O(n3|G|). For instance, the
grammar G for problems with one activity can be written in Chomsky normal form in
15 productions. The upper bound on the number of and-nodes in the DAG is 15 963

2 =
6635520 nodes whilst there were 71796 nodes on average with these instances.

We also tried modelled the schedule of an employee using an automaton. Due to
the constraints on the number of hours a full-time and a part-time employee must work,
many states in the automaton needed to be duplicated resulting in an automaton with
several thousands of states. Moreover, patterns such as those produced by the non-

terminals P and W cannot be reused in an automaton without further duplicating states.
The DAG based on the regular language ended up much larger than the one produced
by the context-free grammar.

8 Related work

Vempaty introduced the idea of representing the solutions of a CSP by a deterministic
finite automaton [6]. Such automaton can be used to answer questions about satisfiabil-
ity, validity and equivalence. Amilhastre generalized these ideas to non-deterministic
automata, and proposed heuristics to minimize the size of the automata [7]. This ap-
proach was then applied to configuration problems [8]. Boigelot and Wolper developed
decision procedures for arithmetic constraints based on automata [9].

Pesant introduced the REGULAR constraint and gave a complete propagation algo-
rithm based on dynamic programming [1]. Coincidently Beldiceanu, Carlsson and Petit
proposed specifying global constraints by means of finite automaton augmented with
counters [10]. Propagators for such automaton are constructed automatically from the
specification of the automaton by means of a decomposition into simpler constraints.
Quimper and Walsh proposed a closely related decomposition of the REGULAR con-
straint and showed that it was effective and efficient in practice [2]. Demassay et al. [4]
used a column generation technique to solve a shift scheduling problem. The columns
are generated with a CP solver using the COST-REGULAR constraint, a variation of the
REGULAR constraint while the optimization process is driven by the simplex method.
Côté et al. [11] encoded the REGULAR constraint into a MIP and efficiently solved some
instances of the shift scheduling problem using the same automaton as Demassay et al.
This encoding takes the modelling of constraints using formal languages beyond the
scope of constraint programming. One of our contributions is to continue this theme by
taking constraints specified using formal languages into the domain of SAT solvers.

Quimper and Walsh proposed the GRAMMAR constraint and gave two different
propagators, one based on the CYK and the other on the Earley parser [2]. Coinci-
dently, Sellmann proposed the GRAMMAR constraint and gave a propagator based on
the CYK parser [3]. Finally Golden and Pang proposed the use of string variables which
are specified using regular expressions or finite automata and show how to propagate
matching, containment, cardinality and other constraints on such string variables [12].

9 Conclusion

We have studied the global GRAMMAR constraint. This restricts a sequence of vari-
ables to belong to a context-free language. Such a constraint is useful for a wide range
of problems in scheduling, rostering and related domains. Based on an AND/OR de-
composition, we showed how the GRAMMAR constraint can be converted into clauses
in conjunctive normal form. This decomposition does not hinder propagation since unit
propagation on the decomposition achieves GAC on the original GRAMMAR constraint.
Using this decomposition, we can enforce GAC on the GRAMMAR constraint in O(n3)
time. By using the decomposition, we also improve upon existing propagators by being
incremental. On specialized languages, running time can be even better. In particular,

on regular languages we require just O(n|δ|) time where |δ| is the size of the transition
table of the automaton recognizing the language. Experiments on a shift scheduling
problem with a state of the art SAT solver demonstrated that we can solve problems
this way that defeat existing constraint solvers. The decomposition of global constraints
opens up a number of possibilities which we are only starting to explore. For example, it
may make it easier to construct no-goods, as well as cost measures for over-constrained
problems. Finally, a decomposition may make it easier to construct constraint based
branching heuristics.

Acknowledgements

The second author is funded by DCITA and the ARC through Backing Australia’s Abil-
ity and the ICT Centre of Excellence program. We would like to thank Louis-Martin
Rousseau for useful comments and for providing the benchmark.

References

1. Pesant, G.: A regular language membership constraint for finite sequences of variables. In:
10th Int. Conf. on Principles and Practice of Constraint Programming (CP2004), LNCS 3258
(2004) 482–295

2. Quimper, C.-G., Walsh, T.: Global grammar constraints. In: 12th Int. Conf. on Principles
and Practices of Constraint Programming (CP-2006), LNCS 4204 (2006)

3. Sellmann, M.: The theory of grammar constraints. In: 12th Int. Conf. on Principles and
Practice of Constraint Programming (CP2006), LNCS 4204 (2006) 530–544

4. Demassey, S., Pesant, G., Rousseau, L.: A cost-regular based hybrid column generation
approach. Constraints 11 (2006) 315–333

5. Eén, N., Sörensso, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satisfi-
ability, Boolean Modelling and Computation 2 (2006) 1–26

6. Vempaty, N.R.: Solving constraint satisfaction problems using finite state automata. In: 10th
National Conf. on AI, AAAI (1992) 453–458

7. Amilhastre, J.: Representation par automate d’ensemble de solutions de problèmes de satsi-
faction de contraintes. PhD thesis, Universite Montpellier II / CNRS, LIRMM (1999)

8. Amilhastre, J., Fargier, H., Marquis, P.: Consistency restoration and explanations in dynamic
CSPs - application to configuration. Artificial Intelligence 135 (2002) 199–234

9. Boigelot, B., Wolper, P.: Representing arithmetic constraints with finite automata: An
overview. In: Int. Conf. on Logic Programming (ICLP 2002), LNCS 2470 (2002) 1–19

10. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from constraint check-
ers. In: 10th Int. Conf. on Principles and Practice of Constraint Programming (CP2004),
LNCS 3258 (2004) 107–122

11. Côté, M.C., Gendron, B., Rousseau, L.M.: The regular constraint for integer programming
modeling. In: 4th Int. Conf. on Integration of AI and OR Techniques in Constraint Program-
ming (CPAIOR 07). (2007) 29–43

12. Golden, K., Pang, W.: Constraint reasoning over strings. In: 9th Int. Conf. on Principles and
Practice of Constraint Programming (CP2003), LNCS 2833 (2003) 377–391

13. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., and Malik, S.: CHAFF: engineering
an efficient SAT solver. In Proc. of the 38th Design Automation Conf. (DAC’01). (2001)
530–535

