¥ objective

3|31i|‘"“|u|‘"| of
LP relaxation
- - - @ O

v\

MIP optimim

rounding down optimum

. . . . of LP relaxation
-

feasible
L]

solutions= *

Integer Programming: An Introduction

Martin W. P. Savelsbergh
University of Newcastle

s A

George Dantzig

It T were asked to summarize my early and perhaps my
most important contributions to linear programming, I
would say they are three:

(1) Recognizing (as a result of my wartime years as
a practical program planner) that most practical planning
relations could be reformulated as a system of linear
inequalities.

(2) Replacing the set of ground rules for selecting good
plans by an objective function. (Ground rules at best are
only a means for carrying out the objective, not the objec-
tive itself.)

(3) Inventing the simplex method which transformed the
rather unsophisticated linear-programming model of the
economy into a basic tool for practical planning of large
complex systems.

The tremendous power of the simplex method is a con-
stant surprise to me. To solve by brute force the assignment
problem (which I mentioned earlier) would require a solar
system full of nano-second electronic computers running
from the time of the big bang until the time the universe
grows cold to scan all the permutations in order to select
the one which is best. Yet it takes only a moment to find
the optimum solution using a personal computer and stan-
dard simplex or interior method software.

Ralph Gomory

RESEARCH ANNOUNCEMENTS

The purposs of this department js to provide sarly announcement of significant
new results, with some indications of proal, Although ordinarily a research annonnce-
mant should be a brief summary of a paper to be published is [ull elsewhere, papers
giving econplete proofs of results of exceptional interest are also solicited.

OUTLINE OF AN ALGORITHM FOR INTEGER
SOLUTIONS TO LINEAR PROGRAMS

BY RALPE E. GOMORY!
Communicated by A, W. Tucker, May 3, 1958

The problem of obtaining the best integer solution to a linear pro-
gram comes up in several eontexts. The connection with combina-
torial problems is given by Dantzig in [1], the connection with prob-
lems involving economies of scale is given by Markowitz and Manne
[3] in a paper which also contains an intereating example of the effect
of discrete variables on a scheduling problem, Also Dreyfus [4] has
discussed the role played by the requirement of discreteness of vari-
ables in limiting the range of problems amenahle to linear program-

___ ming techaigues.

It is the purpose of this note to outline a finite algorithm for ob-
taining integer solutions to linear programs. The algorithm has been
psogrammed. successfully on an E101 computer and used to run off
the integer solution to small (seven or less variables) linear programe
completely automatically.

Ailsa Land Alison Doig

ECONOMETRICA

VoLume 28 July, 1960 NUMBER 3

AN AUTOMATIC METHOD OF SOLVING DISCRETE
PROGEAMMING PROBLEMS

Br A. H. Lanp avn A, G, Doic

If the clasmsal lHnear progromming problem the hebavionr of continuons,
nonnegative variables subject to a system of inear inegoalitiens @n nvestigated.
Ouoe possble genernlization of this problem is o relax the enntinueity comnd:-
tion on the variables. This paper presents ¢ simple numerical algorithm for
the solution of programming problems in which soms or all of the variables
can take oaly discrate values. The algorithm requires 0o specinl fechniqes
beyend thosa used in ordinary linenr programming, and fends iisell to
automatic computing. Its pae fa Hustrated on fwo oumerical examples,

[Py |
Lyt

~11
ﬂ.
im

George Nemhauser Laurence Wolsey

s i AT BTEYEYR M thematice and Optimization

INTEGER

PROGRAMMING

LAURENCE A. WOLSEY

Zonghau Gu

CPLEX — IP Solver

GuRoBi — IP Solver

Natashia Boland

Will answer all questions
about my presentation

Outline

e Some integer Programs
e Solving integer programs
— Branch-and-bound
— Preprocessing
— Primal heuristics
— Valid inequalities
e Reformulation
— Extended formulations
— Column generation formulations

Some Integer Programs

Knapsack Problem

Parameters

c; : value of item j |
_ _ . Formulation

a; : weight of item

b : capacity Hax Z Cjl;

J
Z&jl‘j S b
J

Variables

x; : whether or not to take item j

Node/Vertex Packing

Parameters

G = (V,E): graph with vertex set V' and edge set F
w, : weight of vertex v

Formulation

max E WLy

veV
T, + 1, <1fore={u,v} € E

Variables

x, . whether or not vertex v is in the packing

Economic Lotsizing

Parameters

¢; - unit production cost in period ¢
: . Formulation
fi : set up cost in period t

T T
d; - demand in period ¢ min Z cy + Z frys
t=1 t=1

¢
sz >dyfort=1,...,T
s=1

vy < dypy fort=1,...,T
Variables
x; . production in period ¢

y; - whether or not a set up occurs in period ¢

Generalized Assignment Problem

Parameters
pi; - profit when assigning task 7 to machine s

w;; - capaclty consumption of task 7 on machine ¢
d; : capacity of machine 2 Formulation

m n
max ; y ; injil,‘ij

i=1 j=1

Y myy=1lforj=1,..n
=1

n

E Wi L4 < dz for 1 = 1, ceny TN
Variables 71=1
z;; - whether or not task 7 1s assigned to machine ¢

Solving Integer Programs

 Three basic concepts
— Divide and conquer

e Solve a problem by solving two smaller problems
— Relax
e Remove a constraint to make the problem easier
e Optimal value may improve
— Restrict

e Add a constraint to make the problem smaller
e Optimal value may worsen

Solving Integer Programs

Integer Program

AP — mincx

Ax < b
v, €{0,1} for j=1,...,n

P = min{cx | v € Sip}

SIPZ{JIERR |Ax§bjx€{0,1}n}

Solving Integer Programs

Linear Programming Relaxation

ZLP — Mmin cx

Ar <b
0<z;<lforyg=1,...,n

P = min{cx | z € Srp}

SLPZ{$€RR|A3}§6,0§$§1}

Solving Integer Programs

Restricted Integer Program

P
(1) = MINCT

Azr <b

L =1
;€ {0,1} for j=1,....,n
zéfl) = min{cz | x € S}}};I)}

S}‘f;;l) ={r e R"| Az <b,x, =1,2 € {0,1}"}

Solving Integer Programs

e Divide and conquer

AP = min{cx | T € S[p}

z&fo) = min{cz | x € S}?D’O)} zéfl) = min{cz | x € S}?’;l)}
2" = min{z), 21)}

Divide and conquer: Solve original IP by solving two smaller restricted IPs

Solving Integer Programs

e Relaxation

Stp 2 Stp AP < AP

e Restriction

(k1) P P
Sip € Sip Z(k1) = 2

Solving Integer Programs

e Recall: Solving linear programs is easy

 What can happen if we solve the LP relaxation
of our integer program?
— Infeasible

e |Pis infeasible - stop

— Feasible & integer

e Optimal IP solution — record & stop

— Feasible & fractional

e Divide & conquer

Solving Integer Programs

P solution
4 = mlﬂ{Cill' | X € SLP } feasible & fractional

(x, fractional)

Solve LP relaxation
xp = 0 rr =1

Solve restricted IP Solve restricted IP

2i0) = min{cz | x € P}iﬁ:o)} z{il) = min{cx | x € P}?’;I)}

IP

Branching

Solving Integer Programs

e Observation: When we solve the LP, we relax the
problem. Therefore, the IP solution value will
never be better

e Observation: When we branch, we restrict the
problem. Therefore, the solution value will never
iImprove

 Observation: If the value of the LP relaxation is
worse than the value of the best known IP
solution, then the restricted IP cannot provide a
better solution

Solving Integer Programs

LP

2" =min{cx | x € Spp} |

IP
> Zhest

Solve LP relaxation ‘

Bounding

Branch-and-Bound Tree/Search Tree

root node

leaf node

evaluated

node
— g _ _ s level / depth

Branch-and-Bound Tree/Search Tree

parent
node

siblings

® o

(right)
child child
node node

How Can We Improve
Basic Branch-and-Bound?

Solve smaller linear programs
Improve linear programming bounds
Find feasible solutions quickly
Branch intelligently

Branch Intelligently

Branch Intelligently

e Key questions
— Which variable to branch on?
— What node to evaluate next?

Variable Selection

* Focus: improving global bound

e Algorithm
— For all candidate variables calculate a score

— Select the candidate with the highest score

e Score function

score(q,q") = (1 — p)min{g~,¢"} + pmax{q ,q"}

/N

left child right child

Most Infeasible Branching

fi = [t -t

[=ai— "]

si = score(q; ,q;) = L-min{f;", f;i"} + 0-max{f;, f;"}

If the goal is to improve the global bound, then
guality of a branching has to be measured by
the change in objective function value at the

child nodes

Pseudocost Branching

+ A4+ observed per unit change in objective function
0" =AT/fT Ltright child

sum of observed per unit change in objective

ZJF function at right child over all branchings on the
variable
+ . :
1 number of branchings on the variable

R average observed per unit change at right child
o7 = /77 for the variable

si = score(fi ¥, [;)

Pseudocost Branching

e |nitialization?
— Average over all known pseudocosts

Strong Branching

e Calculate change in objective function value at

children of all candidate variables (i.e., solve two
LPs)

s; = score(A7, A7)

e Efficiency
— Restrict number of pivots

— Restrict candidate set
* Dynamic
— order by pseudocost
— no improved candidate for k iterations

Hybrid Pseudocost/Strong Branching

e Strong branching up to level d in the tree and
pseudocost branching for levels larger than d

e Pseudocost branching with strong branching
initialization

Reliability Branching

* Generalizes pseudocost branching with strong
branching initialization

e Use strong branching when pseudocosts are
unreliable

min{n;", 7, } < Nres

hybrid strong/pseudocost
branching performs poorly
on neos3, we can see why...

strong
branching

g vpm2

Recent Ideas

Perform one or more partial tree searches to
determine “key” variables to branch on

e Information-based branching
 Backdoor branching

Restarts and backdoor are concept “borrowed” from constraint programming

Node selection

Focus: finding (good) feasible solutions

Static
Estimate-based
Backtracking

Static

e Best-bound

— Guarantees that only nodes that have to be evaluated
are evaluated

— May not be efficient since consecutive LPs differ
substantially

 Depth-first
— Requires very little memory

— Extremely efficient because consecutive LPs differ very
little

— May evaluate many superfluous nodes

Estimate-based
* Best projection

s = Z min{f;ra fj_} per unit
J

infeasibility cost

ZLP . ZIP
E = ZLP . (root best)

S
Sroot

e Best estimate

E =2 = min{f ol f; ®;}

Backtrack

e Goal: exploit advantage of depth-first search

 Implementation: depth-first until the objective
value reaches a threshold, then jump (e.g,
best-estimate)
T = min E;

t € open nodes

Preprocessing

Preprocessing

nfeasibility detection
Redundancy detection
mproving bounds

~ixing variables

mproving coefficients

Preprocessing

min cx
integer program Aa: S b
r e {0,1}"
T (S oo :
solve Z = min E ajgjj E ajx] row i
JeEBT jeEB~ _
_ , constraints
Az < b without
" constraint |
r e {0,1}

analysis z > b; = infeasible

Detecting redundancy

Improving bounds

Improving bounds

_ b ey
z—maxg ;T E a;x;

jeBT jEB~

z < b, = redundant

— . z’ f — ?:' .
Z = min E ;T E a;x;

jeEBT jeB~
Fixing variables xp =1 (k‘ S~ B+)

z>b, = . =0

— . z’ f — ?:' .
Z = min E ;T E a;x;

jeEBT JEB™

Fixing variables r =0 (k S B_)

z2>b = x =1

_ i i
z—maxg a;; E a;;

jEBT JEB~

Improving coefficient L — 0 (k ~ B+)

z < b, = reduce coeflicients ai and b; by b; — 2

_ i i
z—maxg ;T E a;T,

jeBt jeB-

Improving coefficient L = 1 (k’ - B_)

z < b; = reduce coefficients a’, and b; by b; — 2

Preprocessing

 Implementation

min cx
Ax <b
req{0,1}"

—] ?: * — ?: .

JjeBT jeB~

Ar<b € __ ignore completely or
z e {0,1}" ignore most

Probing

Tentatively fix a variable and explore the consequences

(] + 3x9 — 4y — 2204 < 1
—2331 + 7$2 —|—3IL‘3 + X4 § §)
fix consequences
r1=1= x3=x4=1 and xo = () (first constraint)

ro=1 = xy=1and 23 =0 (second constraint)

Probing

An edge represents
variables that cannot be
one at the same time

Conflict graph:
representation of

the implications
e.g., X;+x, <1

Probing

cligue inequality:
Conflict graph: g quality

representation of
the implications

X, +X,+1-x, <1

or

X, <0

implementation: requires solving a maximum clique problem

Reduced Cost Fixing

Integer program miH{CTIE|A$ S bj T integer}

Optimal solution Ip e
linear programming Z — IIllIl{C .’L’|A3§' S b, h Z O}

relaxation
v optimal dual variables
. ~ T
Reduced cost: c=c— A Y
. . LP — IP
What if? r;=0and 27 +¢; > z

Permanently set L = 0

Primal Heuristics

Primal Heuristics

e Relaxation Induced Neighborhood Search (RINS)
e Local branching
e Feasibility pump

Relaxation Induced
Neighborhood Search

e Suppose a known feasible solution x, exists

* Consider a linear programming solution x, at
a node of the search tree

e Attempt to find a better feasible solution by
solving a restricted IP in which the variables
where x,, and x,, agree are fixed

Relaxation Induced
Neighborhood Search

 Implementation question
— When to apply?

e Variation

— Rather than using a known IP solution and an LP
solution, use two known IP solutions to determine
restricted IP (path relinking)

Local Branching

e Search in the neighborhood of a known
feasible solution X by limiting the possible
changes

Known feasible solution

Alx,x):= E (1 —=;) + r; < k
jeS jeB\S
/ \
Set of variables at 1 in Set of variables at 0 in

known feasible solution known feasible solution

Local Branching (Cont.)

i1/ initial solution T
ey
VAN
// \\
& ,
Az, ") <k / N\CA(z,E) 2 k41
// \\
/ \
..r"2\-|
I'\.__." \ /'
/ A ‘)
,f\ Az, 72) <k/ N\ Az, %) > k+1
T .l'\.__) / \\
! N // \\
,-"/ \\
improved solution T2 / N
/ N\
(Ty
g\/l I“'x'/‘
"\ A(:Ir:f‘?’) <k/ N Az, 7)) > k+1
T x // \-.\
—. i A
. . _3 s ™
improved solution & /
/ Y
P4 N
i R
4) (5
J_,’?Rx I;}r\

/ T\ /T
i N, H’x

no improved solution

xeR"andJc {1,...,n}

min cX
st. Ax<D
X;Isinteger VjeJ

rounding x, i.e. [x]

projecting z onto
LP feasible region

® X, ® z

® X, ® z

® X, ® z
Two scenarios:

1. Feasible z
2. Cycling (i.e., [x] =z and
projsz) =x)

dixy,z;) < d(zy,x,) < d(x,,2,) < d(z,,x5) < d(x3,25)

x [_Jinteger z []feasible

Spends most time in projection

procedure:

* May overlook good integer
solutions close to x

Fix:

e Spend more time around FP
iterates x to find feasible integer
solutions rather than relying on
naive rounding

e Make search more balanced

Q. How to find suitable xt?

Q. How to find all rounded solutions
along the shooting line
efficiently?

The chosen line segment is called the shooting line with
starting point x* and end point xt.

Valid Inequalities

Valid Inequalities

— \, —

/Y’ valid inequality
// \

feasible set

valid inequality: an inequality such that all feasible solutions satisfy the inequality

Valid Inequalities

Polyhedron P = {33 c RR|A$ < b}
Feasible set S=PN {0, l}n

Valid inequality Tr < Ty forallz € S

Valid Inequalities / Cuts

 Are some cuts better than others?
 Can we characterize the strongest cut?

Valid Inequalities

three valid inequalities

"/

feasible set

Valid Inequalities

convex hull

feasible set

a valid inequality that is necessary in the description of the convex hull of feasible
solutions is the strongest possible valid inequality and called a facet inducing inequality
(a facet)

Valid Inequalities

three valid inequalities

—~ \|—
// /Y
~ \\ /

_—~ \{/
/—4 one facet
//

\

\
\

feasible set

feasible set

Valid Inequalities / Cuts

* Problem specific cuts

— Node / vertex packing

— Economic lotsizing
e Substructure cuts

— Knapsack problem

e General cuts
— Gomory cuts

<€

Cuts for a relaxation of
the problem

Node/Vertex Packing

Parameters

G = (V,E): graph with vertex set V' and edge set F
w, : weight of vertex v

Formulation

max E WLy

veV
T, + 1, <1fore={u,v} € E

Variables

x, . whether or not vertex v is in the packing

Node / Vertex Packing

H
Odd hole inequality: Z Ty < |_|2—|J O C V; O odd
veO

Economic Lotsizing

Parameters

¢; - unit production cost in period ¢
: . Formulation
fi : set up cost in period t

T T
d; - demand in period ¢ min Z cy + Z frys
t=1 t=1

¢
sz >dyfort=1,...,T
s=1

vy < dypy fort=1,...,T
Variables
x; . production in period ¢

y; - whether or not a set up occurs in period ¢

Economic Lotsizing

Valid inequality

SCL:={l,. [} orl=1,.,T

>+ Y duy > duy

teL\S tes

Knapsack Problem

Parameters

c; : value of item j |
_ _ . Formulation

a; : weight of item

b : capacity Hax Z Cjl;

J
Z&jl‘j S b
J

Variables

x; : whether or not to take item j

Cover Cuts

Cover: () C {1, e ’n,} : Zaj > b

jel

Cover inequality: E T < |C| — 1

JjeC

General Cuts

e Gomory cut > luajlz; < [ub] (u>0,Az <b)

J

* Proof of validity

x feasible = Ax <b
= uAx < ub
(u=0)
= Z(uaj)xj < ub
J

s < ub
(;}o) ;Luajj r; < u
= ZLuajJ r; < |ub]

(« feasible, |ua;| Integer) -

How to determine valid inequalities?

e Exploit problem knowledge
e Study LP solutions
 Use PORTA

How to use valid inequalities?

* How to handle an exponential number of valid
inequalities?

* Are valid inequalities useful if there not
facets?

e How to determine whether a valid inequality
is a facet?

Cut Generation

I I
I I
I I
I I
: > Solve LP :
I I
I I
I I
: \ !
I I
I I
: Find violated cut SEPARATION :
I I
I I
I I
| " |
I I
I I
: - Add violated cut :
I I
I I
I I
I I
I

Separation

e Odd-hole inequalities
e (1,S) inequalities
e Cover inequalities

Odd-hole inequalities

(/,S)-Inequalities

Separation

[
Z min{z;, dyy; } < dy

=1

Cover Inequalities

Separation
. *
min E (I —x5)z;
J
E a;z; > b
J

zj € {O, 1}

Up Lifting (Cover Inequality)

valid inequality
(when x, =0)

consider

valid when

where

ToXo + ...+ Thx, < T

ar] + mory + ... + T, < Mg

a < my—C

(= max moTy + ... + T2,
ATy + ... +a,xr, < b—a

Down Lifting (Cover Inequality)

valid inequality Tody + + X < o

(when x;=1)
consider YT + T2 + ...+ TpTy < mo + Y
valid when v < C — 7o

where (=max moxs + ...+ T,T,

asTo + ...+ a,r, <0b

Cover Inequalities

e Should the separation problem be solved
using an exact method?

e Should the lifting problem be solved using an
exact method?

 |In what order should variables be lifted?

Up Lifting

Theorem. Suppose S B", S°=S N {x € B": x,=8}for d €
{0,1}, and

T, X+ T3 X3+ oo T X < T, (*)
is valid for S°.
If St = J then x, < 0 is valid for S.
If S # J then

QX + T, X+ X+ ... T X, S T, (**)

is valid for S for any a < &, - C where

€ = max{m,x,+ mX;+ ... T X : X € St}.
Moreover, if (*) defines a facet of conv(S®°) and a. =1, - C
then (**) gives a facet of conv(S).

Down Lifting

Theorem. Suppose S B", S°=S N {x € B": x,=8}for d €
{0,1}, and

T, X+ T3 X3+ oo T X < T, (*)
is valid for S*.
If S° = J then x, 2 1 is valid for S.
If SO = J then
TXq + TXo+ TaXg+ oo T X, S Ty + Y (***)

is valid for S for any y 2 C - &, where

€ = max{m,x,+ T X+ ... T X : x € S°}.
Moreover, if (*) defines a facet of conv(S!) and y =€ - 7,
then (***) gives a facet of conv(S).

Reformulation

Reformulation

* Disaggregation
 Extended formulations
 Column generation formulations

Disaggregation
Z zij <my (P
j=1
ALTERNATIVELYY ;i <y J=1,...m (P»)

Is one formulation better than the other?
Better in what sense?

Consider Y =

1

I\
DN | —

Disaggregation

r1+ 19 <1

VA
DO |

Economic Lotsizing

Parameters

¢; - unit production cost in period ¢
: : Formulation
fi : set up cost in period t

T T
d; - demand in period ¢ min Z cy + Z frys
t=1 t=1

¢
sz >dyfort=1,...,T
s=1

vy < dypy fort=1,...,T
Variables
x; . production in period ¢

y; - whether or not a set up occurs in period ¢

Economic Lotsizing

¢; - unit production cost in period ¢
fi : set up cost in period t e uation
d; - demand in period ¢ T T

min ?j Sj CtWis + Z Sty

t=1 s=t

ZwSt >dytort=1,...T
s=1
wy < diys fort=1,...,7,s =1, ...t

Variables

wy : production in period s for period ¢

y; - set up in period ¢ Note s = Z Wy

Extended formulations

Q ={(x,w): (x,w)eR" x RP} is an extended formulation for
a pure integer program with formulation PcR" if

ProjQNZ"=PnNZ"
where the projection of Q onto x is defined to be
Proj,Q = {x: (x,w)eQ, dw €RP}

How can we compare the formulations in this case?
A: if Proj, QcP, we say Q is a better formulation than P

Generalized Assignment Problem

Parameters
pi; - profit when assigning task 7 to machine s

w;; - capaclty consumption of task 7 on machine ¢
d; : capacity of machine 2 Formulation

m n
max ; y ; injil,‘ij

i=1 j=1

Y myy=1lforj=1,..n
=1

n

E Wi L4 < dz for 1 = 1, ceny TN
Variables 71=1
z;; - whether or not task 7 1s assigned to machine ¢

Generalized Assignment Problem

Parameters

T) 7) '
Y = (ylka Yoles -+ ynk) Formulation

m K; n
max» > (Y piyi) A

i=1 k=1 j=1

k=1
Variables /\§C c {0, 1} v=1,...m, k=1,..., K,

Generalized Assignment Problem

Parameters

Ui = (Yig Yors o Uose)

Satisfy

n
E wijr; < d;
J=1

T; € {0,1} 17=1,...,n

Generalized Assignment Problem

. . Variables
Coefficient matrix
(A0
pr Py P, PLOPs e Pk, vt PROPy e PR Ay RHS

1 (yil y% ‘e yif\’l yzl yzg ‘e yin e e yﬂ y{g ‘e y:{r;{m 1 /J.\
2 | y1 Y ¢ Yor, Y Y 0 Yor, 7 Ysi Ypg yg}fm_)‘Jg 1 1

.)\

o A 1 L | \2
n Yn1 Yn2 Ynk, Yn1 Yn2 Ynk, y::r J1 y:ﬁz e y-::;ﬁ’,,,_ . 1
1|1 1 1 0 0 0 0 0 0 =11
: 1 A2, 1
2 0 0 0 1 1 1 0 0 coe 0 Ky
31 0 o0 0 0 0 0 0 0 0 : 1
: : : . : : : . : : : : . : AT :
m\0 0 -+ 0 0 0 - 0 - 1 1 - 1)] \1/

\\E,./

How to use
column generation formulations

e How to handle exponential number of
columns?

* How to find “missing” columns?

Branch-and-Price

> Solve LP

v

l I
| |
l I
| |
| |
| |
l I
l I
l I
| |
| |
| |
I Find column with

: . PRICING :
: negative reduced cost :
l I
| |
l I
| |
| |
l I
| |
l I
| |
l I
| |
l I

v

Add negative reduced
cost column

Pricing Problem

V; dual associated with machine i

Uy dual associated with task j

max {z(KP;) — v;}

1<i<m
where
z(KP;) = max E (pij — uj)x;
1<j<n
>~ wz; < d;
1<i<n

z; €{0,1} 1€ {l,..,n}

Branching

* Branching on selection variables

— Fixing to 1, i.e., selecting a particular schedule for
a machine

— Fixing to O, i.e., forbidding a particular schedule
for a machine

* How to prevent the forbidden schedule to be
generated again?

Branching

K;
» Branching on original variables =i; = > yi\;
k=1

e Fixingto1

— Force task j in schedule for machine i

— Forbid task j in schedule for other machines
* Fixingto O

— Forbid task j in schedule for machine i

What Next?

e Parallel Integer Programming

— Topics in Parallel Integer Optimization (Jeff
Linderoth, 1998)

— PARINO: PARallel INteger Optimizer (Kalyan
Permulla, 1997)

 Multi-objective Integer Programming
— MINTO: Multi-objective INTeger Optimizer

Restrict and Relax Search

min xg=),) vilp)
i=0 p=1
Ibject to

10 =
p)zc’ —d + “kz_:opm w(p—
ri=0,....N=Lp=1,....pnm

@ = e
vilp)ze” —dr + “Eopik vi(p)

1

Outline

e Motivation
e Restrict-and-Relax Search

— Initial restriction
— Fixing and unfixing
e Computational experiments
— 0-1 integer programs
— Multi-commodity fixed charge network flow

Motivation

e Why use restricted integer programs?

— Desire to find good feasible solutions quickly
e Crucial for real-life applications

e Beneficial for many integer programming techniques
(e.g., reduced cost fixing)

e Why use restricted integer programs?

— Integer program of interest very large (e.g., too
large to fit in memory)

Motivation

e Success stories
— Relaxation induced neighborhood search (general)
— Local branching (general)
— |P-based neighborhood search (problem-specific)

IP-based Neighborhood Search

Algorithm = Neighborhood Search
Require: Integer program PP
while continue search do
Choose a subset of variables V
Fix value of variables in V
Solve an IP to assign the remaining variables
if an improved solution is found then
Update global solution
end if
end while

|P-based search heuristic

e Key decisions:
— What variables to fix?

— What values to fix them to?

|IP-based search heuristic

If we solve a number of related restricted integer
programs, can we re-use the search tree?

-

Restrict-and-Relax Search

e Main ideas:

— Branch-and-bound algorithm restrict

that always works on a
restricted integer program

— Branch-and-bound algorithm
that uses local information
to decide whether to relax
(unfix variables) or restrict
(fix variables)

restrict or relax

Restrict-and-Relax Search

e Main ideas:
— Restrict: Efficiency
— Relax: Quality

Restrict-and-Relax Search

Z = mincax

Ar =0

Original IP reB xR

Zp = mince

Ar=0>
Restricted IP v = T ic F
reB x R*"

: vy = mince
Restricted IP

at node of the Az =b
search tree T =1;, 1€ FUDB,;

reB" xR

Restrict-and-Relax Search

vy = MmN CcT

Restricted IP

at node of the Az =0

search tree T, =x;, 1€ FUDB,;
reB x R*"

— Uy = mincer
Modified

restricted IP at Ar=1>
node of the v, =%, 1 € FUB,

search tree
reRB x R

Goal: Choose F in such a way that v, < v,

Restrict-and-Relax Search

e Key decisions

— How to define the initial restricted integer
program?

— How to determine the variables to fix or unfix?

— At which nodes in the search tree to relax or
restrict?

How to define the
initial restricted integer program?

Based on a known feasible solution
Based on the solution to the LP relaxation

Based on the Phase | solution to the LP
relaxation

How to define the
initial restricted integer program?

Scheme:
— X.p = 0 for variable: Score: c
— X,p = 1 for variable: Score: -c
— Fix variables from large to small
— Fix at most 90% of variables

How to determine the variables
to fix and unfix?

e Fixing variables (LP feasible node):

if 7 =0, then r; > 0andif ;7 =1, then r; <0

Choose variables to fix in nondecreasing order of absolute value of
reduced costs

Fix variables in the current primal solution that are not
likely to be part of an optimal solution in the future

e Unfixing variables (LP feasible node):

ifz; =0andr; <0Oorifz; =1and r; >0

Choose variables to unfix in nondecreasing order of absolute value of reduced
costs

Unfixing variables in the current primal solution that are
likely to result in an optimal solution with lower value in
the future

How to determine the variables
to fix and unfix?

* Implementation - Gradual transition:

min ca

Az =0
reB" xR

F'= F and |F/ \ F/™'| small

— Fast linear programming solves
— Up to date dual information

Unfixing variables

Infeasible

Active Fathomed by bound

LP feasible

Unfixing variables

Opportunistic relaxing:
Unfix previously fixed variables

Unfixing variables

Infeasible:
(1) Resolve LP with all variables unfixed
(2) Unfix variables that change values

Fathomed by bound:

(1) Remove cut-off

(2) Resolve LP with all variables unfixed

(3) If value < best known, unfix based on reduced costs

Resolve LP with all variables unfixed guarantees that no nodes are discarded that
shouldn’t

At which nodes in the search tree
to relax or restrict?

e Parameters:

level-frequency (I-f) : Relax/restrict at node t if node level is a multiple of |-f
unfix-ratio (u-r) : At each trial, unfix at most u-r % of the fixed variables
fix-ratio (f-r) : At each trial, fix at most f-r % of the free variables
node-trial-limit (t-1) : At each node, fix/relax at most t-1 times

max-depth (max-d) : Fix/unfix only at nodes below tree level max-d
min-depth (min-d) : Fix/unfix only at nodes above tree level min-d

Pruned-by-bound (p-b) : If enabled, fix/unfix at nodes pruned by bound
regardless of node level

Pruned-by-infeasibility (p-i) : If enabled, fix/unfix at nodes pruned by
infeasibility regardless of node level

At which nodes in the search tree
to relax or restrict?

e Default values:

— level-frequency (I-f) : 4

— unfix-ratio (u-r) : 5%

— fix-ratio (f-r) : 2.5%

— node-trial-limit (t-I) : 5

— max-depth (max-d) : 00

— min-depth (min-d) : 0

— Pruned-by-bound (p-b) : enabled

— Pruned-by-infeasibility (p-i) : enabled

Computational Study

e |nstances:
— COR@L
— MIPLIB

e Restrict-and-Relax
— Initial restricted IP: based on LP relaxation
— Default settings for parameters
— Time limit: 500 seconds

 Implementation: SYMPHONY + CLP

Computational Study

Default solver: Original IP
Default solver: Restricted IP

Restrict-and-relax Search

Results

Original IP | Restricted IP
RR < H1 19
RR = 13 H
RR > 20 15
RR feas 13 28
RR no feas || 1 2

By varying control parameters we can obtained improved solutions for
all instances!

Results (sample)

Original IP Restricted IP | Restrict-and-
Relax Search

neos-693347
neos808444 - - 0 0
m100n500k4rl -22 -22 -24 -25

Results (sample)

I T 7 R T T P L

neos-693347 0.74
neos808444 0.9 633 129 24 1 1 1
m100n500k4rl 0.7 38075 11095 6 1620 12 4

Multi-commodity
Fixed Charge Network Flow

min » Y, ci(diz) + Y, fivis

keK (i,7) EA (i,j)EA ",
Variable flow cost (>= 0) Fixed cost of installing arc (>=0)
Commodity flow k _ sk -
balance Z m’i@j Z :Ej,z 61; Vi = N! vk S K:
Ji(i,5)eA j:(5,1)€A
Arc capacity and k
coupling Z d ”T i: ui.?yﬁ.? ~1~;'H(E j) S A
keK
Yij - {U 1} (g j) = y: PO Do we install arc (i,j)?
.’Rﬁj S {D, 1} Vk € K, H?((ij) € A. < Does commodity k

flow on arc (i,j)?

Computational Study

* |nstances
— Notation: T - #nodes(100x) - #arcs(1000x) - Hcommodities
— Smallest (T-5-3-50)
e 150,000 variables, 180,000 constraints, 750,000 nonzeroes
— Largest (T-5-3-200)
e 600,000 variables, 700,000 constraints, 3,000,000 nonzeroes
e Restrict-and-relax settings
— Initial restriction:
* Phase | of simplex algorithm, fix up to 90% of variables
— Parameters:
e unfix ratio: 6%, fix ratio: 5%

— Time limit: 2 hours

Results

CPLEX RR

z | LP solved? z | # Sols | % Gap
T-5-2- 00 no | 9,660,795 15 -
T-5-2- o' no | 8,452,576 17
T-5-2. 6,238,900 yes | 3,963,321 24
T-5-2.5 o'e no | 8,921,333 11
T-5-2.5 o'e no | 15,439,381 11
T-5-3-50 AH5 ves | 2.448.,390 35
T-5-3-75 00 ves | 4,698,771 17
T-5-3-100 o' no | 7,777,745 14
T-5-3-125 00 no | 6,169.464 17
T-5-3-150 o'e no | 8,081,616 16
T-5-3-200 00 no | 14,691,367 9

