Symmetry Breaking

Toby Walsh
NICTA and UNSW

Outline

- What
- What is symmetry?
- Why
- Why is symmetry a problem?
- How
- How do we deal with symmetry?

Apology

- Symmetry in constraint programming
- But similar ideas will apply to other domains:
- Combinatorial optimization
- Planning
- Search

Active research area

- SymCon'01 workshop, Cyprus 2001
- SymCon'02 workshop, Ithaca 2002
- SymCon'03 workshop, Kinsale 2003
- SymCon'04 workshop, Toronto 2004
- SymCon'05 workshop, Sitges 2005
- SymCon'06 workshop, Nantes 2006
- I st International Symmetry Conference, Edinburgh 2007

Symmetry

- Within objects
- Design an airplane
- Boeing 747 has reflection symmetry

Symmetry

- Between objects
- Scheduling problem
- Fleet of identical 747's

Graph colouring

- Variable for each county
- Italy, France, ...
- Values are colours
- Constraints
- Italy \neq Switzerland, Italy \neq France, ..

Graph colouring

- Proper colouring
- Italy=green
- France=blue
- Spain=red

Graph colouring

- Symmetric colouring
- Italy=blue
- France=red
- Spain=green

Graph colouring

- Symmetric colouring
- If there are m colours
- m ! symmetric solutions
$A \cdot U \cdot S \cdot T \cdot R \cdot A \cdot L \cdot I \cdot A$

Peaceable armies of coexisting queens

- Place 9 queens and I king of each colour on chessboard
- No piece to attack another of the opposite colour

Armies of queens

- Set of variables
- X[i,j] for the square on ith row, jth col
- Set of values
- \{white queen, black queen, empty\}

Armies of queens

- Set of constraints
- $X[i, j]=$ white queen $=>X[i, k] \neq b l a c k$ queen
- $X[i, j]=$ white queen $=>X[k, j] \neq$ black queen
- $X[i, j]=$ white queen $=>X[i+1, j+I] \neq b l a c k$ queen

Peaceable armies

- Gives this to a constraint solver
- Here's one solution!

Peaceable armies

- Symmetries of chessboard give other solutions
- horizontal reflection

Peaceable armies

- Symmetries of chessboard give other solutions
- horizontal reflection

Peaceable armies

- Symmetries of chessboard give other solutions
- vertical reflection

Peaceable armies

- Symmetries of chessboard give other solutions
- diagonal reflections

Peaceable armies

- Symmetries of chessboard give other solutions
- rotation 90 degrees

Peaceable armies

- Symmetries of chessboard give other solutions
- rotation 90 degrees

Peaceable armies

- Symmetries of chessboard give other solutions
- rotation 180 degrees

Peaceable armies

- Symmetries of chessboard give other solutions
- rotation 270 degrees

Peaceable armies

- Symmetries of pieces
- permute any pair of white (or black) queens
- permute all white pieces with black

Peaceable armies

- Difficult optimization problem
- Unique solution up to symmetry!
- 2,I06,9I0,3I0,400 symmetric solutions
- I/4 US national debt in \$

Peaceable armies

- Difficult optimization problem
- Unique solution up to symmetry!
- 2,I06,9I0,3I0,400 symmetric solutions
- Don't want to visit
 symmetric search states

Social golfers

- 32 golfers play once a week in a foursome
- Each week they want to meet 3 different people
- How many weeks can they play?

Social golfers

- II weeks is infeasible
- You meet 3 new players each week
- There are only 31 other players
- IO weeks is possible

Social golfers

- Difficult optimization problem
- Golfers symmetric
- Weeks symmetric
- Order of groups and of foursome irrelevant
- $32!\times 10!\times 8!\times 4$! symmetries $=$ 92398845553296669977|808443|74|60957 $440000000000=($ mass of Universe in kg)

Social golfers

- Simple generalization: (g,s,w) problem
- g groups
- groups of size s
- w weeks

Schoolgirl problem

- Proposed by Rev. Thomas Penyngton Kirkman in the "Ladies and Gentleman's diary" in 1850
- 15 girls walk in 5 groups of 3 each day for a week. How can the girls be arranged so they walk together
 with different girls?

Schoolgirl problem

- $(5,3,7)$ problem
- Special type of balanced incomplete block design
- Again lots of symmetry
- girls, groups, days, ...

Tournament scheduling

- Imagine scheduling an event like Ist round of World Cup
- Suppose 4 venues
- 8 teams
- 7 matches (or rounds)

Tournament scheduling

- Often lots of other constraints
- "Home" v"Away" matches
- TV rights

Tournament scheduling

- Set of variables
- Match[i,j] is match played in venue i on round j
- Set of values
- \{AvB, AvC, AvD, .. $\}$

Tournament scheduling

- Set of constraints
- Each team plays once in each round
- Each team plays every other team

Tournament scheduling

- Again lots of symmetry
- Venues
- Teams
- Rounds
- $4!\times 8!\times 7!=$ 4,877,107,200

Symmetry

- Scheduling
- Identical machines, orders
- Rostering
- Equally skilled workers
- Vehicle routing

- Identical trucks

Symmetry

- Define in terms of bijection on assignments
- Bijection is mapping $\sigma: A \rightarrow B$ that is:
- Injective: $\sigma(x)=\sigma(y) \Rightarrow x=y$
- Surjective (onto): $\forall b \in B \exists a \in A . \sigma(a)=b$
- Also known as permutation when $\mathrm{A}=\mathrm{B}$

Symmetry

- Bijection $\sigma: A \rightarrow A$
- $\mathrm{A}=\{$ <|taly,red>, <|taly,blue>, <France, red>, <France,blue>, ...\}
- $\sigma($ <ltaly, red> $>)=$ <ltaly,blue>
- $\sigma($ <ltaly,blue> $)=$ <ltaly,red>
- $\sigma($ <France, red>) $=$ <France,blue>

Symmetry in CP

- Solution symmetry
- Bijection on assignments that preserves solutions (and non-solutions)
- Constraint symmetry
- Bijection on assignments that preserves constraints

Symmetry in CP

- Solution symmetry
- even(XI + X2), even(X2+X3)
- consider $\sigma(\langle X 2, *\rangle)=\langle X 3, *\rangle$
- Constraint symmetry
- even(XI + X2), even(X2+X3), even(XI + X3)

Symmetry in CP

- Solution symmetry
- constraint symmetries \subset solution symmetries
- Constraint symmetry
- Often the type of symmetries found automatically (using graph isomorphism)

Rotation symmetry

- Symmetry is bijection, σ on assignments that preserves solutions
- 90 degree rotation
- $X[I, I]=$ white queen, $X[2,3]=$ black queen
.. => X[I,8]=white queen, X[3,7]=black queen ..

Permutation symmetry

- Symmetry is bijection, σ on assignments that preserves solutions
- Permute venues
- Match[I,I]=AvB, Match[2,I]=CvD ..=> Match[2, I]=AvB, Match[I, I]=CvD ..

Permutation symmetry

- Symmetry is bijection, σ on assignments that preserves solutions
- Permute teams
- Match[I,I]=AvB, Match[2,I]=CvD ..=> Match[I, I]=AvC, Match[2, I]=BvD ..

Types of symmetry

- Variable symmetry
- Value symmetry
- Variable/value symmetry

Types of symmetry

- Variable symmetry
- Only variables are changed
- E.g. rotations or reflections of chessboard
- $X[1, I]=>X[1,8], X[2,3]=>X[3,7]$
- Often represent this by permutation of variable indices
- (Z[I],Z[2],..) => (Z[б(I)],Z[б(2)],..)

Types of symmetry

- Value symmetry
- Only values are changed
- E.g. white queen => black queen
- E.g. AvB => AvC, CvD => BvD
- In general, (Z[I],Z[2],..) => ($\sigma(Z[I]), \sigma(Z[2]), .$.

Types of symmetry

- Symmetry can act on both variables and values simultaneously
- E.g. 90 degree rotation of 8 -Queens problem
- Row[I]=col2 => Row[2]=col8, ..

Set of symmetries

- Set of symmetries forms a group
- Symmetry breaking exploits group theory
- generators
- stabilizers

Groups

- Group is set of objects S, and a binary operation •
- closure: $\forall \mathrm{a}, \mathrm{b} \in \mathrm{S} . \mathrm{a} \bullet b \in \mathrm{~S}$
- associativity: $\forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{S} .(\mathrm{a} \cdot \mathrm{b}) \cdot \mathrm{c}=\mathrm{a} \cdot(\mathrm{b} \cdot \mathrm{c})$
- identity: $\exists e \in S \forall a \in S$. $e \cdot a=a \cdot e=a$
- inverse: $\forall \mathrm{a} \in \mathrm{S} \exists \mathrm{b} \in \mathrm{S}$. $\mathrm{a} \bullet \mathrm{b}=\mathrm{b} \bullet \mathrm{a}=\mathrm{e}$

Examples of groups

- C2:
- $\{\mathrm{e}, \mathrm{s}\}$ where $\mathrm{s} \cdot \mathrm{s}=\mathrm{e}$
- C4:
- $\left\{e, s, s^{2}, s^{3}\right\}$ where $s^{\bullet} \cdot{ }^{s}=s^{2}, s^{2} \cdot s=s^{3}, s^{3} \cdot s=e$

Examples of groups

- C2:
- \{id, reflect $\}$ where reflect•reflect=id
- C4:
- $\{i d, r 90, r 180, r 270\}$ where $r 90 \cdot r 90=r 180$, $r 180 \cdot r 90=r 270, r 270 \bullet r 90=i d$

Example of groups

- Group is set of symmetries S, and a binary operation • which is composition
- closure: since solution/constraints preserved
- associativity: composition is associative
- identity: leave assignments unchanged
- inverse: invert bijection

Permutation group

- Consider permutations of the set $\{1,2,3\}$
- e = identity, so e(I)=I,e(2)=2,e(3)=3
- $a=(12)$, so $a(I)=2, a(2)=I, a(3)=3$
- $b=(23)$, so $b(I)=I, b(2)=3, b(3)=2$
- $S 3=\{e, a, b, a b, b a, a b a\}$ forms a group under composition of permutations

Permutation group

- Consider value symmetry in 3 colouring from the set $\{r, g, b\}$
- e = identity
- $\mathrm{a}=(\mathrm{r} g)$
- $b=(g b)$
- $S 3=\{e, a, b, a b, b a, a b a\}$ gives the 6 possible permutations of the 3 colours

Group theory

- Generators
- $\{e, a, b\}$ generates $\mathrm{S} 3=\{\mathrm{e}, \mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{ba}, \mathrm{aba}\}$
- $a=(12), b=(23)$
- Not necessarily unique
- \{e,a,aba\} also generates S3
- $\mathrm{a}=(12), \mathrm{aba}=(\mid 3)$

Dealing with symmetry

- Don't want to visit symmetric search states
- "Identical" solutions
- "Identical" failing states
- How do we eliminate these from search?

Reformulation

- Change representation
- WhiteQueen[I]=(I,I), WhiteQueen[2]= (I,2), .., BlackQueen[I]=(5,7), ..
- $X[I, I]=$ white queen, $X[1,2]=$ white queen,
.., $X[5,7]=$ black queen

All interval series

- Order numbers 0 to n - I so that
- Each difference between neighbouring numbers occurs once
- E.g. 08 I 726354
- Diff: 8765432 I
- What symmetries does this problem have?

All interval series

- Order numbers 0 to n - I so that
- Each difference between neighbouring numbers occurs once
- E.g. 081726354
- Diff: 8765432 |
- Reversal symmetry:453627|80

All interval series

- Order numbers 0 to n - I so that
- Each difference between neighbouring numbers occurs once
- E.g. 081726354
- Diff: 8765432 |
- Complementation: 807 | 62534

Reformulation of AIS

- Cyclic view
- Order numbers 0 to n - I in a cycle
- Each difference I to n-I occurs
- E.g. 081726354
- Diffs: 8765432 | 4
- What symmetries does this now have?

Reformulation of AIS

Cyclic view

- Order numbers 0 to n-I in a cycle
- Each difference I to n-I occurs
- E.g. 081726354
- Diffs: 8765432 | 4
- Reversal symmetry

Reformulation of AIS

- Cyclic view
- Order numbers 0 to n-I in a cycle
- Each difference I to n-I occurs
- E.g. 081726354
- Diffs: 8765432 | 4
- Complementation symmetry

Reformulation of AIS

- Cyclic view
- Order numbers 0 to n-I in a cycle
- Each difference I to n-I occurs
- E.g. 081726354
- Diffs: 8765432 | 4
- Rotation symmetry

Reformulation of AIS

- Cyclic view
- Order numbers 0 to n - I in a cycle
- Each difference I to n-I occurs
- E.g. 081726354
- Diffs: 8765432 | 4
- Symmetry easily broken: sequence starts 0 n-I I

Reformulation of AIS

- E.g. 081726354
- Diffs: 8765432 | 4
- Given solution to cyclic view
- reverse: 453627 | 80
- complement: 807 I 62534
- both:

435261708

- common diff: 635408172 (and its symmetries)

Breaking symmetry

- Add symmetry breaking constraints
- Match[I,I]=AvB
- Match[2,I]=CvD

Rehearsal problem

- $\mathrm{X}[\mathrm{i}]=$ scene rehearsed in ith time slot
- Actors must arrive before their first scene and stay till their last scene
- Reflection symmetry
- Can reverse any rehearsal sequence
- Prevent this with constraint: $\mathrm{X}[\mathrm{I}]<\mathrm{X}[\mathrm{n}]$

LEX LEADER

- For variable symmetries, [Crawford et al. KR96] give general method:
- Pick order on vars: $\mathrm{X}[1]$ to $\mathrm{X}[\mathrm{n}]$
- For each variable symmetry σ, post LEX LEADER constraint:
- $(X[I], . . X[n]) \leq \operatorname{lex}(X[\sigma(I)], . . X[\sigma(n)])$

Lexicographical order

- (YI,Y2,...) $\leq \operatorname{lex}(Z \mathrm{I}, \mathrm{Z} 2, .$.$) iff$
- YI<ZI or
- $\mathrm{Y}|=\mathrm{Z}| \&(Y 2, \ldots.) \leq \operatorname{lex}(Z 2, \ldots)$
- Order used in dictionaries, etc
- (I, I, 2, I , 2,3, I..) $\leq \operatorname{lex}(I, I, 3, I, 3,2, I, .$.
- Linear time propagator [Frisch, Hnich, Kiziltan, Miguel,Walsh CP02]

Rehearsal problem

- $\mathrm{X}[\mathrm{i}]=$ scene rehearsed in ith time slot
- Actors must arrive before their first scene and stay till their last scene
- Reflection symmetry
- Can reverse any rehearsal sequence
- $(X[I], . . X[n]) \leq_{\operatorname{lex}}(X[n], . . X[I])$
- Simplifies to $X[1]<X[n]$

Non-attacking queens

- $X[i, j] \in\{$ white queen, black queen, empty\}
- 90 rotation symmetry
$\begin{aligned} \bullet & (X[I, I], X[I, 2], . ., X[I, 8], X[2, I], . ., X[2,8], . .) \leq_{\text {lex }} \\ & (X[8, I], X[7, I], . ., X[I, I], X[8,2], ., X[I, 2], . .)\end{aligned}$

Non-attacking queens

- $X[i, j] \in\{$ white queen, black queen, empty\}
- 180 rotation symmetry
$\bullet(X[I, I], X[I, 2], ., X[I, 8], X[2, I], ., X[2,8], ..) \leq_{\text {lex }}$
$(X[8,8], X[8,7], . ., X[8, I], X[7,8], ., X[7, I], .$.

Non-attacking queens

- $X[i, j] \in\{$ white queen, black queen, empty\}
- 270 rotation symmetry
$\bullet(X[I, I], X[I, 2], ., X[1,8], X[2, I], ., X[2,8], ..) \leq_{\text {lex }}$
$\quad(X[1,8], X[2,8], . ., X[8,8], X[1,7], ., X[8,7], .$.

Non-attacking queens

- $X[i, j] \in\{$ white queen, black queen, empty\}
- horizontal reflection

$$
\begin{aligned}
\bullet & (X[I, I], X[I, 2], . ., X[I, 8], X[2, I], ., X[2,8], . .) \leq \operatorname{lex} \\
& (X[8, I], X[8,2], . ., X[8,8], X[7, I], . ., X[7,8], . .)
\end{aligned}
$$

Non-attacking queens

- $X[i, j] \in\{$ white queen, black queen, empty\}
- vertical reflection

$$
\begin{aligned}
\bullet & (X[I, I], X[I, 2], . ., X[I, 8], X[2, I], . ., X[2,8], . .) \leq \operatorname{lex} \\
& (X[I, 8], X[I, 7], . ., X[I, I], X[2,8], . ., X[2, I], . .)
\end{aligned}
$$

LEX LEADER method

- Three challenges
- Extend method to work with other types of symmetry (e.g. value symmetries)
- Deal with exponential number of symmetries
- Conflict between branching heuristic and symmetry breaking constraints

Variable symmetry

- Bijection σ on vars which maps solutions onto solutions
- E.g. reflection symmetry: $X[I] \rightarrow X[n], X[2] \rightarrow X[n-I], \ldots$
- LEX LEADER method
- E.g. $(X[I], . . X[n]) \leq \operatorname{lex}(X[n], . . X[I])$

Value symmetry

- Bijection ϑ on values which maps solutions onto solutions
- E.g. suppose two scenes have same actors, then can permute these two scenes (=values) in any rehearsal
- LEX LEADER method
- $(X[I], . . X[n]) \leq \operatorname{lex}(\vartheta(X[I]), . . \vartheta(X[n]))$

Value symmetry

- Puget's propagator
- Construct symmetric assignment:
- E.g. Element(X[i], [Э(I),..७(m)],Y[i])
- Lex ordering result
- $(X[I], . X[n]) \leq \operatorname{lex}(Y[I], . . Y[n])$
- But does not acheive GAC!

Value symmetry

- Linear time GAC propagator
- X[I] X[2] .. X[n] Slex $\vartheta(X[1]) \quad \vartheta(X[2]) \quad . . \vartheta(X[n])$ $B[I]=0 \quad B[2] \quad . . \quad B[n] \quad B[n+I]$
- Post C(X[i],B[i],B[i+I]) where
- $B[i]=B[i+I]=0$ and $X[i]=\vartheta(X[i])$, or
- $B[i]=0, B[i]=1$ and $X[i]<\vartheta(X[i])$, or
- $B[i]=B[i+1]=1$
- Example: X[I]

Var and value

symmetry

- Bijection σ on vars, and bijection ϑ on values that maps solutions to solutions
- E.g. reversal of rehearsal (var symmetry) and permutation of scenes (val symmetry)
- LEX LEADER method
- $(X[1], . . X[n]) \leq \operatorname{lex}(\vartheta(X[\sigma(I)]), . . \vartheta(X[\sigma(n)]))$

Var/value symmetrey

- Symmetries may act simultaneously on vars and values
- Cannot be decomposed into bijection on vars, and bijection on values
- E.g. in n queens problem, rotate 90° : $X[i]=j \rightarrow X[j]=n-i+1$
- Bijection on (vars,values)
- E.g. $\sigma(\mathrm{i}, \mathrm{j})=\mathrm{j}, \mathrm{n}-\mathrm{i}+\mathrm{I}$

Var/value symmetrey

- Not all (partial) assignments map onto proper (partial) assignments
- E.g. $X[I]=I, X[2]=I . . \rightarrow X[I]=n, X[I]=n-I .$.
- LEX leader method
- Admissible([X[I],..X[n]]) \&
(X[I],..X[n]) $\leq \operatorname{lex} \sigma(X[I], . . X[n])$

Lots of symmetries

- LEX LEADER method posts one constraint per symmetry
- Can be exponential number of symmetries
- E.g. m indistinguishable values gives m ! value symmetries
- How can we deal efficiently and effectively with such situations?

Modifying search

- Avoid visiting symmetric states
- SBDS (symmetry breaking during search)
- SBDD (symmetry breaking by dominance detection)
- GE-trees (group equivalence trees)

Modifying search

- Symmetry Breaking During Search
- add a constraint at each node to rule out symmetric equivalents in the future
- Symmetry Breaking by Dominance Detection
- check each node before entering it, to make sure you have not been to an equivalent in the past

SBDS

- Branch
- Given assignments so far $\mathrm{X}[1]=\mathrm{a}[\mathrm{I}], .$. , $\mathrm{X}[\mathrm{k}-\mathrm{I}]=\mathrm{a}[\mathrm{k}-\mathrm{I}]$
- Try X[k]=b

SBDS

- Branch
- Given assignments so far $\mathrm{X}[1]=\mathrm{a}[1], .$. , $\mathrm{X}[\mathrm{k}-\mathrm{I}]=\mathrm{a}[\mathrm{k}-\mathrm{I}]$
- Try X[k]=b, if this fails
- Post X[k] $\neq \mathrm{b}$

SBDS

- Branch
- Given assignments so far X[I]=a[I], .. , X[k-I]=a[k-I]
- Try X[k]=b, if this fails
- Post $X[k] \neq b$, and don't visit a symmetric state to the last branch

SBDS

- Branch
- Given assignments so far $X[I]=a[I], .$. , $\mathrm{X}[\mathrm{k}-\mathrm{I}]=\mathrm{a}[\mathrm{k}-\mathrm{I}]$
- Try X[k]=b, if this fails
- Post $X[k] \neq \mathrm{b}$, if $\sigma(\mathrm{X}[\mathrm{I}]=\mathrm{a}[\mathrm{I}])$ \& ...

$$
\sigma(X[k-I]=a[k-I]) \text { then } \neg \sigma(X[k]=b)
$$

SBDS

- E.g. reflection symmetry
- Given assignments so far $X[I]=a[1], .$. , X[k-I]=a[k-I]
- Try X[k]=b, if this fails
- Post $X[k] \neq b$, if $X[n]=a[1]$ \& ... $X[n-k+2]=a[k]$ then $X[n-k+1] \neq b$

SBDS

- +ve
- Does not conflict with branching heuristics
- -ve
- Need to post symmetry breaking constraint for each symmetry
- In general, may be exponential number of symmetries

SBDD

- Fahle, Schamberger, Sellmann, 200 I
- Foccaci, Milano, 200I
- prefigured by Brown, Finkelstein, Purdom, I988
- do not search a node if you have searched its equivalent before
- check before entering a node

SBDD

- +ve
- Does not conflict with branching heuristic
- -ve
- Need to code dominance detection
- Only "forward checking"
- Can take exponential time on problems static methods solve without search

Special cases

- Value symmetry
- Interchangeable values
- Variable symmetry
- Row and column symmetry

Interchangeable values

- Often we have some (sub)set of values which can be freely interchanged
- \{golfer I, golfer2,...\}
- \{white queen, black queen\}
- Given solution, we can uniformly swap values

Interchangeable values

- Often we have some (sub)set of values which can be freely interchanged
- \{golfer I, golfer2,...\}
- \{white queen, black queen\}
- If there are m values, m ! symmetries
- But we can deal with them efficiently and effectively!

Interchangeable variables

- Often we have some (sub)set of variables which can be freely interchanged
- Queen[I]=(I,2), Queen[2]=(4,3), ..
- Easy to break this symmetry!
- Order variables, Queen[1] < Queen[2] <

Interchangeable vars and values

- Sometimes we can have both interchangeable variables and values
- Consider graph colouring
- Nodel = red, Node2 = blue, ..
- Suppose Nodel and Node2 have the same neighbours

Interchangeable vars and values

- Sometimes we can have both interchangeable variables and values
- Consider pigeonhole problem
- Hole I = pigeon I, Hole2 = pigeon3, ..
- Holes and pigeons all interchangeable

Row and col

symmetries

- Many problems can be modelled with matrix of decision variables
- Combinatorial problems like BIBD
- Rows and cols can be freely permuted

| 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 | 1 | 0 | 0 |

Row and col

symmetries

- Many problems can be modelled with matrix of decision variables
- Scheduling problems like social golfer
- Group[i,j] are golfers playing in ith group on week j

- Rows and cols can be freely permuted

Row and col

symmetries

- Many problems can be modelled with matrix of decision variables
- Production planning problems
- Order[i,j,k]=I iff order i goes on machine j in shift k
- Rows and cols can be (partially) permuted

Row and col symmetries

- If we have a n by m matrix of decision variables
- m!n! row and col symmetries
- However, as we shall see later, efficient and effective means to deal with this large number of symmetries
- Again uses the LEX constraint!

Outline

- What is symmetry?
- Bijection on assignments preserving solutions/ constraints
- Variable and value symmetry
- Two important special cases
- Interchangeable values
- Row and col symmetry

Outline

- Why is symmetry a problem?
- Increases size of search space!
- How do we deal with symmetry?
- Reformulate problem
- Add constraints
- LEX LEADER method
- Modify search
- SBDS, SBDD, GE-tree

Conclusions

- Symmetry occurs in many problems
- We must deal with it or face a combinatorial explosion!
- We have some generic methods (for small numbers of symmetries)
- In special cases, we can break all symmetries

Questions?

