
Using auxiliary variables and implied constraints to model non-binary
problems

Barbara Smith
School of Computer Studies

University of Leeds
Leeds LS2 9JT

England
bms@scs.leeds.ac.uk

Kostas Stergiou
Department of Computer Science

University of Strathclyde
Glasgow G1 1XL

Scotland
ks@cs.strath.ac.uk

Toby Walsh
Department of Computer Science

University of York
York YO10 5DD

England
tw@cs.york.ac.uk

Abstract

We perform an extensive theoretical and em-
pirical analysis of the use of auxiliary variables
and implied constraints in modelling a class of
non-binary constraint satisfaction problems called
problems of distance. This class of problems in-
clude 1-d, 2-d and circular Golomb rulers. We
identify a large number of different models, both
binary and non-binary, and compare theoretically
the level of consistency achieved by generalized arc
consistency on them. Our experiments show that
the introduction of auxiliary variables and implied
constraints can significantly reduce the size of the
search space. For instance, our final models re-
duce the time to find an optimal 10-mark Golomb
ruler 50-fold.

Introduction

In an invited talk at AAAI-98, Gene Freuder identified
modelling as a major hurdle preventing the uptake of
constraint satisfaction technology. Modelling is espe-
cially challenging when using non-binary constraints as
the number of possible models is very large. In this pa-
per, we model problems of distance, a challenging set of
problems based on Golomb rulers. We identify a large
number of different models, and compare them theo-
retically and empirically. Our results demonstrate the
considerable benefits of including additional auxiliary
variables and implied constraints in the models. We
believe that many more studies like this are needed to
help turn the art of modelling into a science.

Problems of distance

Peter van Beek has proposed Golomb rulers as a
challenging constraint satisfaction problem for the
CSPLib benchmark library (available as prob006 at
http://csplib.cs.strath.ac.uk). The specification
given there is: “A Golomb ruler may be defined as a
set of m integers 0 = x1 < x2 < ... < xm, such that
the m(m − 1)/2 differences xj − xi, 1 ≤ i < j ≤ m,
are distinct. Such a ruler is said to contain m marks
and is of length xm. The objective is to find optimal
(minimum length) or near optimal rulers.”

Copyright c© 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

The longest known optimal ruler has 21 marks and
is of length 333. Such rulers have practical applications
in radio astronomy. Peter van Beek reports that even
quite small problems (with fewer than 15 marks) are
very difficult for complete methods, and that their dif-
ficulty lies both in proving optimality and in finding a
solution since problems have very few solutions.

Golomb rulers are instances of a more general class
of problem which we call problems of distance. Such
problems are defined by a graph in which m nodes are
labelled with integers, the edges are labelled by the dif-
ference between the node labels at either end of each
edge, and there are constraints that all edge labels are
different. A Golomb ruler is a problem of distance in
which this underlying graph is complete. We may, how-
ever, have a problem of distance in which the underlying
graph is not complete. For example, in a 2-d Golomb
ruler we have (2 or more) layers of cliques, with edges
between node i in clique j and node i in clique j + 1.

A further generalization is to modular problems of
distance in which the underlying graph is directed, the
edge from node i to node j is labelled with the label
of j less that of i, and there are constraints that all
edge labels mod n are different. For instance, in a cir-
cular Golomb ruler, the underlying directed graph is
complete, and n is the length of the circular rule.

Non-binary models
To model problems of distance, we use m variables,
x1, . . . , xm, each with a (finite) integer domain. There
are three obvious non-binary representations:

quaternary model: for each pair of edges, we post
quaternary constraints of the form |xj−xi| 6= |xl−xk|

ternary and not-equals model: for each edge, we
introduce an auxiliary variable, dij ; we post ternary
constraints of the form dij = |xj−xi|, and binary not-
equals constraints between the auxiliary variables

ternary and all-different model: we again intro-
duce auxiliary variables, dij and ternary constraints
of the form dij = |xj − xi|; however, we now post
a single all-different constraint on the auxiliary vari-
ables

Additional constraints can also be added to eliminate
various symmetries. For example, with a Golomb ruler,

we post the monotonicity constraints, xi < xi+1 for
1 ≤ i < m. A reflection symmetry can also be broken
by adding the constraint |x2 − x1| < |xm − xm−1| (or
equivalently, d12 < dm−1,m).

Theoretical comparison
As in previous studies (Stergiou & Walsh 1999a;
1999b)), we will compare theoretically the effects of
constraint propagation on the different models; in par-
ticular, we focus on enforcing generalized arc-consistent
(GAC) on the different non-binary constraints. A prob-
lem is GAC iff for any assignment of a value to a variable
in a (non-binary) constraint, there exist compatible val-
ues for all the other variables in the constraint (Mohr
& Masini 1988).

The introduction into a model of auxiliary variables
might be expected to reduce the amount of constraint
propagation achieved. However, the large all-different
constraint can more than compensate for this reduction.

Theorem 1 On a problem of distance, GAC on the
ternary and all-different model is incomparable to GAC
on the quaternary model.

Proof: Consider a Golomb ruler with x1 = {0}, x2 =
{1, 2}, and x3 = {4}. The ternary and all-different
model is GAC, but the quaternary model is not GAC
(the value 2 must be removed from the domain of x2).

Consider a Golomb ruler with x1 = {0}, x2 = {1, 2},
x3 = {3}, and x4 = {4, 5}. The quaternary model
is GAC. However, enforcing GAC on the ternary and
all-different model shows that the problem is insoluble
since the auxiliary variables d12, d23 and d34 have do-
mains {1, 2} and thus cannot be all different. QED.

More surprisingly, whilst replacing the large all-
different constraint with binary not-equals constraints
reduces the amount of constraint propagation, GAC on
the ternary and not-equals model can still sometimes
be stronger than GAC on the quaternary model.

Theorem 2 On a problem of distance, GAC on the
ternary and not-equals model is incomparable to GAC
on the quaternary model.

Proof: Consider the first Golomb ruler in the previous
proof. The ternary and not-equals model is GAC. How-
ever, enforcing GAC on the quaternary model prunes
the value 2 from the domain of x2.

Consider a Golomb ruler with x1 = {0}, x2 = {1},
x3 = {3}, x4 = {7, 8}, and x5 = {8, 9}. The quater-
nary model is GAC. However, enforcing GAC on the
ternary and not-equals model shows that the problem
is insoluble since the auxiliary variable d45 has all its
possible values (1, 2 or 3) removed from its domain by
the constraints with the auxiliary variables d12, d23 and
d13. QED.

It is less surprising that replacing the single all-
different constraint with binary not-equals constraints
reduces the amount of constraint propagation.

Theorem 3 On a problem of distance, GAC on the
ternary and all-different model is strictly stronger than
GAC on the ternary and not-equals model.

Proof: It is trivially stronger as GAC on an all-
different constraint is stronger than GAC on binary not-
equals constraints. To show strictness, consider again
the second Golomb ruler in the first proof. The ternary
and not-equals model is GAC. However, enforcing GAC
on the ternary and all-different model shows that is in-
soluble. QED.

By including additional implied constraints, the
ternary and not-equals model can be made strictly
stronger than the quaternary model. By transitivity,
the ternary and all-different model can also be made
strictly stronger than the quaternary model.

Theorem 4 On a problem of distance, there exist some
implied ternary constraints with which GAC on the
ternary and not-equals model is strictly stronger than
GAC on the quaternary model.

Proof: The implied ternary constraints are of the form
|xj − xi| 6= |xk − xi| for all pairs of nodes j and k con-
nected to a third node i. Consider one of the quaternary
constraints, |xj−xi| 6= |xl−xk|. Assume that enforcing
GAC on this quaternary constraint prunes a value but
this value is not removed in the ternary and not-equals
model. Due to the inclusion of the implied ternary con-
straints, i, j, k, l must all be different. The quaternary
constraint is GAC unless at least three of the variables
have a singleton domain, and one of the values of the
remaining variable, say xi, violates the constraint. But
in that case, dkl also has a singleton domain, and GAC
on dij 6= dkl would delete the only possible value for dkl

from the domain of dij . Enforcing GAC on the ternary
constraint dij = xj −xi will then delete the same value
of xi. This contradicts the assumption that we prune
a value in the quaternary model but not in the ternary
and binary model. To show strictness, consider again
the second Golomb ruler in the first proof. QED.

Our results show that a model with auxiliary vari-
ables and ternary constraints can in theory improve
upon one with quaternary constraints. The next section
shows that the differences can be very large in practice.

Golomb rulers

Table 1 shows the number of branches explored and the
CPU time used on a Silicon Graphics O2 to find opti-
mal Golomb rulers using ILOG Solver’s inbuilt mini-
mization functions. For efficiency, we use Jean-Charles
Régin’s specialized GAC algorithm on the all-different
constraint (Régin 1994), simple bounds consistency on
the ternary and quaternary constraints, and arc con-
sistency on the binary constraints (which is equivalent
to GAC on binary constraints). We show later on that
GAC on the ternary constraints is not competitive in
terms of CPU time with bounds consistency. The same
is likely to be true of GAC on the quaternary con-
straints, especially as GAC is more expensive as we in-
crease the constraint arity and as it will tend to prune
fewer values.

In all three models, we used a fixed lexicographical
variable ordering. Variables are assigned in order start-

Marks quaternary ternary + 6= ternary + alldiff
(m) br. CPU br. CPU br. CPU

6 - F 15 0.020 6 0.007 6 0.012
- P 63 0.042 39 0.015 10 0.006

7 - F 116 0.170 28 0.023 26 0.033
- P 594 0.801 327 0.198 84 0.125

8 - F 756 2.03 130 0.104 98 0.124
- P 4852 14.0 2605 2.27 599 1.23

9 - F 7271 31.7 1622 1.70 816 1.56
- P 33679 168 17823 22.1 2924 9.69

10 - F 78503 657 21507 27.9 9757 24.3
- P - - - - 13707 68.3

11 - F - - - - 31666 94.5
- P - - - - - -

Table 1: Branches explored and CPU time (seconds)
used to find a minimal length ruler (F) or prove that
none shorter exists (P). A - means that the run was cut
off after 105 branches.

ing from x2 (since x1 can be unconditionally assigned to
0). Constraint propagation on the ternary constraints
will assign the auxiliary variables. We tried the smallest
domain dynamic variable ordering heuristic on a vari-
ety of different sets of search variables, but were unable
to beat a simple lexicographic heuristic that builds up
the ruler from one end.

Table 1 shows that the quaternary model is much
less efficient than the ternary models, both in terms of
branches explored and CPU time. Introducing auxil-
iary variables is in practice very worthwhile for these
problems. With the ternary models, making the alldiff
constraint GAC gives the smallest search tree. On the
smaller problems, runtimes are not always shorter than
if binary 6= constraints are used, but on the larger prob-
lems the savings are considerable, particularly when
proving optimality.

Binary encodings

An alternative strategy for solving a non-binary model
is to encode it into a binary model using one of the stan-
dard encodings such as the hidden variable or the dual
encoding (Bacchus & van Beek 1998; Stergiou & Walsh
1999b). In the case of Golomb rulers, the double en-
coding introduced in (Stergiou & Walsh 1999b) is more
practical than the dual encoding. The double encoding
combines together all the constraints from the dual and
the hidden variable encodings. In a dual encoding, the
dual variables associated with either the all-different
constraint or the binary not-equals constraints have
such large domains that we cannot afford to enforce
arc consistency. In a double encoding, whilst we use
dual variables associated with the ternary constraints,
we can ignore the dual variables associated with the
all-different constraint or the binary not-equals con-
straints as they are redundant. This makes it compu-
tationally feasible to use the double encoding. Finally,
whilst encodings of models with ternary constraints are
practical, encodings of the quaternary constraints have
domains which are prohibitively large. We therefore
looked at four new models.

hidden variable + all-different model: each
ternary constraint is replaced by a hidden vari-
able with domain of size O(l2); we also post a

single all-different constraint between the auxiliary
variables;

hidden variable + not-equals model: again each
ternary constraint is replaced by a hidden variable;
we also post binary not-equals constraints between
the auxiliary variables; this model contains purely
binary constraints;

double encoding + all-different model: again
each ternary constraint is replaced by a hidden
variable; we also post compatibility constraints
between hidden variables that share variables, and a
single all-different constraint between the auxiliary
variables;

double encoding + not-equals model: again each
ternary constraint is replaced by a hidden variable;
we also post compatibility constraints between hid-
den variables that share variables, and binary not-
equals constraints between auxiliary variables; this
model contains purely binary constraints.

It was not feasible to find optimal rulers using the
binary encodings as this requires setting l to some large
initial value, and the domain size of the hidden variables
is then prohibitively large. Instead, we have used the
known optimal rulers to compare the encodings. We
first find a ruler with length equal to the optimal length,
and then show that there is no shorter ruler. Table 2
compares the models in which all the constraints are
binary with the ternary and not-equals model.

m l hidden + 6= double + 6= ternary + 6=
br. CPU br. CPU br. CPU

6 17 5 0.150 5 0.473 5 0.052
6 16* 36 0.304 32 0.912 36 0.109
7 25 18 0.645 17 3.70 18 0.251
7 24* 286 3.13 237 11.9 286 1.18
8 34 45 2.34 45 21.2 45 0.964
8 33* 2015 31.4 1461 117 2012 12.1
9 44 708 22.0 506 147 705 8.51
9 43* 12822 302 8846 1180 12815 115

Table 2: Branches explored and CPU time (seconds)
used to find a ruler of length no more than l or prove
that none exists, using lexicographic ordering. * indi-
cates that there is no ruler of this length.

Fewer branches are explored in the double than in
the hidden encoding. The hidden encoding gives very
similar results, in terms of the size of the search tree, to
the ternary model with GAC. However, the CPU times
tell a different story. Both the binary encodings, and
especially the double, are far worse than the ternary
model. This is not surprising as arc consistency takes
longer to enforce in the binary encodings due to the
large domain sizes. Results are similar (though slightly
better) with the models using all-different constraints:
the double encoding gives the best results in terms of
the number of branches explored, but the worst CPU
times.

Implied constraints

As Theorem 4 suggests, one route to improved perfor-
mance is to add implied constraints to the model. Al-
though implied constraints can often significantly re-

duce runtimes (e.g. (Proll & Smith 1998; Regin 1998)),
choosing useful implied constraints remains an art. We
can, however, state two basic criteria. First, we require
either implied constraints for which specialized and ef-
ficient constraint propagation algorithms are available,
or constraints of small arity. Second, circumstances in
which an implied constraint leads to pruning of addi-
tional values should be obvious and frequent. However,
whilst these criteria are desirable, they are not suffi-
cient as implied constraints must offer enough pruning
to offset their overheads. This is hard to predict with-
out experimentation. For instance, the implied con-
straints of Theorem 4 satisfy the two criteria, but do
not justify their overhead. In the rest of this section,
we consider other implied constraints, and their effect
when added to the current best model, i.e. the ternary
and all-different model with lexicographic variable or-
dering.

Ordering of Auxiliary Variables

For all i < j < k, we can post the implied constraints
dij < dik and djk < dik. These implied constraints
are binary, and hence cheap to propagate. It is also
easy to see that they can lead to domain reductions not
achievable otherwise. However, experiments show that
they only reduce the size of the search tree modestly,
and do not reduce runtimes on larger problems.

Tighter Bounds on Auxiliary Variables

Since dij = di,i+1 + di+1,i+2 + . . . + dj−1,j , and each of
term in this sum is different, dij must at least equal the
sum of the first j−i integers, i.e. dij ≥ (j−i)(j−i+1)/2.
We can tighten this bound further as a subsection of the
ruler, i.e. from mark i to mark j, must itself form a (not
necessarily optimal) Golomb ruler of j − i + 1 marks.
Therefore, dij ≥ lj−i+1 where lk is the optimal length
of a k mark ruler. Both these implied constraints are
cheap to implement as they are unary.

Another bound on the auxiliary variables comes from
the constraint xn = d12 + d23 + . . . + dn−1,n. That is,
dij = xn−(d12+d23+. . .+di−1,i+dj,j+1+. . .+dn−1,n).
The RHS is xn less the sum of n − 1 − j + 1 different
integers. So we can maximize the RHS by minimizing
this sum. This gives the implied constraint dij ≤ xn −
(n − 1 − j + i)(n − j + i)/2. This is again efficient
to implement as it is binary. As xn is reduced, the
constraint gets tighter, and so becomes more effective
as we approach the minimal length.

Table 3 shows the significant benefits of adding these
bounds to the model, with and without the ordering
constraints described in the last section. On the larger
problems, search space and runtimes are significantly
reduced. Because of the smaller domains, CPU time
reduces on the smaller problems even when the number
of branches remains constant. The ordering constraints
on the auxiliary variables continue to offer little benefit.

Dynamic Bounds on Auxiliary Variables

By adding implied constraints dynamically during
search, we can post even tighter bounds on the aux-

m ternary + alldiff + tighter bounds + tighter bounds +
ordering constraints

br. CPU br. CPU br. CPU
7 - F 26 0.033 26 0.032 26 0.038

- P 84 0.118 54 0.051 54 0.063
8 - F 98 0.124 98 0.128 98 0.160

- P 599 1.23 385 0.503 385 0.635
9 - F 816 1.56 718 1.17 718 1.47

- P 2924 9.69 1751 3.61 1751 4.48
10 - F 9757 24.3 7971 17.1 7948 21.3

- P 13707 68.3 7812 24.0 7807 29.5
11 - F 31666 94.5 29251 80.8 29190 108

- P 343220 2000 252985 1020 252577 1300

Table 3: Branches explored and CPU time to find a
minimal length ruler (F) or prove that none shorter ex-
ists (P), with and without tighter bounds on the auxil-
iary variables.

iliary variables. For example, if we have assigned 1
and 3 to x2 and x3, then any auxiliary variable dij for
i ≥ 2 must be at least the sum of j − i different inte-
gers excluding 1, 2 and 3, the values already assigned.
We have implemented a limited form of propagation for
this type of implied constraint. We record the largest
mark so far assigned (xmax) and the values assigned to
the auxiliary variables. For all m > max, we calculate
the sum of the m − max smallest integers which have
not yet been assigned to auxiliary variables, and post
a constraint on this branch of the search tree that the
value of dmax,m must be at least this sum.

m ternary + alldiff +
+ tighter bounds + dynamic bounds
br. CPU br. CPU

7 - F 26 0.032 25 0.032
- P 57 0.051 50 0.049

8 - F 98 0.128 80 0.111
- P 385 0.503 355 0.480

9 - F 718 1.17 509 0.822
- P 1751 3.61 1564 3.41

10 - F 7971 17.1 5428 12.0
- P 7812 24.0 6810 22.1

11 - F 29251 80.8 19211 53.6
- P 252985 1020 224636 967

Table 4: Branches explored and CPU time to find a
ruler of minimal length (F) or prove that none shorter
exists (P), with and without the dynamic bounds on
the auxiliary variables.

Table 4 shows that adding this implied constraint dy-
namically to the model during search gives the best re-
sults so far. Except for the smallest problems, there are
significant reductions in both the number of branches
explored and CPU time.

2-d Golomb rulers

In the next two sections, we see how these results map
onto related problems. We first consider 2-d Golomb
rulers with two layers, each of which is a 1-d ruler,
with marks at x1, x2, . . . xm and y1, y2, . . . ym respec-
tively. As before we introduce auxiliary variables to
represent the pairwise distances between the marks in
each layer, as well as the distances |xi − yi|. We add
a symmetry constraint x2 − x1 < xm − xm−1 on the
first layer, as before, but we cannot add a similar con-
straint on the second. However, there is a symmetry
between the two layers, and we can break this by adding
x2 − x1 < y2 − y1.

As in the 1-d case, the quaternary model is very in-
efficient compared to the ternary and all-different one,
which again is the best model. The hidden variable rep-
resentation reduces the search space substantially but
again the CPU times are much worse. Since each layer
is itself a (not necessarily optimal) 1-d Golomb ruler,
we can use all the implied constraints introduced in the
last section. However, now they have very little effect
on the number of fails and are more expensive in terms
of cpu time. The minimum length is much greater than
in the 1-d case for the same value of m, and hence the
lower bounds provided by the implied constraints are
much less effective.

Variable ordering again has a significant effect on per-
formance, and the smallest domain heuristic once more
performs poorly. Table 5 gives the number of branches
explored and the CPU time used (on a 166MHz Pen-
tium) to find and prove optimal 2-d Golomb rulers with
two layers, each with m marks, with different vari-
able orderings. In all cases, the search variables are
those representing the marks. We compare the dynamic
smallest domain ordering with two static orderings; in
one, the marks from the first layer are assigned and
then those from the second; in the other, marks from
two layers are assigned alternately. As in the 1-d case,
building up each layer successively is much quicker than
the dynamic ordering, but it is better to build up both
layers in parallel than to complete one layer first. This
allows the distances between the layers to be assigned
at the same time.

m smallest dom. x2, .., xm, y2, ..., ym x2, y2, ..., xm, ym

br. CPU br. CPU br. CPU
3 - F 3 0.049 1 0.038 1 0.036

- P 9 0.058 9 0.057 5 0.047
4 - F 89 0.44 78 0.15 32 0.070

- P 419 0.45 395 0.48 199 0.23
5 - F 2929 4.19 2217 3.7 1479 1.84

- P 21069 36 19510 35 7719 11

Table 5: Branches explored and CPU time to find a
minimal length 2-d Golomb ruler with two layers (F) or
prove that none shorter exists (P), with different vari-
able orderings.

Note that these problems are much harder to solve
than 1-d Golomb rulers. Our fastest model takes more
than 15 minutes to find and prove an optimal solution
for m = 6, and we have not been able to prove optimal-
ity for m = 7.

Circular Golomb rulers

Circular or modular Golomb rulers can be thought
of as a number of marks arranged on the circum-
ference of a circle in such a way that the distances
between any pair of marks, in either direction along
the circumference, are different. The problem of
finding a minimal length ruler for a given num-
ber of marks is different in several respects from
the linear problem. Solutions can be constructed
(see http://www.research.ibm.com/people/s/
shearer/ mgrule.html for an account) and if m − 1
is a prime power, there is a perfect ruler, i.e. every

intermediate length occurs. This is very different from
the linear case, where perfect rulers are extremely rare.
Although search will not be a good approach to finding
solutions to these problems, it is instructive to consider
the issues that arise when modelling them as CSPs.

With a circular Golomb ruler, we can ignore the vari-
ables associated with the marks, and assign instead
search variables d0, . . . , dm−1 to represent the distance
between adjacent marks. In this sense, the ternary
models of circular Golomb rulers are more fundamental
than the quaternary models. We break the rotational
and reflective symmetry by insisting that d0 = 1 and
d1 < dm−1.

We also define a set of composite distances be-
tween every pair of non-adjacent marks: di,j = di +
d(i+1) mod m+. . .+d(i+k) mod m, where (i+k) mod m =
j, for all i 6= j between 0 and m − 1. To express the
constraint that the circumference of the ruler is mini-
mal, we introduce an objective variable l constrained to
equal d0+d1+. . .+dm−1. This is the basic model whose
results are shown below in Table 6, using lexicographic
ordering of the search variables.

Because of the large arity of the constraint defining
l and of some of the constraints defining the compos-
ite distances, we introduced new ternary constraints
expressing the composite distances and l in terms of
one of the basic distances and a shorter composite dis-
tance. This gives in general two constraints for di,j :
di,j = di +d(i+1) mod m,j and di,j = di,(j−1) mod m +dj ,
and m constraints for l, one for every basic distance.
The effect of these implied constraints is shown in the
second column of Table 6: there is a significant sav-
ing in both the number of branches and CPU time, for
larger problems.

We can also use the lower bounds derived earlier for
linear rulers, based on the fact that each composite dis-
tance is at least the sum of a number of different inte-
gers. However, adding these bounds makes virtually no
difference to the number of branches.

The third column of Table 6 shows the effect of mak-
ing the all-different constraint GAC. The arity of the
all-different constraint, for the same number of marks,
is much higher than with a linear ruler, so making the
constraint GAC is more expensive. The Table shows
that it is not worthwhile, in terms of CPU time, for
finding the optimal solution. However, it does allow
optimality to be proved very quickly, except for m = 7.
For the other values of m, the optimal ruler is per-
fect. Since there are m ∗ (m− 1) different distances be-
tween the marks, the length of a perfect circular ruler is
m∗ (m−1)+1. This could be included in the model as
a lower bound on l, and the proof of optimality would
be immediate, except for m = 7. The benefit of making
the all-different constraint GAC would then disappear.

Another difference between modelling the circular
and linear problems is that in this case the lexicographic
ordering d0, d1, . . . , dm−1 does not reflect the geometry
of the problem so well as in the linear case. Perhaps
for this reason, the smallest domain ordering performs

relatively well, solving some instances more quickly.
m basic model + implied constraints + alldiff

br. CPU br. CPU br. CPU
5 - F 22 0.067 19 0.044 16 0.161

- P 33 0.079 29 0.055 18 0.168
6 - F 10 0.082 9 0.049 8 0.215

- P 166 0.198 117 0.151 11 0.226
7 - F 724 0.941 333 0.516 297 1.07

- P 5523 6.32 2819 3.91 1889 5.61
8 - F 4042 8.08 1350 3.18 1146 4.66

- P 23109 43.3 8564 19.0 1150 4.68
9 - F 948 2.31 346 1.26 331 2.17

- P - - 336 2.23

Table 6: Effect of implied constraints and making the
all-different constraint GAC on branches explored and
CPU time to find a circular Golomb ruler of minimal
circumference (F) or prove that none shorter exists (P).

Related work

Nadel performed a study on various different ways of
modelling the n-Queens problem (Nadel 1990). In
CSPLib, Jean-Francois Puget reports finding a 12-mark
Golomb ruler using ILOG Solver in 2,042,001 branches,
and proving it optimal in a further 1,141,316 branches.
Our best model offers a significant improvement over
this result. With the ternary and all-different model
and implied constraints, we found an optimal 12-mark
solution in 1,398,327 branches, and needed just a fur-
ther 513,109 branches to prove it optimal. This is a
significant reduction in search effort. Auxiliary vari-
ables are important in modelling cryptarithmetic prob-
lems like SEND + MORE = MONEY. Large arithmetic
constraints such as these can be decomposed into more
useful ternary and quaternary constraints via auxiliary
variables that represent the “carries” (Brailsford, Potts,
& Smith 1999).

Conclusions

We have performed an extensive theoretical and empir-
ical analysis of different models for problems of distance
like 1-d, 2-d and circular Golomb rulers. We introduced
a number of different models with quaternary, ternary,
binary and all-different constraints. We proved that,
whilst the level of consistency achieved by GAC on the
quaternary and ternary models is incomparable in gen-
eral, the ternary models are strictly stronger than the
quaternary if we introduce some simple implied ternary
constraints. We also considered purely binary models
using hidden variables for the non-binary constraints.
Whilst these reduced the number of branches explored
as predicted by theory, they did not always give a re-
duction in runtime because of the cost of enforcing arc
consistency on hidden variables with large domains. We
also identified several sets of implied constraints, some
of which reduced both the number of branches explored
and the CPU time significantly. Our final models offer
dramatic improvement reducing, for instance, the time
to find an optimal 10–mark Golomb ruler 50-fold.

What general lessons can be learned from this study?
First, even simple problems can be modelled in many
different ways. Counting all possible encodings, this
study alone has identified fifteen possible models for the

Golomb ruler problem, although we have omitted some
of these from our experiments (in particular the binary
encodings of the quaternary models). If we include all
possible ways of adding the implied constraints, there
would be many more. Secondly, finding the best model
involves a trade-off between the arity of the constraints
and the efficiency with which we can reason about them.
The most effective model in this case study was not the
quaternary model but the ternary model with a sin-
gle, large, all-different constraint. Thirdly, the addition
of auxiliary variables and implied constraints can al-
low us to achieve higher levels of consistency. However,
identifying those implied constraints which will reduce
runtimes is not easy. Although we have suggested some
guidelines, our experience indicates that experiment is
often needed to tell whether a set of implied constraints
is worthwhile.

Acknowledgements

The third author is an EPSRC advanced research fel-
low. The authors are members of the APES research
group (http://www.cs.strath.ac.uk/˜apes) and wish to
thank the other members.

References

Bacchus, F., and van Beek, P. 1998. On the conversion
between non-binary and binary constraint satisfaction
problems. In Proceedings of AAAI-98, 311–318.

Brailsford, S. C.; Potts, C. N.; and Smith, B. M.
1999. Constraint Satisfaction Problems: Algorithms
and Applications. European Journal of O.R. 119:557–
581.

Mohr, R., and Masini, G. 1988. Good old discrete
relaxation. In Proceedings ECAI-88, 651–656.

Nadel, B. 1990. Representation Selection for Con-
straint Satisfaction: A Case Study using n-Queens.
IEEE Expert 5(3):16–24.

Proll, L., and Smith, B. 1998. ILP and constraint pro-
gramming approaches to a template design problem.
INFORMS Journal on Computing 10:265–277.

Régin, J.-C. 1994. A filtering algorithm for constraints
of difference in CSPs. In Proceedings of AAAI-94, 362–
367.

Regin, J.-C. 1998. Minimization of the number of
breaks in sports scheduling problems using constraint
programming. In Proceedings of the DIMACS Work-
shop on Constraint Programming and Large Scale Dis-
crete Optimization.

Stergiou, K., and Walsh, T. 1999a. The difference
all-difference makes. In Proceedings of IJCAI-99.

Stergiou, K., and Walsh, T. 1999b. Encodings of non-
binary constraint satisfaction problems. In Proceedings
of AAAI-99.

