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Will answer all questions 
about my presentation 



Outline 

• Some integer programs 
• Solving integer programs 

– Branch-and-bound 
– Preprocessing 
– Primal heuristics 
– Valid inequalities 

• Reformulation 
– Extended formulations 
– Column generation formulations 



Some Integer Programs 



Knapsack Problem 

Variables 

Parameters 

Formulation 



Node/Vertex Packing 
Parameters 

Formulation 

Variables 



Economic Lotsizing 

Variables 

Parameters 

Formulation 



Generalized Assignment Problem 
Parameters 

Variables 

Formulation 



Solving Integer Programs 

• Three basic concepts 
– Divide and conquer 

• Solve a problem by solving two smaller problems 

– Relax 
• Remove a constraint to make the problem easier 
• Optimal value may improve 

– Restrict 
• Add a constraint to make the problem smaller 
• Optimal value may worsen 



Solving Integer Programs 

Integer Program 
 
 

 



Solving Integer Programs 

Linear Programming Relaxation 
 



Solving Integer Programs 

Restricted Integer Program 
 
 

 



Solving Integer Programs 

• Divide and conquer 

Divide and conquer: Solve original IP by solving two smaller restricted IPs 



Solving Integer Programs 

 

• Relaxation 
 
 

• Restriction 



Solving Integer Programs 

• Recall: Solving linear programs is easy 
• What can happen if we solve the LP relaxation 

of our integer program? 
– Infeasible 

• IP is infeasible - stop 

– Feasible & integer 
• Optimal IP solution – record & stop 

– Feasible & fractional 
• Divide & conquer 



Solving Integer Programs 

Solve LP relaxation 

Solve restricted IP Solve restricted IP 

Branching 

solution 
feasible & fractional 

(xk fractional) 



Solving Integer Programs 

• Observation: When we solve the LP, we relax the 
problem. Therefore, the IP solution value will 
never be better 

• Observation: When we branch, we restrict the 
problem. Therefore, the solution value will never 
improve  

• Observation: If the value of the LP relaxation is 
worse than the value of the best known IP 
solution, then the restricted IP cannot provide a 
better solution 



Solving Integer Programs 

Solve LP relaxation 

Bounding 



Branch-and-Bound Tree/Search Tree 
root node 

leaf node 

open  
node 

evaluated 
node 

level / depth 



Branch-and-Bound Tree/Search Tree 

parent  
node 

(right) 
child 
node 

(left) 
child 
node 

siblings 



How Can We Improve  
Basic Branch-and-Bound? 

• Solve smaller linear programs 
• Improve linear programming bounds 
• Find feasible solutions quickly 
• Branch intelligently 



Branch Intelligently 



Branch Intelligently 

• Key questions 
– Which variable to branch on? 
– What node to evaluate next? 



Variable Selection 

• Focus: improving global bound 
 

• Algorithm 
– For all candidate variables calculate a score 
– Select the candidate with the highest score 

• Score function 

left child right child 



Most Infeasible Branching 



If the goal is to improve the global bound, then 
quality of a branching has to be measured by 
the change in objective function value at the 
child nodes 

 



Pseudocost Branching 

observed per unit change in objective function  
at right child 

sum of observed per unit change in objective  
function at right child over all branchings on the 
variable 

number of branchings on the variable 

average observed per unit change at right child 
for the variable 



Pseudocost Branching 

• Initialization? 
– Average over all known pseudocosts 



Strong Branching 

• Calculate change in objective function value at 
children of all candidate variables (i.e., solve two 
LPs) 
 
 

• Efficiency 
– Restrict number of pivots 
– Restrict candidate set 

• Dynamic  
– order by pseudocost 
– no improved candidate for k iterations 



Hybrid Pseudocost/Strong Branching 

• Strong branching up to level d in the tree and 
pseudocost branching for levels larger than d 
 

• Pseudocost branching with strong branching 
initialization 



Reliability Branching 

• Generalizes pseudocost branching with strong 
branching initialization 

• Use strong branching when pseudocosts are 
unreliable 



vpm2 neos3 

strong 
branching 

hybrid strong/pseudocost 
branching performs poorly 
on neos3, we can see why… 



Recent Ideas 

Perform one or more partial tree searches to 
determine “key” variables to branch on 
• Information-based branching 
• Backdoor branching 

Restarts and backdoor are concept “borrowed” from constraint programming 



Node selection 

• Focus: finding (good) feasible solutions  
 

• Static 
• Estimate-based 
• Backtracking 



Static 

• Best-bound 
– Guarantees that only nodes that have to be evaluated 

are evaluated 
– May not be efficient since consecutive LPs differ 

substantially 
• Depth-first 

– Requires very little memory 
– Extremely efficient because consecutive LPs differ very 

little 
– May evaluate many superfluous nodes 



Estimate-based 

• Best projection 

per unit 
infeasibility cost 

• Best estimate 



Backtrack 

• Goal: exploit advantage of depth-first search 
• Implementation: depth-first until the objective 

value reaches a threshold, then jump (e.g, 
best-estimate) 



Preprocessing 



Preprocessing 

• Infeasibility detection 
• Redundancy detection 
• Improving bounds 
• Fixing variables 
• Improving coefficients 



Preprocessing 

integer program 

solve 

analysis 

row i 

constraints  
without 
constraint  i 



Detecting redundancy 

Improving bounds 

Improving bounds 



Fixing variables 

Fixing variables 



Improving coefficient 

Improving coefficient 



Preprocessing 

• Implementation 

ignore completely or  
ignore most 



Probing 

Tentatively fix a variable and explore the consequences 

fix consequences 
(first constraint) 

(second constraint) 



Probing 

x1 

x2 

x3 

x4 1-x4 

1-x3 

1-x2 

1-x1 

Conflict graph: 
representation of 
the implications 

An edge represents 
variables that cannot be 
one at the same time 

e.g.,  x1 + x2  ≤ 1 



Probing 

x1 

x2 

x3 

x4 1-x4 

1-x3 

1-x2 

1-x1 

Conflict graph: 
representation of 
the implications 

 x1 + x2 + 1-x1  ≤ 1 

 x2  ≤ 0 

or 

clique inequality: 

implementation: requires solving a maximum clique problem 



Reduced Cost Fixing 

Optimal  solution 
linear programming 

relaxation  

Reduced cost:  

What if?  

Integer program 

Permanently set 

optimal dual variables 



Primal Heuristics 



Primal Heuristics 

• Relaxation Induced Neighborhood Search (RINS) 
• Local branching 
• Feasibility pump 



Relaxation Induced  
Neighborhood Search 

• Suppose a known feasible solution xIP exists 
• Consider a linear programming solution xLP at 

a node of the search tree 
• Attempt to find a better feasible solution by 

solving a restricted IP in which the variables 
where xIP and xLP agree are fixed 



Relaxation Induced  
Neighborhood Search 

• Implementation question 
– When to apply? 

 

• Variation 
– Rather than using a known IP solution and an LP 

solution, use two known IP solutions to determine 
restricted IP (path relinking) 



Local Branching 

 
• Search in the neighborhood of a known 

feasible solution 𝑥̅ by limiting the possible 
changes 

Set of variables at 1 in 
known feasible solution 

Set of variables at 0 in 
known feasible solution 

Known feasible solution 



Local Branching (Cont.) 



The Feasibility Pump (FP) 

 Jj integer is x
bAx.t.s

cxmin

j ∈∀
≤

}n,...,1{J and Rx n ⊆∈

Start with LP feasible x 
z ← closest integer point to x 
x ← closest LP feasible point to z 
Repeat until z is feasible 

Feasibility Pump: The general idea 

rounding x, i.e. [x] 
projecting z onto 
LP feasible region 



The Feasibility Pump (FP) 

Start with LP feasible x 
z ← closest integer point to x 
x ← closest LP feasible point to z 
Repeat until z is feasible 

Feasibility Pump: The general idea 

x1 

x2 

x3 

z1 

z2 

z3 

  d(x1,z1) < d(z1,x2) < d(x2,z2) < d(z2,x3) < d(x3,z3) 

x  integer z  feasible 

Two scenarios: 
1. Feasible z 
2. Cycling (i.e., [x] = z and 

projLP(z) = x) 



The Feasibility Pump (FP) 

Spends most time in projection 
procedure: 
• May overlook good integer 

solutions close to x 
Fix: 
• Spend more time around FP 

iterates x to find feasible integer 
solutions rather than relying on 
naïve rounding 

• Make search more balanced 

Start with LP feasible x 
z ← closest integer point to x 
x ← closest LP feasible point to z 
Repeat until z is feasible 

Feasibility Pump: The general idea 



Line Search within FP 

The chosen line segment is called the shooting line with 
starting point xs and end point xt. 

Q. How to find suitable xt? 

Q. How to find all rounded solutions 
along the shooting line 
efficiently? 

xs 

xt 

A substitute for rounding 

For each FP iterate x, round all 
points along a line segment passing 
through x and a point deep within 
the feasible region. 



Valid Inequalities 



Valid Inequalities 

valid inequality 
feasible set 

valid inequality: an inequality such that all feasible solutions satisfy the inequality 



Valid Inequalities 

Polyhedron 

Feasible set 

Valid inequality 



Valid Inequalities / Cuts 

• Are some cuts better than others? 
• Can we characterize the strongest cut? 



Valid Inequalities 

feasible set 

three valid inequalities 



Valid Inequalities 
convex hull 

feasible set 

a valid inequality that is necessary in the description of the convex hull of feasible 
solutions is the strongest possible valid inequality and called a facet inducing inequality 

(a facet) 



Valid Inequalities 

feasible set 

three valid inequalities 

feasible set one facet 



Valid Inequalities / Cuts 

• Problem specific cuts 
– Node / vertex packing 
– Economic lotsizing 

• Substructure cuts 
– Knapsack problem 

• General cuts 
– Gomory cuts 

 

Cuts for a relaxation of 
the problem 



Node/Vertex Packing 
Parameters 

Formulation 

Variables 



Node / Vertex Packing 

Odd hole inequality: 



Economic Lotsizing 

Variables 

Parameters 

Formulation 



Economic Lotsizing 

Valid inequality 



Knapsack Problem 

Variables 

Parameters 

Formulation 



Cover Cuts 

Cover: 

Cover inequality: 



General Cuts 

• Gomory cut 
• Proof of validity 



How to determine valid inequalities? 

• Exploit problem knowledge 
• Study LP solutions 
• Use PORTA 



How to use valid inequalities? 

• How to handle an exponential number of valid 
inequalities? 
 

• Are valid inequalities useful if there not 
facets? 

• How to determine whether a valid inequality 
is a facet? 



Cut Generation 

Solve LP 

Find violated cut 

Add violated cut 

Solve LP 

SEPARATION 



Separation 

• Odd-hole inequalities 
• (l,S) inequalities 
• Cover inequalities 



Odd-hole inequalities 



(l,S)-Inequalities 

Separation 



Cover Inequalities 

Separation 



Up Lifting (Cover Inequality) 

valid inequality 
(when x1 = 0) 

consider 

valid when 

where 



Down Lifting (Cover Inequality) 

valid inequality 
(when x1 = 1) 

consider 

valid when 

where 



Cover Inequalities 

• Should the separation problem be solved 
using an exact method? 

• Should the lifting problem be solved using an 
exact method? 

• In what order should variables be lifted? 
 



Up Lifting 
Theorem. Suppose S ⊆ Bn, Sδ = S ∩ {x ∈ Bn : x1=δ} for δ ∈ 
{0,1}, and 

π2x2+ π3x3+ … πnxn≤ π0   (*) 
is valid for S0.  
If S1 = ∅ then x1 ≤ 0 is valid for S.  
If S1 ≠ ∅ then  

αx1 + π2x2+ π3x3+ … πnxn≤ π0  (**) 
is valid for S for any α ≤ π0 - ζ where 
 ζ = max{π2x2+ π3x3+ … πnxn : x ∈ S1}.  
Moreover, if (*) defines a facet of conv(S0) and α = π0 - ζ 
then (**) gives a facet of conv(S). 

 



Down Lifting 
Theorem. Suppose S ⊆ Bn, Sδ = S ∩ {x ∈ Bn : x1=δ} for δ ∈ 
{0,1}, and 

π2x2+ π3x3+ … πnxn≤ π0   (*) 
is valid for S1.  
If S0 = ∅ then x1 ≥ 1 is valid for S.  
If S0 ≠ ∅ then  

γx1 + π2x2+ π3x3+ … πnxn≤ π0 + γ   (***) 
is valid for S for any γ ≥ ζ - π0 where 
 ζ = max{π2x2+ π3x3+ … πnxn : x ∈ S0}.  
Moreover, if (*) defines a facet of conv(S1) and γ = ζ - π0 
then (***) gives a facet of conv(S). 

 



Reformulation 



Reformulation 

• Disaggregation 
• Extended formulations 
• Column generation formulations 



Disaggregation 

ALTERNATIVELY 

Is one formulation better than the other? 
Better in what sense? 



Disaggregation 

Consider 



Economic Lotsizing 

Variables 

Parameters 

Formulation 



Economic Lotsizing 
Parameters 

Variables 

Formulation 

Note 



Extended formulations 

Q ={(x,w): (x,w)∈Rn x Rp} is an extended formulation for 
a pure integer program with formulation P⊆Rn if 
 ProjxQ ∩ Zn = P ∩ Zn  
where the projection of Q onto x is defined to be 
 ProjxQ = {x : (x,w)∈Q, ∃w ∈Rp} 
 
How can we compare the formulations in this case? 
A: if ProjxQ⊂P, we say Q is a better formulation than P 



Generalized Assignment Problem 
Parameters 

Variables 

Formulation 



Generalized Assignment Problem 

Formulation 

Parameters 

Variables 



Generalized Assignment Problem 

Parameters 

Satisfy 



Generalized Assignment Problem 

Variables Coefficient matrix 

RHS 



How to use  
column generation formulations 

• How to handle exponential number of 
columns? 

• How to find “missing” columns? 



Branch-and-Price 

Solve LP 

Find column with 
negative reduced cost 

Add negative reduced 
cost column 

Solve LP 

PRICING 



Pricing Problem 
dual associated with machine i 

dual associated with task j 

where 



Branching 

• Branching on selection variables 
– Fixing to 1, i.e., selecting a particular schedule for 

a machine 
– Fixing to 0, i.e., forbidding a particular schedule 

for a machine 
 

• How to prevent the forbidden schedule to be 
generated again? 



Branching 

• Branching on original variables 
 

• Fixing to 1 
– Force task j in schedule for machine i 
– Forbid task j in schedule for other machines 

• Fixing to 0 
– Forbid task j in schedule for machine i 

 
 



What Next? 

• Parallel Integer Programming 
– Topics in Parallel Integer Optimization (Jeff 

Linderoth, 1998)  
– PARINO: PARallel INteger Optimizer (Kalyan 

Permulla, 1997) 

 
• Multi-objective Integer Programming 

– MINTO: Multi-objective INTeger Optimizer 



Restrict and Relax Search 



Outline 

• Motivation 
• Restrict-and-Relax Search 

– Initial restriction 
– Fixing and unfixing 

• Computational experiments 
– 0-1 integer programs 
– Multi-commodity fixed charge network flow 



Motivation 

• Why use restricted integer programs? 
– Desire to find good feasible solutions quickly 

• Crucial for real-life applications 
• Beneficial for many integer programming techniques 

(e.g., reduced cost fixing) 
 

 
• Why use restricted integer programs? 

– Integer program of interest very large (e.g., too 
large to fit in memory) 



Motivation 

• Success stories 
– Relaxation induced neighborhood search (general) 
– Local branching (general) 
– IP-based neighborhood search (problem-specific) 

 



IP-based Neighborhood Search 



IP-based search heuristic 

• Key decisions: 
– What variables to fix? 
– What values to fix them to? 



IP-based search heuristic 
If we solve a number of related restricted integer 

programs, can we re-use the search tree? 



Restrict-and-Relax Search 

• Main ideas: 
– Branch-and-bound algorithm 

that always works on a 
restricted integer program 

– Branch-and-bound algorithm 
that uses local information 
to decide whether to relax 
(unfix variables) or restrict 
(fix variables) 
 

restrict 

restrict or relax 



Restrict-and-Relax Search 

• Main ideas: 
– Restrict: Efficiency 
– Relax: Quality 



Restrict-and-Relax Search 

Original IP 

Restricted IP 

Restricted IP 
at node of the 
search tree 



Restrict-and-Relax Search 

Restricted IP 
at node of the 
search tree 

Modified 
restricted IP at 
node of the 
search tree 



Restrict-and-Relax Search 

• Key decisions 
– How to define the initial restricted integer 

program? 
– How to determine the variables to fix or unfix? 
– At which nodes in the search tree to relax or 

restrict? 



How to define the  
initial restricted integer program? 

• Based on a known feasible solution 
• Based on the solution to the LP relaxation 
• Based on the Phase I solution to the LP 

relaxation 
 



How to define the  
initial restricted integer program? 

Scheme: 
– xLP = 0 for variable: Score: c 
– xLP = 1 for variable: Score: -c 
– Fix variables from large to small 
– Fix at most 90% of variables 



How to determine the variables  
to fix and unfix? 

• Fixing variables (LP feasible node): 
 

 
Choose variables to fix in nondecreasing order of absolute value of 
reduced costs 

 
 

• Unfixing variables (LP feasible node): 
 
 

Choose variables to unfix in nondecreasing order of absolute value of reduced 
costs 

 

Fix variables in the current primal solution that are not 
likely to be part of an optimal solution in the future 

Unfixing variables in the current primal solution that are 
likely to result in an optimal solution with lower value in 
the future 



How to determine the variables  
to fix and unfix? 

• Implementation - Gradual transition: 
 
 
 
 
 
 
 

– Fast linear programming solves 
– Up to date dual information 



Unfixing variables 

Fathomed by bound 

Infeasible 

Active 
LP feasible 



Unfixing variables 

Opportunistic relaxing:  
Unfix previously fixed variables 



Unfixing variables 

Infeasible:  
(1) Resolve LP with all variables unfixed 
(2) Unfix variables that change values 

Fathomed by bound:  
(1) Remove cut-off 
(2) Resolve LP with all variables unfixed 
(3) If value < best known, unfix based on reduced costs 

Resolve LP with all variables unfixed guarantees that no nodes are discarded that 
shouldn’t 



At which nodes in the search tree 
to relax or restrict? 

• Parameters: 
– level-frequency (l-f) : Relax/restrict at node t if node level is a multiple of l-f 
– unfix-ratio (u-r) : At each trial, unfix at most u-r % of the fixed variables 
– fix-ratio (f-r) : At each trial, fix at most  f-r % of the free variables 
– node-trial-limit (t-l) : At each node, fix/relax at most t-l times 
– max-depth (max-d) : Fix/unfix only at nodes below tree level max-d 
– min-depth (min-d) : Fix/unfix only at nodes above tree level min-d 
– Pruned-by-bound (p-b) : If enabled, fix/unfix at nodes pruned by bound 

regardless of node level 
– Pruned-by-infeasibility (p-i) : If enabled, fix/unfix at nodes pruned by 

infeasibility regardless of node level 



At which nodes in the search tree 
to relax or restrict? 

• Default values: 
– level-frequency (l-f) :   4 
– unfix-ratio (u-r) :    5% 
– fix-ratio (f-r) :    2.5% 
– node-trial-limit (t-l) :   5 
– max-depth (max-d) :   ∞ 
– min-depth (min-d) :   0 
– Pruned-by-bound (p-b) :   enabled 
– Pruned-by-infeasibility (p-i) :  enabled 



Computational Study 

• Instances: 
– COR@L 
– MIPLIB 

 
• Restrict-and-Relax 

– Initial restricted IP: based on LP relaxation 
– Default settings for parameters 
– Time limit: 500 seconds 

 
• Implementation: SYMPHONY + CLP 



Computational Study 

• Default solver: Original IP 
• Default solver: Restricted IP 
• Restrict-and-relax Search 

 



Results 

By varying control parameters we can obtained improved solutions for 
all instances! 



Results (sample) 

Original IP Restricted IP Restrict-and-
Relax Search 

Optimal 

neos-693347 360 - 241 234 

neos808444 - - 0 0 

m100n500k4r1 -22 -22 -24 -25 



Results (sample) 

%fixed #nodes #unfix avg. #fix avg. #solutions 
neos-693347 0.74 593 266 18 243 27 1 

neos808444 0.9 633 129 24 1 1 1 

m100n500k4r1 0.7 38075 11095 6 1620 12 4 



Multi-commodity  
Fixed Charge Network Flow 

Variable flow cost (>= 0) Fixed cost of installing arc (>= 0) 

Commodity flow 
balance 

Arc capacity and 
coupling 

Do we install arc (i,j)? 

Does commodity k 
flow on arc (i,j)? 



Computational Study 
• Instances 

– Notation: T - #nodes(100x) - #arcs(1000x) - #commodities 
– Smallest (T-5-3-50)   

• 150,000 variables, 180,000 constraints, 750,000 nonzeroes 
– Largest (T-5-3-200)  

• 600,000 variables, 700,000 constraints, 3,000,000 nonzeroes 
• Restrict-and-relax settings 

– Initial restriction:  

• Phase I of simplex algorithm, fix up to 90% of variables 
– Parameters: 

• unfix ratio: 6%, fix ratio: 5% 
– Time limit: 2 hours 



Results 


