

Integer Programming: An Introduction

Martin W. P. Savelsbergh University of Newcastle

If I were asked to summarize my early and perhaps my most important contributions to linear programming, I would say they are three:
(1) Recognizing (as a result of my wartime years as a practical program planner) that most practical planning relations could be reformulated as a system of linear inequalities.
(2) Replacing the set of ground rules for selecting good plans by an objective function. (Ground rules at best are only a means for carrying out the objective, not the objective itself.)
(3) Inventing the simplex method which transformed the rather unsophisticated linear-programming model of the economy into a basic tool for practical planning of large complex systems.

The tremendous power of the simplex method is a constant surprise to me. To solve by brute force the assignment problem (which I mentioned earlier) would require a solar system full of nano-second electronic computers running from the time of the big bang until the time the universe grows cold to scan all the permutations in order to select the one which is best. Yet it takes only a moment to find the optimum solution using a personal computer and standard simplex or interior method software.

Ralph Gomory

RESEARCH ANNOUNCEMENTS

The purpoee of this department is to provide early announcement of significant new reanlta, with some indications of proof. Although ortinarily a research announcoment ebould be a brief summary of a paper to be published in full elsewhere, papers giving complete proofe of results of exceptional interest are also solicited.

OUTLINE OF AN ALGORITHM FOR INTEGER SOLUTIONS TO LINEAR PROGRAMS

BY RALPH E. GOMORY ${ }^{1}$
Communieatod by A. W. Tucker, May 3, 1958
The problem of obtaining the best integer solution to a linear program comes up in several contexts. The connection with combinatorial problems is given by Dantzig in [1], the connection with problems involving economies of scale is given by Markowitz and Manne [3] in a paper which also contains an interesting example of the effect: of discrete variables on a scheduling problem. Also Dreyfus [4] has discussed the role played by the requirement of discreteness of variables in limiting the range of problems amenable to linear programming techniques.

It is the purpose of this note to outline a finite algorithm for obtaining integer solutions to linear programs. The algorithm has been programmed successfully on an E101 computer and used to run off the integer solution to small (seven or less variables) linear programs completely automatically.

Ailsa Land

Alison Doig

ECONOMETRICA

AN AUTOMATIC METHOD OF SOLVING DISCRETE PROGRAMMING PROBLEMS

By A. H. Land And A. G. Doig

In the clanamal linear programming problem the behaviour of continuous, nonnegative variables subject to a rystem of thear inequalities in investigated. One prasible genernlization of this problem in to relas the continuity condition on the variblea. This paper presente it simple numarical algorithm for the solution of progrimming problems in which some or all of the variables con tate only alacrete values. The algorithm requires no specin terniniqu beyoud thoge used in ordinary linear programming, and lende itaelf to autometic tomputing. Its use in illustrated on two numerical examples.

George Nemhauser

Laurence Wolsey

GEORGE L. NEMHAUSER
LAURENGE A. WOLSEY

INTEGER PROGRAMMING

Zonghau Gu

CPLEX - IP Solver

GuRoBi - IP Solver

Natashia Boland

Will answer all questions about my presentation

Outline

- Some integer programs
- Solving integer programs
- Branch-and-bound
- Preprocessing
- Primal heuristics
- Valid inequalities
- Reformulation
- Extended formulations
- Column generation formulations

Some Integer Programs

Knapsack Problem

Parameters

c_{j} : value of item j

Formulation

a_{j} : weight of item j
b : capacity

Variables
x_{j} : whether or not to take item j

Node/Vertex Packing

Parameters

$G=(V, E)$: graph with vertex set V and edge set E w_{v} : weight of vertex v

$$
\begin{gathered}
\text { Formulation } \\
\max \sum_{v \in V} w_{v} x_{v} \\
x_{u}+x_{v} \leq 1 \text { for } e=\{u, v\} \in E
\end{gathered}
$$

Variables
x_{v} : whether or not vertex v is in the packing

Economic Lotsizing

Parameters

c_{t} : unit production cost in period t
f_{t} : set up cost in period t d_{t} : demand in period t

$$
\begin{gathered}
\min \sum_{t=1}^{T} c_{t} x_{t}+\sum_{t=1}^{T} f_{t} y_{t} \\
\sum_{s=1}^{t} x_{s} \geq d_{1 t} \text { for } t=1, \ldots, T \\
x_{t} \leq d_{t T} y_{t} \text { for } t=1, \ldots, T
\end{gathered}
$$

Variables
x_{t} : production in period t
y_{t} : whether or not a set up occurs in period t

Generalized Assignment Problem

Parameters

$p_{i j}$: profit when assigning task j to machine i
$w_{i j}$: capacity consumption of task j on machine i
d_{i} : capacity of machine i

Variables

$$
\begin{gathered}
\operatorname{cormulation} \\
\max \sum_{i=1}^{m} \sum_{j=1}^{n} p_{i j} x_{i j} \\
\sum_{i=1}^{m} x_{i j}=1 \text { for } j=1, \ldots, n \\
\sum_{j=1}^{n} w_{i j} x_{i j} \leq d_{i} \text { for } i=1, \ldots, m
\end{gathered}
$$

$x_{i j}$: whether or not task j is assigned to machine i

Solving Integer Programs

- Three basic concepts
- Divide and conquer
- Solve a problem by solving two smaller problems
- Relax
- Remove a constraint to make the problem easier
- Optimal value may improve
- Restrict
- Add a constraint to make the problem smaller
- Optimal value may worsen

Solving Integer Programs

$$
\begin{gathered}
\text { Integer Program } \\
z^{I P}=\min c x \\
A x \leq b \\
x_{j} \in\{0,1\} \text { for } j=1, \ldots, n \\
z^{I P}=\min \left\{c x \mid x \in S_{I P}\right\} \\
S_{I P}=\left\{x \in R^{n} \mid A x \leq b, x \in\{0,1\}^{n}\right\}
\end{gathered}
$$

Solving Integer Programs

Linear Programming Relaxation

$$
\begin{gathered}
z^{L P}=\min c x \\
A x \leq b \\
0 \leq x_{j} \leq 1 \text { for } j=1, \ldots, n \\
z^{L P}=\min \left\{c x \mid x \in S_{L P}\right\} \\
S_{L P}=\left\{x \in R^{n} \mid A x \leq b, 0 \leq x \leq 1\right\}
\end{gathered}
$$

Solving Integer Programs

Restricted Integer Program

$$
\begin{gathered}
z_{(k, 1)}^{I P}=\min c x \\
A x \leq b \\
x_{k}=1 \\
x_{j} \in\{0,1\} \text { for } j=1, \ldots, n \\
z_{(k, 1)}^{I P}=\min \left\{c x \mid x \in S_{I P}^{(k, 1)}\right\} \\
S_{I P}^{(k, 1)}=\left\{x \in R^{n} \mid A x \leq b, x_{k}=1, x \in\{0,1\}^{n}\right\}
\end{gathered}
$$

Solving Integer Programs

- Divide and conquer

Divide and conquer: Solve original IP by solving two smaller restricted IPs

Solving Integer Programs

- Relaxation

$$
S_{L P} \supseteq S_{I P} \quad z^{L P} \leq z^{I P}
$$

- Restriction

$$
S_{I P}^{(k, 1)} \subseteq S_{I P} \quad z_{(k, 1)}^{I P} \geq z^{I P}
$$

Solving Integer Programs

- Recall: Solving linear programs is easy
- What can happen if we solve the LP relaxation of our integer program?
- Infeasible
- IP is infeasible - stop
- Feasible \& integer
- Optimal IP solution - record \& stop
- Feasible \& fractional
- Divide \& conquer

Solving Integer Programs

$$
\begin{gathered}
z^{L P}=\min \left\{c x \mid x \in S_{L P}\right\} \begin{array}{c}
\begin{array}{c}
\text { solution } \\
\text { feasible \& fractional } \\
\left(\mathbf{x}_{k}\right. \text { fractional) }
\end{array} \\
\text { Solve LP relaxation } \\
x_{k}=0
\end{array} \\
x_{k}^{I P}=1 \\
z_{(k, 0)}^{I P}=\min \left\{c x \mid x \in P_{I P}^{(k, 0)}\right\} \quad \text { solve restricted IP }=\min \left\{c x \mid x \in P_{I P}^{(k, 1)}\right\}
\end{gathered}
$$

Branching

Solving Integer Programs

- Observation: When we solve the LP, we relax the problem. Therefore, the IP solution value will never be better
- Observation: When we branch, we restrict the problem. Therefore, the solution value will never improve
- Observation: If the value of the LP relaxation is worse than the value of the best known IP solution, then the restricted IP cannot provide a better solution

Solving Integer Programs

$$
z^{L P}=\min \left\{c x \mid x \in S_{L P}\right\} \quad z^{L P} \geq z_{\text {best }}^{I P}
$$

Bounding

Branch-and-Bound Tree/Search Tree

Branch-and-Bound Tree/Search Tree

How Can We Improve Basic Branch-and-Bound?

- Solve smaller linear programs
- Improve linear programming bounds
- Find feasible solutions quickly
- Branch intelligently

Branch Intelligently

Branch Intelligently

- Key questions
- Which variable to branch on?
- What node to evaluate next?

Variable Selection

- Focus: improving global bound
- Algorithm
- For all candidate variables calculate a score
- Select the candidate with the highest score
- Score function

$$
\operatorname{score}\left(q^{-}, q^{+}\right)=(1-\mu) \min \left\{q^{-}, q^{+}\right\}+\mu \max \left\{q^{-}, q^{+}\right\}
$$

Most Infeasible Branching

$$
\begin{gathered}
f_{i}^{+}=\left\lceil x_{i}^{L P}\right\rceil-x_{i}^{L P} \\
f_{i}^{-}=x_{i}-\left\lfloor x_{i}^{L P}\right\rfloor
\end{gathered}
$$

$$
s_{i}=\operatorname{score}\left(q_{i}^{-}, q_{i}^{+}\right)=1 \cdot \min \left\{f_{i}^{-}, f_{i}^{+}\right\}+0 \cdot \max \left\{f_{i}^{-}, f_{i}^{+}\right\}
$$

If the goal is to improve the global bound, then quality of a branching has to be measured by the change in objective function value at the child nodes

Pseudocost Branching

$$
\begin{gathered}
\sigma^{+}=\Delta^{+} / f^{+} \quad \begin{array}{l}
\text { observed per unit change in objective function } \\
\text { at right child }
\end{array} \\
\Sigma^{+} \quad \begin{array}{l}
\text { sum of observed per unit change in objective } \\
\text { function at right child over all branchings on the } \\
\text { variable }
\end{array} \\
\eta^{+} \quad \begin{array}{l}
\text { number of branchings on the variable }
\end{array} \\
\Phi^{+}=\Sigma^{+} / \eta^{+} \quad \begin{array}{l}
\text { average observed per unit change at right child } \\
\text { for the variable }
\end{array} \\
s_{i}=\operatorname{score}\left(f_{i}^{+} \Phi_{i}^{+}, f_{i}^{-} \Phi_{i}^{-}\right)
\end{gathered}
$$

Pseudocost Branching

- Initialization?
- Average over all known pseudocosts

Strong Branching

- Calculate change in objective function value at children of all candidate variables (i.e., solve two LPs)

$$
s_{i}=\operatorname{score}\left(\Delta_{i}^{+}, \Delta_{i}^{-}\right)
$$

- Efficiency
- Restrict number of pivots
- Restrict candidate set
- Dynamic
- order by pseudocost
- no improved candidate for k iterations

Hybrid Pseudocost/Strong Branching

- Strong branching up to level d in the tree and pseudocost branching for levels larger than d
- Pseudocost branching with strong branching initialization

Reliability Branching

- Generalizes pseudocost branching with strong branching initialization
- Use strong branching when pseudocosts are unreliable

$$
\min \left\{\eta_{i}^{+}, \eta_{i}^{-}\right\}<\eta_{\text {rel }}
$$

Recent Ideas

Perform one or more partial tree searches to determine "key" variables to branch on

- Information-based branching
- Backdoor branching

Node selection

- Focus: finding (good) feasible solutions
- Static
- Estimate-based
- Backtracking

Static

- Best-bound
- Guarantees that only nodes that have to be evaluated are evaluated
- May not be efficient since consecutive LPs differ substantially
- Depth-first
- Requires very little memory
- Extremely efficient because consecutive LPs differ very little
- May evaluate many superfluous nodes

Estimate-based

- Best projection

$$
\begin{gathered}
s=\sum_{j} \min \left\{f_{j}^{+}, f_{j}^{-}\right\} \\
E=z^{L P}-\left(\frac{z_{\text {root }}^{L P}-z_{\text {best }}^{\text {IP }}}{s_{\text {root }}}\right) s
\end{gathered}
$$

- Best estimate

$$
E=z^{L P}-\sum \min \left\{f_{j}^{+} \Phi_{j}^{+}, f_{j}^{-} \Phi_{j}^{-}\right\}
$$

Backtrack

- Goal: exploit advantage of depth-first search
- Implementation: depth-first until the objective value reaches a threshold, then jump (e.g, best-estimate)

$$
T=\min _{i \in \text { open nodes }} E_{i}
$$

Preprocessing

Preprocessing

- Infeasibility detection
- Redundancy detection
- Improving bounds
- Fixing variables
- Improving coefficients

Preprocessing

$$
\begin{array}{cc}
\qquad \min c x \\
\text { integer program } & A x \leq b \\
x \in\{0,1\}^{n} \\
\text { solve } \\
z=\min \sum_{j \in B^{+}} a_{j}^{i} x_{j}-\sum_{j \in B^{-}} a_{j}^{i} x_{j} & \text { row } i \\
A^{i} x \leq b^{i} & \begin{array}{l}
\text { constraints } \\
\text { without } \\
\text { constraint } i
\end{array} \\
x \in\{0,1\}^{n} &
\end{array}
$$

analysis
$z>b_{i} \Rightarrow$ infeasible

Detecting redundancy

$$
z=\max \sum_{j \in B^{+}} a_{j}^{i} x_{j}-\sum_{j \in B^{-}} a_{j}^{i} x_{j}
$$

$$
z<b_{i} \Rightarrow \text { redundant }
$$

Improving bounds

Improving bounds

$$
\begin{gathered}
z=\min \sum_{j \in B^{+} \backslash\{k\}} a_{j}^{i} x_{j}-\sum_{j \in B^{-}} a_{j}^{i} x_{j} \\
x_{k} \leq\left\lfloor\frac{\left(b_{i}-z\right)}{a_{k}^{i}}\right\rfloor \\
z=\min \sum_{j \in B^{+}} a_{j}^{i} x_{j}-\sum_{j \in B^{-} \backslash\{k\}} a_{j}^{i} x_{j} \\
x_{k} \geq\left\lceil\frac{\left(z-b_{i}\right)}{a_{k}^{i}}\right\rceil
\end{gathered}
$$

Fixing variables

Fixing variables

$$
z=\min \sum_{j \in B^{+}} a_{j}^{i} x_{j}-\sum_{j \in B^{-}} a_{j}^{i} x_{j}
$$

$$
x_{k}=1 \quad\left(k \in B^{+}\right)
$$

$$
z>b_{i} \Rightarrow x_{k}=0
$$

$$
z=\min \sum_{j \in B^{+}} a_{j}^{i} x_{j}-\sum_{j \in B^{-}} a_{j}^{i} x_{j}
$$

$$
x_{k}=0 \quad\left(k \in B^{-}\right)
$$

$$
z>b_{i} \Rightarrow x_{k}=1
$$

Improving coefficient

$$
z=\max \sum_{j \in B^{+}} a_{j}^{i} x_{j}-\sum_{j \in B^{-}} a_{j}^{i} x_{j}
$$

$z \leq b_{i} \Rightarrow$ reduce coefficients a_{k}^{i} and b_{i} by $b_{i}-z$

$$
z=\max \sum_{j \in B^{+}} a_{j}^{i} x_{j}-\sum_{j \in B^{-}} a_{j}^{i} x_{j}
$$

Improving coefficient

$$
x_{k}=1 \quad\left(k \in B^{-}\right)
$$

$z \leq b_{i} \Rightarrow$ reduce coefficients a_{k}^{i} and b_{i} by $b_{i}-z$

Preprocessing

- Implementation

Probing

Tentatively fix a variable and explore the consequences

$$
\begin{aligned}
7 x_{1}+3 x_{2}-4 x_{3}-2 x_{4} & \leq 1 \\
-2 x_{1}+7 x_{2}+3 x_{3}+x_{4} & \leq 6
\end{aligned}
$$

$$
\begin{gathered}
\stackrel{\text { consequences }}{x_{1}=1 \Rightarrow x_{3}=x_{4}=1 \text { and } x_{2}=0} \quad \text { (first constraint) } \\
x_{2}=1 \Rightarrow x_{1}=1 \text { and } x_{3}=0 \quad \text { (second constraint) }
\end{gathered}
$$

Probing

Conflict graph: representation of the implications

An edge represents

 variables that cannot be one at the same time$$
\text { e.g., } x_{1}+x_{2} \leq 1
$$

Probing

Conflict graph: representation of the implications

clique inequality:
$x_{1}+x_{2}+1-x_{1} \leq 1$
or
$x_{2} \leq 0$
implementation: requires solving a maximum clique problem

Reduced Cost Fixing

Integer program

$$
\min \left\{c^{T} x \mid A x \leq b, x \text { integer }\right\}
$$

Optimal solution
linear programming relaxation

Reduced cost:

$$
z^{L P}=\min \left\{c^{T} x \mid A x \leq b, x \geq 0\right\}
$$

$$
\bar{c}=c-A^{T} y^{\swarrow \text { optimal dual variables }}
$$

What if?

$$
x_{j}=0 \text { and } z^{L P}+\bar{c}_{j}>z_{\text {best }}^{I P}
$$

Permanently set $\quad x_{j}=0$

Primal Heuristics

Primal Heuristics

- Relaxation Induced Neighborhood Search (RINS)
- Local branching
- Feasibility pump

Relaxation Induced Neighborhood Search

- Suppose a known feasible solution $x_{\text {IP }}$ exists
- Consider a linear programming solution X_{LP} at a node of the search tree
- Attempt to find a better feasible solution by solving a restricted IP in which the variables where $x_{I P}$ and $x_{L P}$ agree are fixed

Relaxation Induced Neighborhood Search

- Implementation question
- When to apply?
- Variation
- Rather than using a known IP solution and an LP solution, use two known IP solutions to determine restricted IP (path relinking)

Local Branching

- Search in the neighborhood of a known feasible solution \bar{x} by limiting the possible changes

Known feasible solution

Local Branching (Cont.)

no improved solution

The Feasibility Pump (FP)

$\mathrm{x} \in \mathrm{R}^{\mathrm{n}}$ and $\mathrm{J} \subseteq\{1, \ldots, \mathrm{n}\}$

$$
\begin{array}{ll}
\min & \mathrm{cx} \\
\text { s.t. } & \mathrm{Ax} \leq \mathrm{b} \\
& \mathrm{x}_{\mathrm{j}} \text { is integer } \forall \mathrm{j} \in \mathrm{~J}
\end{array}
$$

Feasibility Pump: The general idea

Start with LP feasible \boldsymbol{x}
$z \leftarrow$ closest integer point to x
$x \leftarrow$ closest LP feasible point to \boldsymbol{z}
Repeat until \boldsymbol{z} is feasible
\longleftarrow rounding x, i.e. [x]
\longleftarrow projecting z onto LP feasible region

The Feasibility Pump (FP)

$\mathrm{d}\left(\boldsymbol{x}_{1}, \boldsymbol{z}_{1}\right) \leq \mathrm{d}\left(\boldsymbol{z}_{1}, \boldsymbol{x}_{2}\right) \leq \mathrm{d}\left(\boldsymbol{x}_{2}, \boldsymbol{z}_{2}\right) \leq \mathrm{d}\left(\boldsymbol{z}_{2}, \boldsymbol{x}_{3}\right) \leq \mathrm{d}\left(\boldsymbol{x}_{3}, \boldsymbol{z}_{3}\right)$
$x \square$ integer
$z \square$ feasible

Feasibility Pump: The general idea

Start with LP feasible \boldsymbol{x}

$z \leftarrow$ closest integer point to x
$x \leftarrow$ closest LP feasible point to z
Repeat until \boldsymbol{z} is feasible

- \boldsymbol{x}_{1}
- \boldsymbol{X}_{2}
- \boldsymbol{X}_{3}
- z_{3}

Two scenarios:

1. Feasible \boldsymbol{z}
2. Cycling (i.e., $[\boldsymbol{x}]=\boldsymbol{z}$ and $\left.\operatorname{proj}_{\mathrm{LP}}(z)=x\right)$

The Feasibility Pump (FP)

Feasibility Pump: The general idea

```
Start with LP feasible \(\boldsymbol{x}\)
\(z \leftarrow\) closest integer point to \(x\) \(x \leftarrow\) closest LP feasible point to \(z\) Repeat until \(z\) is feasible
```

Spends most time in projection procedure:

- May overlook good integer solutions close to \boldsymbol{x}

Fix:

- Spend more time around FP iterates \boldsymbol{x} to find feasible integer solutions rather than relying on naïve rounding
- Make search more balanced

Line Search within FP

A substitute for rounding

For each FP iterate \boldsymbol{x}, round all points along a line segment passing through x and a point deep within the feasible region.
Q. How to find suitable $\boldsymbol{x}^{\boldsymbol{t}}$?
Q. How to find all rounded solutions along the shooting line efficiently?

The chosen line segment is called the shooting line with starting point \boldsymbol{x}^{s} and end point $\boldsymbol{x}^{\boldsymbol{t}}$.

Valid Inequalities

Valid Inequalities

valid inequality: an inequality such that all feasible solutions satisfy the inequality

Valid Inequalities

Polyhedron

$$
P=\left\{x \in R^{n} \mid A x \leq b\right\}
$$

Feasible set

$$
S=P \cap\{0,1\}^{n}
$$

Valid inequality

$$
\pi x \leq \pi_{0} \text { for all } x \in S
$$

Valid Inequalities / Cuts

- Are some cuts better than others?
- Can we characterize the strongest cut?

Valid Inequalities

Valid Inequalities

convex hull

a valid inequality that is necessary in the description of the convex hull of feasible solutions is the strongest possible valid inequality and called a facet inducing inequality (a facet)

Valid Inequalities

Valid Inequalities / Cuts

- Problem specific cuts
- Node / vertex packing
- Economic lotsizing
- Substructure cuts
- Knapsack problem
- General cuts
- Gomory cuts

Node/Vertex Packing

Parameters

$G=(V, E)$: graph with vertex set V and edge set E w_{v} : weight of vertex v

$$
\begin{gathered}
\text { Formulation } \\
\max \sum_{v \in V} w_{v} x_{v} \\
x_{u}+x_{v} \leq 1 \text { for } e=\{u, v\} \in E
\end{gathered}
$$

Variables
x_{v} : whether or not vertex v is in the packing

Node / Vertex Packing

Odd hole inequally: $\sum_{v \in O} x_{v} \leq\left\lfloor\frac{\lfloor H \mid}{2}\right\rfloor \quad O \subseteq V ; O$ odd

Economic Lotsizing

Parameters

c_{t} : unit production cost in period t
f_{t} : set up cost in period t d_{t} : demand in period t

$$
\begin{gathered}
\min \sum_{t=1}^{T} c_{t} x_{t}+\sum_{t=1}^{T} f_{t} y_{t} \\
\sum_{s=1}^{t} x_{s} \geq d_{1 t} \text { for } t=1, \ldots, T \\
x_{t} \leq d_{t T} y_{t} \text { for } t=1, \ldots, T
\end{gathered}
$$

Variables
x_{t} : production in period t
y_{t} : whether or not a set up occurs in period t

Economic Lotsizing

Valid inequality

$$
\begin{gathered}
S \subseteq L:=\{1, \ldots, l\} \text { for } l=1, \ldots, T \\
\sum_{t \in L \backslash S} x_{t}+\sum_{t \in S} d_{t l} y_{t} \geq d_{1 l}
\end{gathered}
$$

Knapsack Problem

Parameters

c_{j} : value of item j

Formulation

a_{j} : weight of item j
b : capacity

Variables
x_{j} : whether or not to take item j

Cover Cuts

cover: $C \subseteq\{1, \ldots, n\}: \sum_{j \in C} a_{j}>b$

Cover inequality:

$$
\sum_{j \in C} x_{j} \leq|C|-1
$$

General Cuts

- Gomory cut $\quad \sum_{j}\left\lfloor u a_{j}\right\rfloor x_{j} \leq\lfloor u b\rfloor \quad(u \geq 0, A x \leq b)$
- Proof of validity

How to determine valid inequalities?

- Exploit problem knowledge
- Study LP solutions
- Use PORTA

How to use valid inequalities?

- How to handle an exponential number of valid inequalities?
- Are valid inequalities useful if there not facets?
- How to determine whether a valid inequality is a facet?

Cut Generation

Separation

- Odd-hole inequalities
- (l, S) inequalities
- Cover inequalities

Odd-hole inequalities

(l,S)-Inequalities

Separation

$$
\sum_{t=1}^{l} \min \left\{x_{t}^{*}, d_{t l} y_{t}^{*}\right\} \leq d_{1 l}
$$

Cover Inequalities

Separation

$$
\begin{gathered}
\min \sum_{j}\left(1-x_{j}^{*}\right) z_{j} \\
\sum_{j} a_{j} z_{j}>b \\
z_{j} \in\{0,1\}
\end{gathered}
$$

Up Lifting (Cover Inequality)

valid inequality
(when $x_{1}=0$)

$$
\pi_{2} x_{2}+\ldots+\pi_{n} x_{n} \leq \pi_{0}
$$

consider

$$
\alpha x_{1}+\pi_{2} x_{2}+\ldots+\pi_{n} x_{n} \leq \pi_{0}
$$

valid when

$$
\alpha \leq \pi_{0}-\zeta
$$

where

$$
\begin{aligned}
\zeta=\max & \pi_{2} x_{2}+\ldots+\pi_{n} x_{n} \\
& a_{2} x_{2}+\ldots+a_{n} x_{n} \leq b-a_{1}
\end{aligned}
$$

Down Lifting (Cover Inequality)

valid inequality
(when $x_{1}=1$)
consider
valid when
where

$$
\gamma \leq \zeta-\pi_{0}
$$

$\zeta=\max \pi_{2} x_{2}+\ldots+\pi_{n} x_{n}$ $a_{2} x_{2}+\ldots+a_{n} x_{n} \leq b$

Cover Inequalities

- Should the separation problem be solved using an exact method?
- Should the lifting problem be solved using an exact method?
- In what order should variables be lifted?

Up Lifting

Theorem. Suppose $\mathbf{S} \subseteq \mathrm{B}^{\mathrm{n}}, \mathbf{S}^{\boldsymbol{\delta}}=\mathrm{S} \cap\left\{\mathrm{x} \in \mathrm{B}^{\mathrm{n}}: \mathrm{x}_{1}=\delta\right\}$ for $\delta \in$ $\{0,1\}$, and

$$
\begin{equation*}
\pi_{2} x_{2}+\pi_{3} x_{3}+\ldots \pi_{n} x_{n} \leq \pi_{0} \tag{*}
\end{equation*}
$$

is valid for S^{0}.
If $S^{1}=\varnothing$ then $x_{1} \leq 0$ is valid for S. If $S^{1} \neq \varnothing$ then

$$
\alpha x_{1}+\pi_{2} x_{2}+\pi_{3} x_{3}+\ldots \pi_{n} x_{n} \leq \pi_{0}
$$

is valid for S for any $\alpha \leq \pi_{0}-\zeta$ where

$$
\zeta=\max \left\{\pi_{2} x_{2}+\pi_{3} x_{3}+\ldots \pi_{n} x_{n}: x \in S^{1}\right\} .
$$

Moreover, if (*) defines a facet of conv(S ${ }^{0}$) and $\alpha=\pi_{0}-\zeta$ then $\left({ }^{* *}\right)$ gives a facet of $\operatorname{conv}(\mathrm{S})$.

Down Lifting

Theorem. Suppose $S \subseteq B^{n}, S^{\delta}=S \cap\left\{x \in B^{n}: x_{1}=\delta\right\}$ for $\delta \in$ \{0,1\}, and

$$
\begin{equation*}
\pi_{2} x_{2}+\pi_{3} x_{3}+\ldots \pi_{n} x_{n} \leq \pi_{0} \tag{*}
\end{equation*}
$$

is valid for S^{1}.
If $S^{0}=\varnothing$ then $x_{1} \geq 1$ is valid for S. If $S^{0} \neq \varnothing$ then

$$
\gamma \mathbf{x}_{1}+\pi_{2} x_{2}+\pi_{3} x_{3}+\ldots \pi_{n} x_{n} \leq \pi_{0}+\gamma \quad(* * *)
$$

is valid for S for any $\gamma \geq \zeta-\pi_{0}$ where

$$
\zeta=\max \left\{\pi_{2} x_{2}+\pi_{3} x_{3}+\ldots \pi_{n} x_{n}: x \in S^{0}\right\}
$$

Moreover, if (${ }^{*}$) defines a facet of $\operatorname{conv}\left(\mathbf{S}^{1}\right)$ and $\gamma=\zeta-\pi_{0}$ then (${ }^{* * *)}$ gives a facet of conv(S).

Reformulation

Reformulation

- Disaggregation
- Extended formulations
- Column generation formulations

Disaggregation

$$
\sum_{j=1}^{n} x_{i j} \leq m y_{i} \quad\left(P_{1}\right)
$$

$$
\text { alternatively } \quad x_{i j} \leq y_{i} \quad j=1, \ldots, m \quad\left(P_{2}\right)
$$

Is one formulation better than the other?
Better in what sense?

Disaggregation

Consider $y=\frac{1}{2}$

Economic Lotsizing

Parameters

c_{t} : unit production cost in period t
f_{t} : set up cost in period t d_{t} : demand in period t

$$
\begin{gathered}
\min \sum_{t=1}^{T} c_{t} x_{t}+\sum_{t=1}^{T} f_{t} y_{t} \\
\sum_{s=1}^{t} x_{s} \geq d_{1 t} \text { for } t=1, \ldots, T \\
x_{t} \leq d_{t T} y_{t} \text { for } t=1, \ldots, T
\end{gathered}
$$

Variables
x_{t} : production in period t
y_{t} : whether or not a set up occurs in period t

Economic Lotsizing

c_{t} : unit production cost in period t
f_{t} : set up cost in period t

Formulation

d_{t} : demand in period t

$$
\begin{gathered}
\min \sum_{t=1}^{T} \sum_{s=t}^{T} c_{t} w_{t s}+\sum_{t=1}^{T} f_{t} y_{t} \\
\sum_{s=1}^{t} w_{s t} \geq d_{t} \text { for } t=1, \ldots, T \\
w_{s t} \leq d_{t} y_{s} \text { for } t=1, \ldots, T, s=1, \ldots, t
\end{gathered}
$$

Variables
$w_{s t}$: production in period s for period t
y_{t} : set up in period t

$$
\text { Note } \quad x_{s}=\sum_{t \geq s} w_{s t}
$$

Extended formulations

$Q=\left\{(x, w):(x, w) \in R^{n} x R^{p}\right\}$ is an extended formulation for a pure integer program with formulation $P \subseteq R^{n}$ if

$$
\operatorname{Proj}_{x} \mathrm{Q} \cap \mathrm{Z}^{\mathrm{n}}=\mathrm{P} \cap \mathrm{Z}^{\mathrm{n}}
$$

where the projection of Q onto x is defined to be

$$
\operatorname{Proj}_{x} Q=\left\{x:(x, w) \in Q, \exists w \in R^{p}\right\}
$$

How can we compare the formulations in this case? A : if $\operatorname{Proj}_{\mathrm{x}} \mathrm{Q} \subset P$, we say Q is a better formulation than P

Generalized Assignment Problem

Parameters

$p_{i j}$: profit when assigning task j to machine i
$w_{i j}$: capacity consumption of task j on machine i
d_{i} : capacity of machine i

Variables

$$
\begin{gathered}
\operatorname{mormulation} \\
\max \sum_{i=1}^{m} \sum_{j=1}^{n} p_{i j} x_{i j} \\
\sum_{i=1}^{m} x_{i j}=1 \text { for } j=1, \ldots, n \\
\sum_{j=1}^{n} w_{i j} x_{i j} \leq d_{i} \text { for } i=1, \ldots, m
\end{gathered}
$$

$x_{i j}$: whether or not task j is assigned to machine i

Generalized Assignment Problem

Parameters

$$
y_{k}^{i}=\left(y_{1 k}^{i}, y_{2 k}^{i}, \ldots, y_{n k}^{i}\right)
$$

Formulation

$$
\begin{gathered}
\max \sum_{i=1}^{m} \sum_{k=1}^{K_{i}}\left(\sum_{j=1}^{n} p_{i j} y_{j k}^{i}\right) \lambda_{k}^{i} \\
\sum_{i=1}^{m} \sum_{k=1}^{K_{i}} y_{j k}^{i} \lambda_{k}^{i}=1 \quad j=1, \ldots, n \\
\sum_{k=1}^{K_{i}} \lambda_{k}^{i}=1 \quad i=1, \ldots, m
\end{gathered}
$$

Variables $\lambda_{k}^{i} \in\{0,1\} \quad i=1, \ldots, m, k=1, \ldots, K_{i}$

Generalized Assignment Problem

Parameters

$$
y_{k}^{i}=\left(y_{1 k}^{i}, y_{2 k}^{i}, \ldots, y_{n k}^{i}\right)
$$

Satisfy

$$
\begin{gathered}
\sum_{j=1}^{n} w_{i j} x_{j} \leq d_{i} \\
x_{j} \in\{0,1\} \quad j=1, \ldots, n
\end{gathered}
$$

Generalized Assignment Problem

How to use column generation formulations

- How to handle exponential number of columns?
- How to find "missing" columns?

Branch-and-Price

Pricing Problem

v_{i} dual associated with machine i
u_{j} dual associated with task j

$$
\max _{1 \leq i \leq m}\left\{z\left(K P_{i}\right)-v_{i}\right\}
$$

where

$$
\begin{aligned}
z\left(K P_{i}\right)= & \max \sum_{1 \leq j \leq n}\left(p_{i j}-u_{j}\right) x_{j} \\
& \sum_{1 \leq i \leq n} w_{i j} x_{j} \leq d_{i} \\
& x_{j} \in\{0,1\} \quad i \in\{1, \ldots, n\}
\end{aligned}
$$

Branching

- Branching on selection variables
- Fixing to 1, i.e., selecting a particular schedule for a machine
- Fixing to 0, i.e., forbidding a particular schedule for a machine
- How to prevent the forbidden schedule to be generated again?

Branching

- Branching on original variables $x_{i j}=\sum_{k=1}^{K_{i}} y_{j k}^{i} \lambda_{k}^{i}$
- Fixing to 1
- Force task j in schedule for machine i
- Forbid task j in schedule for other machines
- Fixing to 0
- Forbid task j in schedule for machine i

What Next?

- Parallel Integer Programming
- Topics in Parallel Integer Optimization (Jeff Linderoth, 1998)
- PARINO: PARallel INteger Optimizer (Kalyan Permulla, 1997)
- Multi-objective Integer Programming
- MINTO: Multi-objective INTeger Optimizer

Restrict and Relax Search

$$
\min x_{0}=\sum_{i=0} \sum_{p=1} v_{i}(p)
$$

ubject to
$(p) \geqslant c_{i}^{(1)}-d_{1}+\alpha \sum_{k=0}^{N-1} p_{i k}^{(1)} v_{k}(p-$
or $i=0, \ldots, N-1, p=1, \ldots, p_{\text {ma }}$
$v_{i}(p) \geqslant c_{i}^{(2)}-d_{2}+\alpha \sum_{k=0}^{N-1} p_{i k}^{(2)} v_{k}(p)$

Outline

- Motivation
- Restrict-and-Relax Search
- Initial restriction
- Fixing and unfixing
- Computational experiments
- 0-1 integer programs
- Multi-commodity fixed charge network flow

Motivation

- Why use restricted integer programs?
- Desire to find good feasible solutions quickly
- Crucial for real-life applications
- Beneficial for many integer programming techniques (e.g., reduced cost fixing)
- Why use restricted integer programs?
- Integer program of interest very large (e.g., too large to fit in memory)

Motivation

- Success stories
- Relaxation induced neighborhood search (general)
- Local branching (general)
- IP-based neighborhood search (problem-specific)

IP-based Neighborhood Search

```
Algorithm Neighborhood Search
Require: Integer program P
    while continue search do
            Choose a subset of variables V
            Fix value of variables in V
            Solve an IP to assign the remaining variables
            if an improved solution is found then
            Update global solution
            end if
    end while
```


IP-based search heuristic

- Key decisions:
- What variables to fix?
- What values to fix them to?

IP-based search heuristic

If we solve a number of related restricted integer programs, can we re-use the search tree?

Restrict-and-Relax Search

- Main ideas:
- Branch-and-bound algorithm that always works on a restricted integer program
- Branch-and-bound algorithm that uses local information to decide whether to relax (unfix variables) or restrict
 (fix variables)

Restrict-and-Relax Search

- Main ideas:
- Restrict: Efficiency
- Relax: Quality

Restrict-and-Relax Search

$$
z=\min c x
$$

$$
A x=b
$$

Original IP $x \in \mathbb{B}^{r} \times \mathbb{R}^{n-r}$

$$
z_{F}=\min c x
$$

$$
A x=b
$$

Restricted IP

$$
\begin{aligned}
& x_{i}=\bar{x}_{i}, i \in F \\
& x \in \mathbb{B}^{r} \times \mathbb{R}^{n-r}
\end{aligned}
$$

Restricted IP at node of the search tree
$v_{t}=\min c x$

$$
\begin{aligned}
& A x=b \\
& x_{i}=\bar{x}_{i}, i \in F \cup B_{t} \\
& x \in \mathbb{B}^{r} \times \mathbb{R}^{n-r}
\end{aligned}
$$

Restrict-and-Relax Search

```
Restricted IP at node of the search tree
```

$$
\begin{aligned}
v_{t}= & \min c x \\
& A x=b \\
& x_{i}=\bar{x}_{i}, i \in F \cup B_{t} \\
& x \in \mathbb{B}^{r} \times \mathbb{R}^{n-r}
\end{aligned}
$$

Modified
restricted IP at
node of the search tree

$$
\begin{aligned}
\bar{v}_{t}= & \min c x \\
& A x=b \\
& x_{i}=\bar{x}_{i}, i \in \bar{F} \cup B_{t} \\
& x \in \mathbb{B}^{r} \times \mathbb{R}^{n-r}
\end{aligned}
$$

Goal: Choose \bar{F} in such a way that $\bar{v}_{t}<v_{t}$

Restrict-and-Relax Search

- Key decisions
- How to define the initial restricted integer program?
- How to determine the variables to fix or unfix?
- At which nodes in the search tree to relax or restrict?

How to define the

initial restricted integer program?

- Based on a known feasible solution
- Based on the solution to the LP relaxation
- Based on the Phase I solution to the LP relaxation

How to define the

 initial restricted integer program?Scheme:
$-x_{L P}=0$ for variable: Score: c
$-x_{L P}=1$ for variable: Score: -c

- Fix variables from large to small
- Fix at most 90% of variables

How to determine the variables to fix and unfix?

- Fixing variables (LP feasible node):

$$
\text { if } x_{i}^{*}=0 \text {, then } r_{i}^{*} \geq 0 \text { and if } x_{i}^{*}=1 \text {, then } r_{i}^{*} \leq 0
$$

Choose variables to fix in nondecreasing order of absolute value of reduced costs

Fix variables in the current primal solution that are not likely to be part of an optimal solution in the future

- Unfixing variables (LP feasible node):

$$
\text { if } x_{i}^{*}=0 \text { and } r_{i}^{*}<0 \text { or if } x_{i}^{*}=1 \text { and } r_{i}^{*}>0
$$

Choose variables to unfix in nondecreasing order of absolute value of reduced costs

Unfixing variables in the current primal solution that are likely to result in an optimal solution with lower value in the future

How to determine the variables to fix and unfix?

- Implementation - Gradual transition:

$$
\begin{aligned}
& \min c x \\
& A x=b \\
& x_{i}=\bar{x}_{i}, i \in F_{t}^{j} \cup B_{t} \\
& x \in \mathbb{B}^{r} \times \mathbb{R}^{n-r} \\
F_{t}^{0}= & F \text { and }\left|F_{t}^{j} \backslash F_{t}^{j-1}\right| \text { small }
\end{aligned}
$$

- Fast linear programming solves
- Up to date dual information

Unfixing variables

Unfixing variables

Opportunistic relaxing:
Unfix previously fixed variables

Unfixing variables

Infeasible:
(1) Resolve LP with all variables unfixed
(2) Unfix variables that change values

Fathomed by bound:
(1) Remove cut-off
(2) Resolve LP with all variables unfixed
(3) If value < best known, unfix based on reduced costs

Resolve LP with all variables unfixed guarantees that no nodes are discarded that shouldn't

At which nodes in the search tree to relax or restrict?

- Parameters:
- level-frequency (I-f) : Relax/restrict at node t if node level is a multiple of I-f
- unfix-ratio (u-r) : At each trial, unfix at most u-r \% of the fixed variables
- fix-ratio (f-r) : At each trial, fix at most f-r \% of the free variables
- node-trial-limit (t-I) : At each node, fix/relax at most t-l times
- max-depth (max-d) : Fix/unfix only at nodes below tree level max-d
- min-depth (min-d) : Fix/unfix only at nodes above tree level min-d
- Pruned-by-bound (p-b) : If enabled, fix/unfix at nodes pruned by bound regardless of node level
- Pruned-by-infeasibility ($\mathrm{p}-\mathrm{i}$) : If enabled, fix/unfix at nodes pruned by infeasibility regardless of node level

At which nodes in the search tree to relax or restrict?

- Default values:
- level-frequency (I-f) :

4

- unfix-ratio (u-r) :

5\%

- fix-ratio ($\mathrm{f}-\mathrm{r}$) :
2.5\%
- node-trial-limit (t-I):

5

- max-depth (max-d) :
∞
- min-depth (min-d) :
- Pruned-by-bound (p-b) :
- Pruned-by-infeasibility (p-i):
enabled
enabled

Computational Study

- Instances:
- COR@L
- MIPLIB
- Restrict-and-Relax
- Initial restricted IP: based on LP relaxation
- Default settings for parameters
- Time limit: 500 seconds
- Implementation: SYMPHONY + CLP

Computational Study

- Default solver: Original IP
- Default solver: Restricted IP
- Restrict-and-relax Search

Results

	Original IP	Restricted IP
$\mathrm{RR}<$	51	49
$\mathrm{RR}=$	13	5
$\mathrm{RR}>$	20	15
RR feas	13	28
RR no feas	1	2

By varying control parameters we can obtained improved solutions for all instances!

Results (sample)

	Original IP	Restricted IP	Restrict-and- Relax Search	Optimal
neos-693347	360	-	241	234
neos808444	-	-	0	0
m100n500k4r1	-22	-22	-24	-25

Results (sample)

	\%fixed	\#nodes	\#unfix	avg.	\#fix	avg.	\#solutions
neos-693347	0.74	593	266	18	243	27	1
neos808444	0.9	633	129	24	1	1	1
m100n500k4r1	0.7	38075	11095	6	1620	12	4

Multi-commodity
 Fixed Charge Network Flow

Variable flow cost (>=0)
Fixed cost of installing arc (>= 0)
Commodity flow balance

$$
\sum_{j:(i, j) \in A} x_{i j}^{k}-\sum_{j:(j, i) \in A} x_{j, i}^{k}=\delta_{i}^{k} \quad \forall i \in N, \forall k \in K
$$

Arc capacity and coupling $\sum_{k \in K} d^{k} x_{i j}^{k} \leq u_{i j} y_{i j} \quad \forall(i, j) \in A$,
$y_{i j} \in\{0,1\} \quad \forall(i, j) \in A . \& \ldots \ldots \ldots$........ Do we install $\operatorname{arc}(i, j)$? $x_{i j}^{k} \in\{0,1\} \quad \forall k \in K, \forall(i, j) \in A$. *".... $\begin{gathered}\text { Does commodity k } \\ \text { flow on arc }(\mathrm{i}, \mathrm{j}) \text { ? }\end{gathered}$

Computational Study

- Instances
- Notation: T - \#nodes(100x) - \#arcs(1000x) - \#commodities
- Smallest (T-5-3-50)
- 150,000 variables, 180,000 constraints, 750,000 nonzeroes
- Largest (T-5-3-200)
- 600,000 variables, 700,000 constraints, 3,000,000 nonzeroes
- Restrict-and-relax settings
- Initial restriction:
- Phase I of simplex algorithm, fix up to 90% of variables
- Parameters:
- unfix ratio: 6\%, fix ratio: 5\%
- Time limit: 2 hours

Results

	CPLEX		RR		
	z	LP solved?	z	\# Sols	\% Gap
T-5-2-150	∞	no	$9,660,795$	15	-
T-5-2-200	∞	no	$8,452,576$	17	-
T-5-2.5-100	$6,238,900$	yes	$3,963,321$	24	24.01
T-5-2.5-150	∞	no	$8,921,333$	11	-
T-5-2.5-200	∞	no	$15,439,381$	11	-
T-5-3-50	$5,014,455$	yes	$2,448,390$	35	12.37
T-5-3-75	∞	yes	$4,698,771$	17	24.64
T-5-3-100	∞	no	$7,777,745$	14	-
T-5-3-125	∞	no	$6,169,464$	17	-
T-5-3-150	∞	no	$8,081,616$	16	-
T-5-3-200	∞	no	$14,691,367$	9	-

