
Integer Programming: An Introduction
Martin W. P. Savelsbergh
University of Newcastle

George Dantzig

Ralph Gomory

Ailsa Land Alison Doig

George Nemhauser Laurence Wolsey

Zonghau Gu

CPLEX – IP Solver

GuRoBi – IP Solver

Natashia Boland

Will answer all questions
about my presentation

Outline

• Some integer programs
• Solving integer programs

– Branch-and-bound
– Preprocessing
– Primal heuristics
– Valid inequalities

• Reformulation
– Extended formulations
– Column generation formulations

Some Integer Programs

Knapsack Problem

Variables

Parameters

Formulation

Node/Vertex Packing
Parameters

Formulation

Variables

Economic Lotsizing

Variables

Parameters

Formulation

Generalized Assignment Problem
Parameters

Variables

Formulation

Solving Integer Programs

• Three basic concepts
– Divide and conquer

• Solve a problem by solving two smaller problems

– Relax
• Remove a constraint to make the problem easier
• Optimal value may improve

– Restrict
• Add a constraint to make the problem smaller
• Optimal value may worsen

Solving Integer Programs

Integer Program

Solving Integer Programs

Linear Programming Relaxation

Solving Integer Programs

Restricted Integer Program

Solving Integer Programs

• Divide and conquer

Divide and conquer: Solve original IP by solving two smaller restricted IPs

Solving Integer Programs

• Relaxation

• Restriction

Solving Integer Programs

• Recall: Solving linear programs is easy
• What can happen if we solve the LP relaxation

of our integer program?
– Infeasible

• IP is infeasible - stop

– Feasible & integer
• Optimal IP solution – record & stop

– Feasible & fractional
• Divide & conquer

Solving Integer Programs

Solve LP relaxation

Solve restricted IP Solve restricted IP

Branching

solution
feasible & fractional

(xk fractional)

Solving Integer Programs

• Observation: When we solve the LP, we relax the
problem. Therefore, the IP solution value will
never be better

• Observation: When we branch, we restrict the
problem. Therefore, the solution value will never
improve

• Observation: If the value of the LP relaxation is
worse than the value of the best known IP
solution, then the restricted IP cannot provide a
better solution

Solving Integer Programs

Solve LP relaxation

Bounding

Branch-and-Bound Tree/Search Tree
root node

leaf node

open
node

evaluated
node

level / depth

Branch-and-Bound Tree/Search Tree

parent
node

(right)
child
node

(left)
child
node

siblings

How Can We Improve
Basic Branch-and-Bound?

• Solve smaller linear programs
• Improve linear programming bounds
• Find feasible solutions quickly
• Branch intelligently

Branch Intelligently

Branch Intelligently

• Key questions
– Which variable to branch on?
– What node to evaluate next?

Variable Selection

• Focus: improving global bound

• Algorithm
– For all candidate variables calculate a score
– Select the candidate with the highest score

• Score function

left child right child

Most Infeasible Branching

If the goal is to improve the global bound, then
quality of a branching has to be measured by
the change in objective function value at the
child nodes

Pseudocost Branching

observed per unit change in objective function
at right child

sum of observed per unit change in objective
function at right child over all branchings on the
variable

number of branchings on the variable

average observed per unit change at right child
for the variable

Pseudocost Branching

• Initialization?
– Average over all known pseudocosts

Strong Branching

• Calculate change in objective function value at
children of all candidate variables (i.e., solve two
LPs)

• Efficiency
– Restrict number of pivots
– Restrict candidate set

• Dynamic
– order by pseudocost
– no improved candidate for k iterations

Hybrid Pseudocost/Strong Branching

• Strong branching up to level d in the tree and
pseudocost branching for levels larger than d

• Pseudocost branching with strong branching
initialization

Reliability Branching

• Generalizes pseudocost branching with strong
branching initialization

• Use strong branching when pseudocosts are
unreliable

vpm2 neos3

strong
branching

hybrid strong/pseudocost
branching performs poorly
on neos3, we can see why…

Recent Ideas

Perform one or more partial tree searches to
determine “key” variables to branch on
• Information-based branching
• Backdoor branching

Restarts and backdoor are concept “borrowed” from constraint programming

Node selection

• Focus: finding (good) feasible solutions

• Static
• Estimate-based
• Backtracking

Static

• Best-bound
– Guarantees that only nodes that have to be evaluated

are evaluated
– May not be efficient since consecutive LPs differ

substantially
• Depth-first

– Requires very little memory
– Extremely efficient because consecutive LPs differ very

little
– May evaluate many superfluous nodes

Estimate-based

• Best projection

per unit
infeasibility cost

• Best estimate

Backtrack

• Goal: exploit advantage of depth-first search
• Implementation: depth-first until the objective

value reaches a threshold, then jump (e.g,
best-estimate)

Preprocessing

Preprocessing

• Infeasibility detection
• Redundancy detection
• Improving bounds
• Fixing variables
• Improving coefficients

Preprocessing

integer program

solve

analysis

row i

constraints
without
constraint i

Detecting redundancy

Improving bounds

Improving bounds

Fixing variables

Fixing variables

Improving coefficient

Improving coefficient

Preprocessing

• Implementation

ignore completely or
ignore most

Probing

Tentatively fix a variable and explore the consequences

fix consequences
(first constraint)

(second constraint)

Probing

x1

x2

x3

x4 1-x4

1-x3

1-x2

1-x1

Conflict graph:
representation of
the implications

An edge represents
variables that cannot be
one at the same time

e.g., x1 + x2 ≤ 1

Probing

x1

x2

x3

x4 1-x4

1-x3

1-x2

1-x1

Conflict graph:
representation of
the implications

 x1 + x2 + 1-x1 ≤ 1

 x2 ≤ 0

or

clique inequality:

implementation: requires solving a maximum clique problem

Reduced Cost Fixing

Optimal solution
linear programming

relaxation

Reduced cost:

What if?

Integer program

Permanently set

optimal dual variables

Primal Heuristics

Primal Heuristics

• Relaxation Induced Neighborhood Search (RINS)
• Local branching
• Feasibility pump

Relaxation Induced
Neighborhood Search

• Suppose a known feasible solution xIP exists
• Consider a linear programming solution xLP at

a node of the search tree
• Attempt to find a better feasible solution by

solving a restricted IP in which the variables
where xIP and xLP agree are fixed

Relaxation Induced
Neighborhood Search

• Implementation question
– When to apply?

• Variation
– Rather than using a known IP solution and an LP

solution, use two known IP solutions to determine
restricted IP (path relinking)

Local Branching

• Search in the neighborhood of a known

feasible solution 𝑥̅ by limiting the possible
changes

Set of variables at 1 in
known feasible solution

Set of variables at 0 in
known feasible solution

Known feasible solution

Local Branching (Cont.)

The Feasibility Pump (FP)

 Jj integer is x
bAx.t.s

cxmin

j ∈∀
≤

}n,...,1{J and Rx n ⊆∈

Start with LP feasible x
z ← closest integer point to x
x ← closest LP feasible point to z
Repeat until z is feasible

Feasibility Pump: The general idea

rounding x, i.e. [x]
projecting z onto
LP feasible region

The Feasibility Pump (FP)

Start with LP feasible x
z ← closest integer point to x
x ← closest LP feasible point to z
Repeat until z is feasible

Feasibility Pump: The general idea

x1

x2

x3

z1

z2

z3

 d(x1,z1) < d(z1,x2) < d(x2,z2) < d(z2,x3) < d(x3,z3)

x  integer z  feasible

Two scenarios:
1. Feasible z
2. Cycling (i.e., [x] = z and

projLP(z) = x)

The Feasibility Pump (FP)

Spends most time in projection
procedure:
• May overlook good integer

solutions close to x
Fix:
• Spend more time around FP

iterates x to find feasible integer
solutions rather than relying on
naïve rounding

• Make search more balanced

Start with LP feasible x
z ← closest integer point to x
x ← closest LP feasible point to z
Repeat until z is feasible

Feasibility Pump: The general idea

Line Search within FP

The chosen line segment is called the shooting line with
starting point xs and end point xt.

Q. How to find suitable xt?

Q. How to find all rounded solutions
along the shooting line
efficiently?

xs

xt

A substitute for rounding

For each FP iterate x, round all
points along a line segment passing
through x and a point deep within
the feasible region.

Valid Inequalities

Valid Inequalities

valid inequality
feasible set

valid inequality: an inequality such that all feasible solutions satisfy the inequality

Valid Inequalities

Polyhedron

Feasible set

Valid inequality

Valid Inequalities / Cuts

• Are some cuts better than others?
• Can we characterize the strongest cut?

Valid Inequalities

feasible set

three valid inequalities

Valid Inequalities
convex hull

feasible set

a valid inequality that is necessary in the description of the convex hull of feasible
solutions is the strongest possible valid inequality and called a facet inducing inequality

(a facet)

Valid Inequalities

feasible set

three valid inequalities

feasible set one facet

Valid Inequalities / Cuts

• Problem specific cuts
– Node / vertex packing
– Economic lotsizing

• Substructure cuts
– Knapsack problem

• General cuts
– Gomory cuts

Cuts for a relaxation of
the problem

Node/Vertex Packing
Parameters

Formulation

Variables

Node / Vertex Packing

Odd hole inequality:

Economic Lotsizing

Variables

Parameters

Formulation

Economic Lotsizing

Valid inequality

Knapsack Problem

Variables

Parameters

Formulation

Cover Cuts

Cover:

Cover inequality:

General Cuts

• Gomory cut
• Proof of validity

How to determine valid inequalities?

• Exploit problem knowledge
• Study LP solutions
• Use PORTA

How to use valid inequalities?

• How to handle an exponential number of valid
inequalities?

• Are valid inequalities useful if there not
facets?

• How to determine whether a valid inequality
is a facet?

Cut Generation

Solve LP

Find violated cut

Add violated cut

Solve LP

SEPARATION

Separation

• Odd-hole inequalities
• (l,S) inequalities
• Cover inequalities

Odd-hole inequalities

(l,S)-Inequalities

Separation

Cover Inequalities

Separation

Up Lifting (Cover Inequality)

valid inequality
(when x1 = 0)

consider

valid when

where

Down Lifting (Cover Inequality)

valid inequality
(when x1 = 1)

consider

valid when

where

Cover Inequalities

• Should the separation problem be solved
using an exact method?

• Should the lifting problem be solved using an
exact method?

• In what order should variables be lifted?

Up Lifting
Theorem. Suppose S ⊆ Bn, Sδ = S ∩ {x ∈ Bn : x1=δ} for δ ∈
{0,1}, and

π2x2+ π3x3+ … πnxn≤ π0 (*)
is valid for S0.
If S1 = ∅ then x1 ≤ 0 is valid for S.
If S1 ≠ ∅ then

αx1 + π2x2+ π3x3+ … πnxn≤ π0 (**)
is valid for S for any α ≤ π0 - ζ where
 ζ = max{π2x2+ π3x3+ … πnxn : x ∈ S1}.
Moreover, if (*) defines a facet of conv(S0) and α = π0 - ζ
then (**) gives a facet of conv(S).

Down Lifting
Theorem. Suppose S ⊆ Bn, Sδ = S ∩ {x ∈ Bn : x1=δ} for δ ∈
{0,1}, and

π2x2+ π3x3+ … πnxn≤ π0 (*)
is valid for S1.
If S0 = ∅ then x1 ≥ 1 is valid for S.
If S0 ≠ ∅ then

γx1 + π2x2+ π3x3+ … πnxn≤ π0 + γ (***)
is valid for S for any γ ≥ ζ - π0 where
 ζ = max{π2x2+ π3x3+ … πnxn : x ∈ S0}.
Moreover, if (*) defines a facet of conv(S1) and γ = ζ - π0
then (***) gives a facet of conv(S).

Reformulation

Reformulation

• Disaggregation
• Extended formulations
• Column generation formulations

Disaggregation

ALTERNATIVELY

Is one formulation better than the other?
Better in what sense?

Disaggregation

Consider

Economic Lotsizing

Variables

Parameters

Formulation

Economic Lotsizing
Parameters

Variables

Formulation

Note

Extended formulations

Q ={(x,w): (x,w)∈Rn x Rp} is an extended formulation for
a pure integer program with formulation P⊆Rn if
 ProjxQ ∩ Zn = P ∩ Zn
where the projection of Q onto x is defined to be
 ProjxQ = {x : (x,w)∈Q, ∃w ∈Rp}

How can we compare the formulations in this case?
A: if ProjxQ⊂P, we say Q is a better formulation than P

Generalized Assignment Problem
Parameters

Variables

Formulation

Generalized Assignment Problem

Formulation

Parameters

Variables

Generalized Assignment Problem

Parameters

Satisfy

Generalized Assignment Problem

Variables Coefficient matrix

RHS

How to use
column generation formulations

• How to handle exponential number of
columns?

• How to find “missing” columns?

Branch-and-Price

Solve LP

Find column with
negative reduced cost

Add negative reduced
cost column

Solve LP

PRICING

Pricing Problem
dual associated with machine i

dual associated with task j

where

Branching

• Branching on selection variables
– Fixing to 1, i.e., selecting a particular schedule for

a machine
– Fixing to 0, i.e., forbidding a particular schedule

for a machine

• How to prevent the forbidden schedule to be
generated again?

Branching

• Branching on original variables

• Fixing to 1
– Force task j in schedule for machine i
– Forbid task j in schedule for other machines

• Fixing to 0
– Forbid task j in schedule for machine i

What Next?

• Parallel Integer Programming
– Topics in Parallel Integer Optimization (Jeff

Linderoth, 1998)
– PARINO: PARallel INteger Optimizer (Kalyan

Permulla, 1997)

• Multi-objective Integer Programming

– MINTO: Multi-objective INTeger Optimizer

Restrict and Relax Search

Outline

• Motivation
• Restrict-and-Relax Search

– Initial restriction
– Fixing and unfixing

• Computational experiments
– 0-1 integer programs
– Multi-commodity fixed charge network flow

Motivation

• Why use restricted integer programs?
– Desire to find good feasible solutions quickly

• Crucial for real-life applications
• Beneficial for many integer programming techniques

(e.g., reduced cost fixing)

• Why use restricted integer programs?

– Integer program of interest very large (e.g., too
large to fit in memory)

Motivation

• Success stories
– Relaxation induced neighborhood search (general)
– Local branching (general)
– IP-based neighborhood search (problem-specific)

IP-based Neighborhood Search

IP-based search heuristic

• Key decisions:
– What variables to fix?
– What values to fix them to?

IP-based search heuristic
If we solve a number of related restricted integer

programs, can we re-use the search tree?

Restrict-and-Relax Search

• Main ideas:
– Branch-and-bound algorithm

that always works on a
restricted integer program

– Branch-and-bound algorithm
that uses local information
to decide whether to relax
(unfix variables) or restrict
(fix variables)

restrict

restrict or relax

Restrict-and-Relax Search

• Main ideas:
– Restrict: Efficiency
– Relax: Quality

Restrict-and-Relax Search

Original IP

Restricted IP

Restricted IP
at node of the
search tree

Restrict-and-Relax Search

Restricted IP
at node of the
search tree

Modified
restricted IP at
node of the
search tree

Restrict-and-Relax Search

• Key decisions
– How to define the initial restricted integer

program?
– How to determine the variables to fix or unfix?
– At which nodes in the search tree to relax or

restrict?

How to define the
initial restricted integer program?

• Based on a known feasible solution
• Based on the solution to the LP relaxation
• Based on the Phase I solution to the LP

relaxation

How to define the
initial restricted integer program?

Scheme:
– xLP = 0 for variable: Score: c
– xLP = 1 for variable: Score: -c
– Fix variables from large to small
– Fix at most 90% of variables

How to determine the variables
to fix and unfix?

• Fixing variables (LP feasible node):

Choose variables to fix in nondecreasing order of absolute value of
reduced costs

• Unfixing variables (LP feasible node):

Choose variables to unfix in nondecreasing order of absolute value of reduced
costs

Fix variables in the current primal solution that are not
likely to be part of an optimal solution in the future

Unfixing variables in the current primal solution that are
likely to result in an optimal solution with lower value in
the future

How to determine the variables
to fix and unfix?

• Implementation - Gradual transition:

– Fast linear programming solves
– Up to date dual information

Unfixing variables

Fathomed by bound

Infeasible

Active
LP feasible

Unfixing variables

Opportunistic relaxing:
Unfix previously fixed variables

Unfixing variables

Infeasible:
(1) Resolve LP with all variables unfixed
(2) Unfix variables that change values

Fathomed by bound:
(1) Remove cut-off
(2) Resolve LP with all variables unfixed
(3) If value < best known, unfix based on reduced costs

Resolve LP with all variables unfixed guarantees that no nodes are discarded that
shouldn’t

At which nodes in the search tree
to relax or restrict?

• Parameters:
– level-frequency (l-f) : Relax/restrict at node t if node level is a multiple of l-f
– unfix-ratio (u-r) : At each trial, unfix at most u-r % of the fixed variables
– fix-ratio (f-r) : At each trial, fix at most f-r % of the free variables
– node-trial-limit (t-l) : At each node, fix/relax at most t-l times
– max-depth (max-d) : Fix/unfix only at nodes below tree level max-d
– min-depth (min-d) : Fix/unfix only at nodes above tree level min-d
– Pruned-by-bound (p-b) : If enabled, fix/unfix at nodes pruned by bound

regardless of node level
– Pruned-by-infeasibility (p-i) : If enabled, fix/unfix at nodes pruned by

infeasibility regardless of node level

At which nodes in the search tree
to relax or restrict?

• Default values:
– level-frequency (l-f) : 4
– unfix-ratio (u-r) : 5%
– fix-ratio (f-r) : 2.5%
– node-trial-limit (t-l) : 5
– max-depth (max-d) : ∞
– min-depth (min-d) : 0
– Pruned-by-bound (p-b) : enabled
– Pruned-by-infeasibility (p-i) : enabled

Computational Study

• Instances:
– COR@L
– MIPLIB

• Restrict-and-Relax

– Initial restricted IP: based on LP relaxation
– Default settings for parameters
– Time limit: 500 seconds

• Implementation: SYMPHONY + CLP

Computational Study

• Default solver: Original IP
• Default solver: Restricted IP
• Restrict-and-relax Search

Results

By varying control parameters we can obtained improved solutions for
all instances!

Results (sample)

Original IP Restricted IP Restrict-and-
Relax Search

Optimal

neos-693347 360 - 241 234

neos808444 - - 0 0

m100n500k4r1 -22 -22 -24 -25

Results (sample)

%fixed #nodes #unfix avg. #fix avg. #solutions
neos-693347 0.74 593 266 18 243 27 1

neos808444 0.9 633 129 24 1 1 1

m100n500k4r1 0.7 38075 11095 6 1620 12 4

Multi-commodity
Fixed Charge Network Flow

Variable flow cost (>= 0) Fixed cost of installing arc (>= 0)

Commodity flow
balance

Arc capacity and
coupling

Do we install arc (i,j)?

Does commodity k
flow on arc (i,j)?

Computational Study
• Instances

– Notation: T - #nodes(100x) - #arcs(1000x) - #commodities
– Smallest (T-5-3-50)

• 150,000 variables, 180,000 constraints, 750,000 nonzeroes
– Largest (T-5-3-200)

• 600,000 variables, 700,000 constraints, 3,000,000 nonzeroes
• Restrict-and-relax settings

– Initial restriction:

• Phase I of simplex algorithm, fix up to 90% of variables
– Parameters:

• unfix ratio: 6%, fix ratio: 5%
– Time limit: 2 hours

Results

