

# **Constraint Programming**

A technology to tackle combinatorial optimization problems



# What is Constraint Programming

#### • Our definition

Solving a combinatorial problem Taking into account the problem structure

- Programming with Constraints
  - A declarative programming paradigm where
     Relations between variables are stated as constraints
- Technology for solving combinatorial problems
  - Finite domain propagation



# Why Constraint Programming

- Imagine you own a small print shop
- Running your business requires
  - Accepting customer orders
  - Splitting each order into jobs
  - Assigning workers to machines
  - Scheduling tasks for each job
  - Packing orders for delivery



# Why Constraint Programming

- Running your business requires
  - Accepting customer orders
    - Capacity constrained optimization problem
  - Splitting orders into jobs
    - Lot sizing problem
  - Assigning workers to machines
    - Assignment problem
  - Scheduling tasks for each job
    - Resource constrained scheduling problem
  - Packing orders for delivery
    - Packing problem



# Why Constraint Programming

- Solving each of these separately is an optimization problem
  - But solving each separately will be far from globally optimal
- How can we solve all together.
  - Only if we take into account the problem structure
  - And use a technology that can take advantage of it



#### Overview

- Constraint Satisfaction and Optimization Problems
- Domains and Valuations
- Constraints and Propagators
- Propagation Engines
- Search
- Optimization by Satisfaction
- Global Constraints



# **Constraint Satisfaction Problem**

- "Find an object from a finite set which satisfies a number of constraints"
- Sounds easy
  - Test each constraint on each object
  - If one satisfies all constraints, finish.
- But
  - There are MANY of them



# Map Colouring

A classic CSP is the problem of coloring a map so that no adjacent regions have the same color  $\bigwedge$ 

Can the map of Australia be colored with 4 colors ?

Can the map of Australia be colored with 3 colors ?

Can the map of Australia be colored with 2 colors ?





4-Queens

Place 4 queens on a 4 x 4 chessboard so that none can take another.

Four variables Q1, Q2, Q3, Q4 representing the row of the queen in each column. Domain of each variable is  $\{1,2,3,4\}$ 

**One solution!** -->







- How many ways can you fill a Sudoku board with numbers 1-9?
- How many Sudoku puzzles are there?

| 4 | 5 | 9 | 3 | 7 | 6 | 2 | 8 | 1 | 4 |
|---|---|---|---|---|---|---|---|---|---|
| 4 | 2 | 6 | 8 | 4 | 3 | 1 | 5 | 7 | 9 |
|   | 7 | 1 | 4 | 9 | 8 | 5 | 2 | 3 | 6 |
|   | 3 | 2 | 6 | 8 | 5 | 9 | 1 | 4 | 7 |
| - | 1 | 8 | 7 | 3 | 2 | 4 | 9 | 6 | 5 |
| 2 | 1 | 5 | 9 | 1 | 7 | 6 | 3 | 2 | 8 |
| ( | ) | 4 | 2 | 6 | 1 | 8 | 7 | 5 | 3 |
| 8 | 3 | 3 | 5 | 2 | 4 | 7 | 6 | 9 | 1 |
|   | 6 | 7 | 1 | 5 | 9 | 3 | 4 | 8 | 2 |

6,670,903,752,021,072,936,960



# **Combinatorial Optimization**

- "Find an optimal object from a set of objects"
- Sounds easy
  - Evaluate each object using the scoring function
  - Remember the best
- But
  - The objects are only specified "intensionally"
    - Only those objects satisfying some constraints
  - There are MANY of them



# Smuggler's Knapsack

A smuggler with a knapsack with capacity 9, needs to choose items to smuggle to make a maximum profit

| object     | profit | size |
|------------|--------|------|
| whiskey    | 15     | 4    |
| perfume    | 10     | 3    |
| cigarettes | 7      | 2    |

What is the best set of items you can come up with?



# Gantry Crane Planning Example





### System Specification: gantry crane planning example

- Where should containers be placed ready for loading/straddling?
- In what order should the gantries pick up the containers?
- What planning should be done for trains/trucks which haven't arrived yet?
- How can we enable the gantries to unload all the trains and all the trucks?



#### Importance

- Combinatorial Optimization is everywhere
  - Scheduling
  - Rostering
  - Packing
  - Routing
  - Allocating (e.g. water)
  - Planning
- Finding good or optimal solutions can save time, money and reduce environmental impact.



#### The Holy Grail for Constraint Programming

- Model Problems Naturally
  - constraints
  - solution properties
- Solve them efficiently
  - overcome combinatorial explosion
- Compile
  - Natural models to efficient solutions



# **Technology for Constraint Solving**

- Local search
  - Simulated annealing
  - Tabu search
- Population search
  - Genetic algorithms
  - Beam search
- Mixed integer programming
- Finite domain propagation



# Why is Constraint Solving Hard?

• Write down solutions to the following (integer) constraints or claim unsatisfiability

$$-x = 5, y = 6$$

$$-x = 3, y = 4, x = 5$$

$$- y = x+2, z = y - x+2, u = 2*y + z$$

$$- y = x+2, z = y - x + 2, x = z+1$$

$$-y = x+2, z = y - x+2, x \ge z+1, y \le z-1$$

• The problem is conjunction



# **Finite Domain Propagation**

- Overcoming conjunction
  - Treat each constraint separately
  - Communicate inferences via variables
- A weak inference method
- Add to that
  - Search (guess bits of solution)
  - Engineering (to make the inference fast)
  - Learning (to remember what you already did)



### Sudoku



- 81 variables
  Each cell in table
- Each cell takes 1..9
- Each row, each column, and each 3x3 square contain the numbers 1..9
  - No repeats
  - Each number used
  - Assignment subproblem!



| 7 | 8 |   | 1 |   |   |   |  |
|---|---|---|---|---|---|---|--|
|   |   |   | 2 |   |   | 3 |  |
|   |   | 3 | 4 |   |   |   |  |
|   | 6 |   | 5 |   | 1 |   |  |
|   |   |   | 6 |   |   |   |  |
|   |   |   | 7 |   |   |   |  |
| 5 | 4 |   | 8 | 6 | 9 | 7 |  |
|   |   |   | 9 |   |   |   |  |

- What goes in the green cell?
- Reason about the column



|   |   |      | 3 |   |   |   |  |
|---|---|------|---|---|---|---|--|
| 7 | 8 |      | 1 |   |   |   |  |
|   |   |      | 2 |   |   | 3 |  |
|   |   | 3    | 4 |   |   |   |  |
|   | 6 |      | 5 |   | 1 |   |  |
|   |   |      | 6 |   |   |   |  |
|   |   |      | 7 |   |   |   |  |
| 5 | 4 |      | 8 | 6 | 9 | 7 |  |
|   |   | <br> | 9 |   |   |   |  |

- What goes in the green cell?
- Reason about what numbers cannot go in the other cells in the square?



| 124<br>69 | 125<br>9 | 124<br>569 |   | 3 |   |   |   |  |
|-----------|----------|------------|---|---|---|---|---|--|
| 7         | 8        | 3          |   | 1 |   |   |   |  |
| 124<br>69 | 125<br>9 | 124<br>569 |   | 2 |   |   | 3 |  |
|           |          |            | 3 | 4 |   |   |   |  |
|           | 6        |            |   | 5 |   | 1 |   |  |
|           |          |            |   | 6 |   |   |   |  |
|           |          |            |   | 7 |   |   |   |  |
| 5         | 4        |            |   | 8 | 6 | 9 | 7 |  |
|           |          |            |   | 9 |   |   |   |  |

- What can go in the green cell?
- Reason about the row and then the column.



|   |   |    |   | 3 |   |   |   |  |
|---|---|----|---|---|---|---|---|--|
| 7 | 8 | 3  |   | 1 |   |   |   |  |
|   |   |    |   | 2 |   |   | 3 |  |
|   |   |    | 3 | 4 |   |   |   |  |
|   | 6 |    |   | 5 |   | 1 |   |  |
|   |   |    |   | 6 |   |   |   |  |
|   |   |    |   | 7 |   |   |   |  |
| 5 | 4 | 12 |   | 8 | 6 | 9 | 7 |  |
|   |   |    |   | 9 |   |   |   |  |

- What can go in the green cell?
- Reason about the row and column



|   |   |    |    | 3 |   |   |   |  |
|---|---|----|----|---|---|---|---|--|
| 7 | 8 | 3  |    | 1 |   |   |   |  |
|   |   |    |    | 2 |   |   | 3 |  |
|   |   |    | 3  | 4 |   |   |   |  |
|   | 6 |    |    | 5 |   | 1 |   |  |
|   |   |    |    | 6 |   |   |   |  |
|   |   |    |    | 7 |   |   |   |  |
| 5 | 4 | 12 | 12 | 8 | 6 | 9 | 7 |  |
|   |   |    |    | 9 |   |   |   |  |

- What goes in the green cell?
- Reason about the row



|   |   |    |    | 3 |   |   |   |   |
|---|---|----|----|---|---|---|---|---|
| 7 | 8 | 3  |    | 1 |   |   |   |   |
|   |   |    |    | 2 |   |   | 3 |   |
|   |   |    | 3  | 4 |   |   |   |   |
| 3 | 6 |    |    | 5 |   | 1 |   |   |
|   |   |    |    | 6 |   | 3 |   |   |
|   |   |    |    | 7 |   |   |   |   |
| 5 | 4 | 12 | 12 | 8 | 6 | 9 | 7 | 3 |
|   |   |    |    | 9 |   |   |   |   |

• Any other fixed variables?



- Examine each constraint in turn
- Reduce the domains of variables in the constraint
- Repeat until no further reduction



### Overview

- Constraint Satisfaction and Optimization Problems
- Domains and Valuations
- Constraints and Propagators
- Propagation Engines
- Search
- Optimization by Satisfaction
- Global Constraints



#### Domains

- Record for each variable *X* its domain
  - set of possible values, denoted D(X)
- Usually D(X) is finite, but it might be very large
  - All 32 bit integers
  - All 64 bit floating point numbers between 0 and 1
- Essentially
  - Variables *X* represents a choice
  - The domain D(X) represents the possible choices for X
- Failed domain:  $D(X) = \{\}$  for some X.



### Valuations

- A valuation θ is a mapping of variables to values:
   e.g. { X -> 3, Y -> 4 }
  - $\theta(X) = 3, \theta(Y) = 4$
  - $vars(\theta) = \{X, Y\}$
- We say a valuation  $\theta \in D$  if

 $- \theta(X) \in D(X)$  for each  $X \in vars(\theta)$ 

- A solution is a valuation which satisfies each constraint in the problem
- Valuation domain  $D_{\theta}(X) = \{ \theta(X) \mid X \in vars(\theta) \}$



### Overview

- Constraint Satisfaction and Optimization Problems
- Domains and Valuations
- Constraints and Propagators
- Propagation Engines
- Search
- Optimization by Satisfaction
- Global Constraints



#### Constraints

- A constraint *c* is a set of valuations (its solutions) over a set of variables *vars(c)* 
  - $X \neq Y$ :
    - $\{\{X \rightarrow 1, Y \rightarrow 2\}, \{X \rightarrow 1, Y \rightarrow 3\}, \{X \rightarrow 2, Y \rightarrow 1\},\$ 
      - $\{X \rightarrow 2, Y \rightarrow 3\}, \{X \rightarrow 3, Y \rightarrow 1\}, \{X \rightarrow 3, Y \rightarrow 2\}\}$
    - or { {  $X \rightarrow red, Y \rightarrow yellow$  }, {  $X \rightarrow red, Y \rightarrow blue$  }, ... }
  - -X = Y + 1
    - $\{\{X \rightarrow 2, Y \rightarrow 1\}, \{X \rightarrow 3, Y \rightarrow 2\}\}$



#### Propagators

- A propagator *f* for constraint *c* is a function from domains to domains: D' = f(D)
- Monotonically decreasing:  $f(D)(X) \subseteq D(X)$
- Correct for *c*: never removes a value which occurs in a solution of *c* from *D*

 $-\theta \in D$  and  $\theta \in c$  implies  $\theta \in f(D)$ 

• Checking for *c*: if all variables in *c* are fixed then it returns a failed domain unless this is solution.

 $-f(D_{\theta}) = D_{\theta}$  iff  $\theta$  is a solution of *c* 



#### Propagators

- Propagator for X = Y + 1
- $f(D)(X) = D(X) \cap [min(D(Y))+1 ... max(D(Y))+1]$
- f(D)(Y) = D(Y)
- Correct, even though it never modifies D(Y)
- Is it checking?



### **Domain Propagators**

• The strongest propagator for a constraint *c* removes all values that don't take part in a solution of *c* in domain *D* 

 $-f(D(X)) = D(X) \cap \{ \theta(X) \mid \theta \in c, \theta \in D \}$ 

- The strongest propagator for *c* is called the domain propagator for *c*
- Write down the domain propagator for the constraint *X* ≠ *Y*
  - $f(D)(X) = D(X) \{d\}, D(Y) = \{d\}$
  - f(D(X) = D(X)), otherwise
  - *Y* is symmetrically defined



### **Linear Propagators**

• Linear constraints are the most common constraint used in modelling

 $-\Sigma a_i X_i = b \text{ or } \Sigma a_i X_i \leq b$ 

- What is the result of the domain propagation of
  - -X = 3Y + 5Z
  - D(X) = [2..7], D(Y) = [0..2], D(Z) = [-1..2]
  - Solutions: (3,1,0), (5,0,1), (6,2,0)
  - $-D'(X) = \{3,5,6\}, D'(Y) = \{0,1,2\}, D'(Z) = \{0,1\}$


## **Linear Propagators**

- The complexity of linear equation  $\sum a_i X_i = b$ domain propagation is?
  - Linear O(n)
  - Sorting  $O(n \log n)$
  - Quadratic O(n\*n)
  - NP-hard
- For linear inequality  $\sum a_i X_i \le b$  propagation it is?
  - Linear O(n)
  - Sorting  $O(n \log n)$
  - Quadratic O(n\*n)
  - NP-hard



#### **Bounds Propagators**

- A bounds propagator only examines and sets upper and lower bounds of variable domains
- Advantage only deal with 2n pieces of information
- Write down a bounds propagator for the constraint X = abs(Y)
  - $-D'(X) = D(X) \cap [0..m]$  where
    - m = max(max(D(Y)), -min(D(Y)))
  - $-D'(Y) = D(Y) \cap [-max(D(X)) \dots max(D(X))]$
- Is this the strongest bounds propagator possible?



## **Linear Bounds Propagators**

- The complexity of linear equation  $\sum a_i X_i = b$ strongest bounds propagation is?
  - Linear O(n)
  - Sorting  $O(n \log n)$
  - Quadratic O(n\*n)
  - NP-hard
- The complexity of linear inequality bounds propagation is
  - Linear!



## Linear Inequality

• To propagate the general linear inequality

$$\sum_{i=1..n} a_i x_i \le b$$

• Use propagation rules (where  $a_i > 0$ )

$$x_i \leq \frac{b - \sum_{j=1..n, j \neq i} a_j \min(D, x_j)}{a_i}$$



## **Linear Equation**

• To propagate the general linear inequality

$$\sum_{i=1..n} a_i x_i = b$$

• Use propagation rules (where  $a_i > 0$ )

$$x_i \leq \frac{b - \sum_{j=1..n, j \neq i} a_j \min(D, x_j)}{a_i}$$

$$x_i \ge \frac{b - \sum_{j=1..n, j \neq i} a_j \max(D, x_j)}{a_i}$$



## Linear Bounds Propagators

- Implement linear equation  $\sum a_i X_i = b$  propagator as
  - $-\sum a_i X_i \le b$
  - $-\Sigma a_i X_i \ge b$
- What is the result of the bounds propagation of
  - -X = 3Y + 5Z
  - D(X) = [2..7], D(Y) = [0..2], D(Z) = [-1..2]
  - Smallest value of 3Y + 5Z = -5, largest 16
  - Smallest value of X 5Z = -8, largest 12
  - Smallest value of X 3Y = -4, largest 7
  - -D'(X) = [2..7], D'(Y) = [0..2], D'(Z) = [0..1]
  - Domain  $D'(X) = \{3,5,6\}, D'(Y) = [0..2], D'(Z) = [0..1]$



#### Exercise: $X = Y \times Z$

- Suppose
  - D(X) = [0..5], D(Y) = [-2..3], D(Z) = [1..6]
- What domain would a domain propagator return?
- What about

- D(X) = [3..5], D(Y) = [-2..3], D(Z) = [2..6]



## **Propagation Strength**

- Propagators should be
  - Strong: remove as many values as possible, and
  - Efficient: execute quickly
- But in the end efficiency is much more important
- Almost no propagators are
  - the strongest possible (domain propagators)
  - or even the strongest possible bounds propagator!



#### Overview

- Constraint Satisfaction and Optimization Problems
- Domains and Valuations
- Constraints and Propagators
- Propagation Engines
- Search
- Optimization by Satisfaction
- Global Constraints



## **Propagation Engine**

• Propagation repeatedly applied propagators  $f \in F$ until all at fixpoint f(D) = D

```
isolv(Fo, Fn, D)

F := Fo \cup Fn; Q := Fn
while (Q \neq \{\})

f := choose(Q) \qquad \% \text{ select next propagator to run}
Q := Q - \{f\}; D' := f(D);
Q := Q \cup new(f,F,D,D') \% \text{ add affected props}
D := D'
```

return D



## **Propagation Engine**

#### • choose(Q)

- typically a FIFO queue
- pick the propagator in the queue longest
  - Don't add the same propagator twice!
- **new**(*f*,*F*,*D*,*D*')
  - return propagators f' in F where  $f'(D') \neq D'$
  - simplest version
    - Add propagators for constraints whose variables have changed domain
    - $\{f \mid vars(f) \cap \{X \mid D(X) \neq D'(X)\} \neq \{\}\}$



## **Propagation Example**

Queue Q given by boxed propagators







## Whats Wrong with Propagation?

- Every propagator that makes a change puts itself back on the queue
  - We would expect it to make no new change
- Most propagators wake up and make no change to domains
  - Intrinsic to propagation, but can we improve it?



#### Idempotence

• A propagator is idempotent if

-f(D)=f(f(D))

- An idempotent propagator does not need to put itself back on the queue.
- Actually most propagators are not idempotent because of domain holes
- E.g.  $X = abs(Y), D(X) = \{0,2,4\}, D(Y) = \{-3,1\}$ -  $D' = f(D), D'(X) = \{0,2\}, D'(Y) = \{-3,1\}$ -  $D'' = f(D'), D''(X) = \{0,2\}, D''(Y) = \{1\}$
- Dynamic idempotence: propagator returns whether it is idempotent when executed



#### **Events**

- Some domain changes will not cause a propagator to change domains
- Only wake up when an event of interest occurs
  - fix(X): X becomes fixed
  - lbc(X): lower bound of X changes
  - ubc(X): upper bound of X changes
  - dmc(C): the domain of X changes
- What events should wakeup  $X \neq Y$ ?



## **Propagation Redundancy**

- Sometimes we can tell that
  - -f(D)=D
  - For all future domains D
- The usual case is redundancy
  - $-D \models c$
  - All solutions of D are solutions of c
- For example:
  - once  $X \neq Y$  propagates it is redundant



## **Propagation Example**

Queue Q given by boxed propagators







#### Overview

- Constraint Satisfaction and Optimization Problems
- Domains and Valuations
- Constraints and Propagators
- Propagation Engines
- Search
- Optimization by Satisfaction
- Global Constraints



# **Propagation Solving**

- A propagation solver only determines
  - Failure with a failed domain
  - Solution when |D(X)| = 1 for all X
- Mostly neither case holds.
- We need to add more information
  - By guessing
- Search
  - Usually we split the domain of a variable in two!



### Search

search(*Fo*,*Fn*,*D*) D := isolv(Fo,Fn,D)if (*D* is a false domain) return false domain *D* if (|D(X)| = 1 forall X) return D (c1, c2) := choose(D) where  $D \models c1 \lor c2$  $D1 := \operatorname{search}(Fo \ U \ Fn, \{ \operatorname{prop}(c1) \}, D))$ if (D1 is not a false domain) return D1  $D2 := \operatorname{search}(Fo \ U \ Fn, \{ \operatorname{prop}(c2) \}, D))$ if (D2 is not a false domain) return D2 return false domain



## Search Choice

- The choice of how to split the search is crucial
- Usually we choose a variable *X* with |D(X)| > 1
- And then choose a value  $d \in D(X)$  and add

 $-X = d \quad \forall X \neq d$ 

- This is called labelling
- Or choose the  $d \in D(X)$  and add
  - $-X \le d \quad \forall X \ge d+1$
  - This is called domain splitting
  - But usually d = min(D(X))



#### Search -- Example





#### Search-- Example





#### Search -- Example







#### **Search Tree Exercise**

- Var: value order
- NSW = r = y = b
- NT = b = r = y
- Q = r = y = b
- T = r = y = b
- V = r = y = b
- SA = r = y = b
- WA = r = y = b





## **Programmed Search**

- One the advantages of propagation solving
- The user can specify the search strategy
  - Allows them to add knowledge of where solutions lie
- The right search strategy can make an exponential difference
- Not all variables need to be labelled
  - Some will be fixed by the constraints and the rest of the search



# **Choices for Search Strategy**

- Labelling search:
  - int\_search(Vars, Varchoice, Valchoice, complete)
  - Choose a variable (can make an exponential difference)
    - input\_order: in the order given e.g. Vars = NSW, NT, ...
    - first\_fail: choose variable X where |D(X)| is smallest
    - smallest: choose variable X where min(D(X)) is smallest
    - largest: choose variable *X* where *max*(*D*(*X*)) is largest
  - Choose a value (only moves solutions earlier)
    - indomain\_min: select least possible value
    - indomain\_max: select greatest possible value
    - indomain\_median: select median value from domain
    - indomain\_random: select a random value from domain



# **Playing with Search Strategies**

- nqueens.mzn is a model for placing *n* queens on an *n* x
   *n* chessboard so none can take another
  - Available from summer school website (Exercises)
- We can run the model (for n = 8) like this

- minizinc -s - D "n = 8;" nqueens.mzn

- It prints out a solution and the number of choices required to find it (amount of search) using default search
- We can add a programmed search strategy by changing
  - solve satisfy; to
  - solve :: int\_search(q, Varchoice, Valchoice, complete) satisfy;
- Experiment with nqueens.mzn to find the most robust search strategy as *n* increases!



## **Playing with Search Strategies**

- We can run the model (for n = 8) like this
  - minizinc -s -D "n = 8;" nqueens.mzn
- Change search using

  - Varchoice: input\_order, first\_fail, smallest,
    largest
  - Valchoice: indomain\_min, indomain\_max, indomain\_median, indomain\_random
- Experiment with nqueens.mzn to find the most robust search strategy as *n* increases!



## **Finished Quickly**

- You can find all solutions using
  - minizinc -a -s -D "n = 8;" nqueens.mzn
- Compare different *Valchoices* for finding all solutions for *n* = 8
  - Notice anything?



## More Advanced Search

- Programmed search is an important part of CP
- Dynamic variable selection strategies:
  - dom\_w\_deg, impact, activity, regret, …
- Restarts:
  - Geometric, Luby, ...
- Different ways to explore the search tree
  - Limited discrepancy search, breadth first, best first, ...



## Dom\_w\_deg

- Domain / weighted degree
  - degree in the number of constraints the var is in
- dom\_w\_deg: choose a variable with minimum
  - domain size / sum of failures by constraints it is in
- Each variable gets a fail count
  - (= number of constraints it appears in initially)
- Each time a constraint detects failure
  - increment fail count for all variables involved
- Choose the variable with minimum
  - domain size / failcount



### Dom\_w\_deg

- Why does it work
  - Concentrates on variables that are causing failure
- Imagine 15 Boolean vars *b* that are easy to solve and 4 integers *x* with no solution
- Searching with first fail
  - always chooses Booleans
  - then tries to solve integer problem
  - 491504 choices to fail
- Dom\_w\_deg
  - First branches chooses Booleans
  - On backtracking always chooses *x*s
  - 182 choices to fail







### Dom\_w\_deg

- If you are interested try the search strategy exercise using also
  - dom\_w\_deg as a Varchoice
- Note dom\_w\_deg is a poor approximation to the powerful search strategy
  - Activity based search!




#### Heavy Tailed Behaviour

Searching for solutions to Quasigroup completion problems



**Heavy-Tailed Behavior** 



#### Restarts

- If 75% finish in 30 backtracks
  - after 50 backtracks why not start again
    - trying a different search
    - here the variable and value selection is random
  - you might be in one of the 5% that require > 100,000
- Restarting conquers heavy tailed behaviour



### **Restart Strategies**

Policy for when to restart

- Constant restart after using *L* resources
- Geometric restart
  - restart after using *L* resources, with new limit  $\alpha L$
- Luby restart
  - 1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,...
  - "universally optimal" for randomized algorithms:
    - no worse than a log factor slower than optimal policy
    - not bettered by more than a constant factor by other universal policies



#### Restarts

- Restarts are ubiquitous in default search strategies
- Combined with dynamic variable selection strategies they have another advantage
  - A bad choice at the top requires exponential search to undo
  - Restarts avoid this, by throwing away the choice.



#### Overview

- Constraint Satisfaction and Optimization Problems
- Domains and Valuations
- Constraints and Propagators
- Propagation Engines
- Search
- Optimization by Satisfaction
- Global Constraints



## **Optimization for CSPs**

- So far only looked at finding a solution: this is *satisfiability*
- However often we want to find an *optimal* solution: One that minimizes/maximizes an objective function *o*.
- Because the domains are finite we can use a solver to build a simple optimizer *for minimization*

retry\_int\_opt(F, D, f,  $best\_so\_far$ )  $D2 := search(F, \{\}, D)$ if (D2 is a false domain) return  $best\_so\_far$ let  $\theta$  be the solution corresponding to D2return retry\_int\_opt( $F \cup \{ prop(o < \theta(o)) \}, D, f, \theta$ )



### **Retry Optimization Example**

Smugglers knapsack problem (optimize profit) minimize -15W - 10P - 7C subject to capacity profit  $4W + 3P + 2C \le 9 \land 15W + 10P + 7C \ge 30$   $-15W - 10P - 7C < -31 \land -15W - 10P - 7C < -32$ D(W) = [0..9], D(P) = [0..9], D(C) = [0..9]

No next solution! D(W) = [01.0], D(P) = [11.1], D(C) = [3..3]Return possing solution  $\theta \in \{W \mapsto 0, P \mapsto 1, C \mapsto 3\}$ 

$$\theta(\theta) = -32$$



### **Backtracking Optimization**

- Since the solver may use backtracking search anyway combine it with the optimization
- At each step in backtracking search, if *best* is the best solution so far add the constraint *o* < *best(o)*
- Very similar to branch-and-cut methods
  - Use consistency techniques instead of linear relaxation



# Backtracking Optimization (Ex.)

Smugglers knapsack problem  
*capacity* profit  

$$4W + 3P + 2C \le 9 \land 15W + 10P + 7C \ge 30$$
  
 $-15W - 10P - 7C < -31$ 

Current domain:

$$D(W) = [0..0], D(P) = [1..1], D(C) = [3..3]$$

after bounds consistency

$$W = 0$$

**Solution Found: add constraint** 





# **Backtracking Optimization (Ex.)**

#### Smugglers knapsack problem capacity profit $4W + 3P + 2C \le 9 \land 15W + 10P + 7C \ge 30$ $-15W - 10P - 7C < -31 \land$ -15W - 10P - 7C < -32





#### Search and Optimization

- Programmed search is even more important for optimization
  - Finding a good solution early reduces the search space!



## **Jobshop Scheduling Exercise**

• Scheduling tasks in order, so that only one task is on each machine at any one time



- Aim is to minimize completion time of all tasks
- Challenging problem: some 10x10 problems were unsolved only 10 years ago



### **Optimization Search Exercise**

- You can run a 5x5 jobshop problem as
  - minizinc -a -s jobshop.mzn
  - jobshop.mzn available from school website
- Modify the search by replacing
  - solve minimize t\_end; by
  - solve :: Searchstrategy minimize t\_end;
- Using
  - int\_search(s, Varchoice, Valchoice, complete)
  - int\_search([t\_end],input\_order,Valchoice,complete)
  - seq\_search([IntSearch1,IntSearch2])
- Find the search strategy requiring least choices to prove optimality



#### Overview

- Constraint Satisfaction and Optimization Problems
- Domains and Valuations
- Constraints and Propagators
- Propagation Engines
- Search
- Optimization by Satisfaction
- Global Constraints



### **Global Constraints**

- One of the principal advantages of propagation solving
- A global constraint captures an important subproblem:
  - alldifferent: assignment subproblem
  - cumulative: resource allocation problem
- Each global constraint is implemented by (possibly several)
  - propagators
- A good implementation of a global constraints has
  - strong propagation (ideally domain propagation)
  - fast propagation
- Usually global propagators are not idempotent



#### Alldifferent

- $alldifferent([V_1,...,V_n])$  holds when each variable  $V_1,...,V_n$  takes a different value
- Not needed for expressiveness. *all different*([X, Y, Z]) is equivalent to  $X \neq Y \land X \neq Z \land Y \neq Z$
- But propagation doesn handle disequalities well - E.g.  $D(X) = \{1,2\}, D(Y) = \{1,2\}, D(Z) = \{1,2\}$
- But there is a solution
  - Specialized propagator for alldifferent.



#### **Alldifferent Propagator**

Simple propagator for *alldifferent*( $[V_1,...,V_n]$ ) f(D)let  $W = \{V_1,...,V_n\}$ while (exists  $V \in W$  where  $D(V) = \{d\}$ )  $W := W - \{V\}$ foreach  $(V' \in W)$   $D(V') := D(V') - \{d\}$   $DV := \bigcup_{V \in W} D(V)$ if (|DV| < |W|) return false domain return D

- Wakes up on  $fix(V_i)$  events, idempotent
- More efficient but hardly propagates more than disequalities



#### Alldifferent Example

- *alldifferent([X,Y,Z])*
- $D(X) = \{1,2\}, D(Y) = \{1,2\}, D(Z) = \{1,2\}$
- $DV = \{1,2\}, W = \{X,Y,Z\}$
- |DV| < |W| hence detects unsatisfiability.
- Note that the disequations do not!



### **Alldifferent Propagator**

- Domain consistent propagator for *alldifferent* 
  - First important global propagator  $O(n^{2.5})$
  - Based on maximal matching, wakes on *dmc()* events
- *alldifferent*([X,Y,Z,T,U])
- $D(X) = \{1,2,3\}, D(Y) = \{2,3\}, D(Z) = \{2,3\},$  $D(T) = \{1,2,3,4,5\}, D(U) = \{3,4,5,6\}$



heavy = maximal matching dashed = cant be in max matching

•  $D'(X) = \{1\}, D'(Y) = \{2,3\}, D'(Z) = \{2,3\},$  $D'(T) = \{4,5\}, D'(U) = \{4,5,6\}$ 



- Start with a given partial matching
- Choose an unmatched variable



- Search for an alternating path
  - unmatched and matched edges
  - reaching an unmatched value



- Start with a given partial matching
- Choose an unmatched variable



- Search for an alternating path
  - unmatched and matched edges
  - reaching an unmatched value



- Start with a given partial matching
- Choose an unmatched variable



- Search for an alternating path
  - unmatched and matched edges
  - reaching an unmatched value



- Start with a given partial matching
- Choose an unmatched variable



- Search for an alternating path
  - unmatched and matched edges
  - reaching an unmatched value



- Start with a given partial matching
- Choose an unmatched variable



- Search for an alternating path
  - unmatched and matched edges
  - reaching an unmatched value



- Start with a given partial matching
- Choose an unmatched variable



- Search for an alternating path
  - unmatched and matched edges
  - reaching an unmatched value



- Start with a given partial matching
- Choose an unmatched variable



- Search for an alternating path
  - unmatched and matched edges
  - reaching an unmatched value



#### Failure

• If not every variable is matched in the maximal matching then the alldifferent constraint cannot be satisfied.

$$all different([X,Y,Z,T,U])$$
  
$$D(X) = \{1,2\}, D(Y) = \{1,2\}, D(Z) = \{1,2\},$$
  
$$D(T) = \{2,3,4,5\}, D(U) = \{3,4,5,6\}$$





#### Propagation

• Keep edges which are reachable from unmatched nodes (pink + green)



- Keep edges in an SCC or in matching, delete rest
- $D'(X) = \{1\}, D'(Y) = \{2,3\}, D'(Z) = \{2,3\},$  $D'(T) = \{4,5\}, D'(U) = \{4,5,6\}$



#### Alldifferent

- Given the domain  $D(X) = \{2,4\}, D(Y) = \{1,3,5,6\}, D(Z) = \{1,2,3\}, D(T) = \{2,4\}, D(U) = \{1,2,3,4\}$
- What is the result of propagating *alldifferent([X,Y,Z,T,U])*?
- Draw the matching graph and work it out!



### **Alldifferent Propagator**

- bounds consistent propagator for *alldifferent* 
  - Most common implementation  $O(n \log n)$
  - Based on maximal matching, wakes on *lbc(), ubc()* events
- Usually as fast as the naïve first propagator



#### Cumulative

- $cumulative([S_1,...,S_n], [D_1,...,D_n], [R_1,...,R_n], L)$ schedule *n* tasks with start times  $S_i$  and durations  $D_i$  needing  $R_i$  units of a single resource where *L* units are available at each moment.
- Very complex propagator
- Many different implementations
  - Different complexities
  - None implement strongest bounds or domain propagation!



#### **Cumulative Example**

Bernd is moving house. He has 4 people to do the move and must move in one hour. He has the following furniture: piano must be moved before bed

| Item  | Time   | No. of |
|-------|--------|--------|
|       |        | people |
| piano | 30 min | 3      |
| chair | 10 min | 1      |
| bed   | 20 min | 2      |
| table | 15 min | 2      |



How can we model this?

 $D(P) = D(C) = D(B) = D(T) = [0..60], P + 30 \le B,$   $P + 30 \le 60, C + 10 \le 60, B + 15 \le 60, T + 15 \le 60,$ cumulative([P,C,B,T], [30,10,20,15], [3,1,2,2], 4)



#### **Cumulative Timetable Propagator**

- Determine the parts where a task must be running
- The resource profile adds up these parts
- Use profile to move other tasks

Example: after initial bounds

D(P) = [0..30], D(C) = [0..50], D(B) = [0..40], D(T) = [0..45]

Propagating P + 30 ≤ B D(P) = [0..10], D(C) = [0..50], D(B) = [30..40], D(T) = [0..45]



D(P) = [0..15], D(C) = [0..50],D(B) = [30..40], D(T) = [30..45]



#### **Compulsory Parts**

 $sl_v$ 

 $Se_v$ 

• A task y with earliest start time  $se_y$ , latest start time  $sl_y$ , and duration  $d_y$   $sl_v + d_v$ 

- compulsory part:  $sl_y \dots se_y + d_y$ 

- Profile = sum of compulsory parts
- Failure: at time *t* profile goes over resource bound
- Propagation
  - If resources for task x don't fit at time  $sl_x \le t < sl_x + d_x$ 
    - move  $sl_x$  to t + 1
  - similarly move  $se_x$  back to  $t-d_x$  if  $se_x \le t < se_x + d_x$



## **Cumulative by Decomposition**

- We can implement cumulative using simpler constraints
  - $B_{it} \Leftrightarrow (S_i \ge t \land S_i + D_i < t)$
  - Task *i* is active at time *t*
  - At all times t,  $\sum_{i \in 1..n} B_{it} \times R_i \leq L$
- Decomposition propagates like timetable
  - But  $O(n t_{max})$  where *n* is number of tasks and  $t_{max}$  is maximum time horizon
  - Versus  $O(n^2)$  for the global propagator
- Very many Boolean vars introduced  $O(n t_{max})$



#### Cumulative exercise

- rcpsp.mzn is a classic cumulative resource problem
- We can try different implementations of cumulative
  - Cumulative by decomposition: minizinc
  - Cumulative propagator: mzn-g12fd
  - Annotate the cumulative constraints
    - :: histogram\_filtering: time-tabling bounds propagator
    - :: edge\_finding\_filtering: edge-finding bounds propagator O(n<sup>2</sup> \* k)
    - :: ext\_edge\_finding\_filtering: extended edge-finding bounds propagator O(n<sup>2</sup> \* k)
    - :: energy\_feasibility\_check: edge-finding consistency check O(n<sup>2</sup>)
  - You can annotate with more than one!
    - :: annot1 :: annot2


## **Cumulative exercise**

- Try different cumulative annotations to find the least choice points required for finding the optimal solution to
  - mzn-g12fd -s -a rcpsp.mzn *data.dzn*

#### using data

- Bl2002.dzn
- J30\_10\_5.dzn
- How do they compare against the decomposition
  - minizinc -s -a rcpsp.mzn *data.dzn*



## Priorities

- Once we have expensive global constraints
  - Need to reconsider which propagator to run next!
- Expensive global constraints should be chosen last
- Priority queue:
  - Pick the least expensive propagator available
  - Typically few priority levels
    - Unary, binary, ternary, linear, quadratic, cubic, veryslow
- E.g. *X* ≠ *Y* (binary), *X* = *Y*+ *Z* (ternary), *alldifferent* domain propagator (cubic)



## **Staged Propagators**

- With priorities we can run more than one propagator for the same constraint
  - Simple *alldifferent* (linear)
  - Bounds *alldifferent* (quadratic)
  - Domain *alldifferent* (cubic)
- Better yet communicate
  - If a higher priority stage notes that the later stage cannot do anything, it is not run
  - These are called staged propagators



## **Priorities and Staging**

- Priorities and Staging increase the amount of propagators executed
  - We need to reach a fixpoint at each level before proceeding
- But they reduce time
  - Better to let cheap propagators determine all information for a slow global before it executes
  - Instead of executing it multiple times!



## Summary

- Constraint programming is based on backtracking search
- Reduce the search using propagation
  - incomplete inference but faster
- Optimization in CP is based on a branch & bound with a backtracking search
- Very general approach, not restricted to linear constraints.
- Programmer can add new global constraints and program their propagation behaviour.
- State-of-the-art solutions for many combinatorial optimization problems: scheduling, routing, rostering ...
- A good basis for hybridization (the highest level model)



## Lazy Clause Generation

- Repeatedly run propagators
- Propagators change variable domains by:
  - removing values
  - changing upper and lower bounds
  - fixing to a value
- Run until fixpoint.

#### KEY INSIGHT:

- Changes in domains are really the fixing of Boolean variables representing domains.
- Propagation is just the generation of clauses on these variables.
- FD solving is just SAT solving: conflict analysis for FREE!



### Finite Domain Propagation Ex.

- $D(x_1) = D(x_2) = D(x_3) = D(x_4) = D(x_5) = \{1..4\}$
- $x_2 \le x_5$ , all different( $[x_1, x_2, x_3, x_4]$ ),  $x_1 + x_2 + x_3 + x_4 \le 9$

|                  | $x_1 = 1$ | alldiff | $x_2 \leq x_5$ | $x_5 > 2$ | $x_2 \leq x_5$ | alldiff | sum≤9 | alldiff |
|------------------|-----------|---------|----------------|-----------|----------------|---------|-------|---------|
| $x_1$            | 1         | 1       | 1              | 1         | 1              | 1       | 1     | 1       |
| $x_2$            | 14        | 24      | 24             | 24        | 2              | 2       | 2     | 2       |
| $\overline{x_3}$ | 14        | 24      | 24             | 24        | 24             | 34      | 3     | *       |
| $x_4$            | 14        | 24      | 24             | 24        | 24             | 34      | 3     | *       |
| $x_5$            | 14        | 14      | 24             | 34        | 2              | 2       | 2     | 2       |



### Lazy Clause Generation Ex.





## **1UIP Nogood Creation**





# Backjumping



- Backtrack to second last level in nogood
  - Nogood will propagate
  - Note stronger domain than usual backtracking

• 
$$D(x_2) = \{3..4\}$$

 $\{x_2 \ge 2, x_3 \ge 2, x_4 \ge 2, x_2 = 2\} \rightarrow false$ 



## Whats Really Happening

- A high level "Boolean" model of the problem
- Clausal representation of the Boolean model is generated "as we go"
- All generated clauses are redundant and can be removed at any time
- We can control the size of the active "Boolean" model



## Activity-based search

- An excellent default search!
- Weak at the beginning (no meaningful activities)
- Need hybrid approachs
  - Hot Restart:
    - Start with programmed search to "initialize" meaningful activities.
    - Switch to activity-based after restart
  - Alternating
    - Start with programmed search, switch to activity-based on restart
    - Switch search type on each restart
- Much more to explore in this direction



### Strengths + Weaknesses

#### • Strengths

- High level modelling
- Learning avoids repeating the same subsearch
- Strong autonomous search
- Programmable search
- Specialized global propagators (but requires work)
- Weaknesses
  - Optimization by repeated satisfaction search
  - Overhead compared to FD when nogoods are useless



### LCG Exercise

- Try the three previous exercises before using
  - mzn-g12lazy
  - mzn-gl2cpx
  - instead of minizinc or mzn-g12fd
- What do you notice?





#### Symbols: $\in \infty \cup \subseteq \cap \Leftrightarrow \theta$