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Outline

• What

• What is symmetry?

• Why

• Why is symmetry a problem?

• How

• How do we deal with symmetry?



Apology

• Symmetry in constraint programming

• But similar ideas will apply to other 
domains:

• Combinatorial optimization

• Planning

• Search

• ...



Active research area

• SymCon’01 workshop, Cyprus 2001

• SymCon’02 workshop, Ithaca 2002

• SymCon’03 workshop, Kinsale 2003

• SymCon’04 workshop, Toronto 2004

• SymCon’05 workshop, Sitges 2005

• SymCon’06 workshop, Nantes 2006

• 1st International Symmetry Conference, 
Edinburgh 2007



Symmetry

• Within objects

• Design an 
airplane

• Boeing 747 has 
reflection 
symmetry



Symmetry

• Between objects

• Scheduling problem

• Fleet of identical 747’s



Graph colouring

• Variable for each county

• Italy, France, ...

• Values are colours

• Constraints

• Italy≠Switzerland, 
Italy≠France, ..



Graph colouring

• Proper colouring

• Italy=green

• France=blue

• Spain=red



Graph colouring

• Symmetric colouring

• Italy=blue

• France=red

• Spain=green



Graph colouring

• Symmetric colouring

• If there are m colours

• m! symmetric 
solutions



Peaceable armies of 
coexisting queens

• Place 9 queens 
and 1 king of each 
colour on 
chessboard

• No piece to 
attack another of 
the opposite 
colour



Armies of queens

• Set of variables

• X[i,j] for the square on ith row, jth col

• Set of values

• {white queen, black queen, empty}



Armies of queens

• Set of constraints

• X[i,j]=white queen => X[i,k]≠black 
queen

• X[i,j]=white queen => X[k,j]≠black 
queen

• X[i,j]=white queen => X[i+1,j+1]≠black 
queen

• ...



Peaceable armies

• Gives this to a 
constraint solver

• Here’s one solution!



Peaceable armies

• Symmetries of 
chessboard give other 
solutions

• horizontal reflection



Peaceable armies

• Symmetries of 
chessboard give other 
solutions

• horizontal reflection



Peaceable armies

• Symmetries of 
chessboard give other 
solutions

• vertical reflection



Peaceable armies

• Symmetries of 
chessboard give other 
solutions

• diagonal reflections



Peaceable armies

• Symmetries of 
chessboard give other 
solutions

• rotation 90 degrees



Peaceable armies

• Symmetries of 
chessboard give other 
solutions

• rotation 90 degrees



Peaceable armies

• Symmetries of 
chessboard give other 
solutions

• rotation 180 degrees



Peaceable armies

• Symmetries of 
chessboard give other 
solutions

• rotation 270 degrees



Peaceable armies

• Symmetries of pieces

• permute any pair of 
white (or black) 
queens

• permute all white 
pieces with black



Peaceable armies

• Difficult optimization 
problem

• Unique solution up to 
symmetry!

• 2,106,910,310,400 
symmetric solutions

• 1/4 US national debt 
in $



Peaceable armies
• Difficult optimization 

problem

• Unique solution up to 
symmetry!

• 2,106,910,310,400 
symmetric solutions

• Don’t want to visit 
symmetric search 
states



Social golfers

• 32 golfers play 
once a week in a 
foursome

• Each week they 
want to meet 3 
different people

• How many weeks 
can they play?



Social golfers

• 11 weeks is infeasible

• You meet 3 new 
players each week

• There are only 31 
other players

• 10 weeks is possible



Social golfers

• Difficult optimization problem

• Golfers symmetric

• Weeks symmetric

• Order of groups and of foursome irrelevant

• 32! x10! x 8! x 4! symmetries = 
923988455532966699771808443174160957
440000000000 = (mass of Universe in kg)



Social golfers

• Simple generalization: (g,s,w) problem

• g groups

• groups of size s

• w weeks



Schoolgirl problem
• Proposed by Rev. 

Thomas Penyngton 
Kirkman in the “Ladies 
and Gentleman’s diary” 
in 1850

• 15 girls walk in 5 
groups of 3 each day 
for a week. How can 
the girls be arranged 
so they walk together 
with different girls? 



Schoolgirl problem
• (5,3,7) problem

• Special type of 
balanced 
incomplete 
block design

• Again lots of 
symmetry

• girls, groups, 
days, ...



Tournament scheduling

• Imagine scheduling an 
event like 1st round of 
World Cup

• Suppose 4 venues

• 8 teams

• 7 matches (or 
rounds)



Tournament scheduling

• Often lots of other 
constraints

• “Home” v “Away” 
matches

• TV rights

• ..



Tournament scheduling

• Set of variables

• Match[i,j] is match played in venue i on 
round j

• Set of values

• {AvB, AvC, AvD, ..}



Tournament scheduling

• Set of constraints

• Each team plays once in each round

• Each team plays every other team

• ...



Tournament scheduling

• Again lots of symmetry

• Venues

• Teams

• Rounds

• 4! x 8! x 7! = 
4,877,107,200



Symmetry

• Scheduling

• Identical machines, orders

• Rostering

• Equally skilled workers

• Vehicle routing

• Identical trucks



Symmetry

• Define in terms of bijection on assignments

• Bijection is mapping σ:A→B that is:

• Injective: σ(x)=σ(y) ⇒ x=y

• Surjective (onto): ∀b∈B ∃a∈A . σ(a)=b

• Also known as permutation when A=B



Symmetry

• Bijection σ:A→A

• A={ <Italy,red>, <Italy,blue>,  <France,red>, 
<France,blue>, ...}

• σ(<Italy,red>) = <Italy,blue>

• σ(<Italy,blue>) = <Italy,red>

• σ(<France,red>) = <France,blue>

• ..



Symmetry in CP

• Solution symmetry

• Bijection on assignments that preserves 
solutions (and non-solutions)

• Constraint symmetry

• Bijection on assignments that preserves 
constraints



Symmetry in CP

• Solution symmetry

• even(X1+X2), even(X2+X3)

• consider σ(<X2,*>) = <X3,*>

• Constraint symmetry

• even(X1+X2), even(X2+X3), even(X1+X3)



Symmetry in CP

• Solution symmetry

• constraint symmetries ⊂ solution 
symmetries

• Constraint symmetry

• Often the type of symmetries found 
automatically (using graph isomorphism)



Rotation symmetry

• Symmetry is bijection, σ on assignments 
that preserves solutions

• 90 degree rotation

• X[1,1]=white queen, X[2,3]=black queen 
.. =>  X[1,8]=white queen, X[3,7]=black 
queen ..



Permutation symmetry

• Symmetry is bijection, σ on assignments 
that preserves solutions

• Permute venues

• Match[1,1]=AvB, Match[2,1]=CvD ..=>         
Match[2,1]=AvB, Match[1,1]=CvD ..          



Permutation symmetry

• Symmetry is bijection, σ on assignments 
that preserves solutions

• Permute teams

• Match[1,1]=AvB, Match[2,1]=CvD ..=>         
Match[1,1]=AvC, Match[2,1]=BvD ..          



Types of symmetry

• Variable symmetry

• Value symmetry

• Variable/value symmetry



Types of symmetry

• Variable symmetry

• Only variables are changed

• E.g. rotations or reflections of chessboard

• X[1,1]=>X[1,8],  X[2,3]=>X[3,7]

• Often represent this by permutation of 
variable indices

• (Z[1],Z[2],..) => (Z[σ(1)],Z[σ(2)],..)



Types of symmetry

• Value symmetry

• Only values are changed

• E.g. white queen => black queen

• E.g.  AvB => AvC,  CvD => BvD

• In general, (Z[1],Z[2],..) => (σ(Z[1]),σ(Z[2]),..)



Types of symmetry

• Symmetry can act on both variables and 
values simultaneously

• E.g. 90 degree rotation of 8-Queens 
problem

• Row[1]=col2 => Row[2]=col8, ..



Set of symmetries

• Set of symmetries forms a group

• Symmetry breaking exploits group theory

• generators

• stabilizers

• ...



Groups

• Group is set of objects S, and a binary 
operation •

• closure: ∀a,b∈S . a•b∈S

• associativity: ∀a,b,c∈S . (a•b)•c=a•(b•c)

• identity: ∃e∈S ∀a∈S. e•a=a•e=a

• inverse: ∀a∈S ∃b∈S .  a•b=b•a=e



Examples of groups

• C2:

• {e,s} where s•s=e

• C4:

• {e,s,s2,s3} where s•s=s2, s2•s=s3, s3•s=e



Examples of groups

• C2:

• {id, reflect} where reflect•reflect=id

• C4:

• {id,r90,r180,r270} where r90•r90=r180, 
r180•r90=r270, r270•r90=id



Example of groups

• Group is set of symmetries S, and a binary 
operation • which is composition

• closure: since solution/constraints 
preserved

• associativity: composition is associative

• identity: leave assignments unchanged

• inverse: invert bijection



Permutation group

• Consider permutations of the set {1,2,3}

• e = identity, so e(1)=1, e(2)=2, e(3)=3

• a = (12), so a(1)=2, a(2)=1, a(3)=3

• b = (23), so b(1)=1,b(2)=3, b(3)=2

• S3 = {e,a,b,ab,ba,aba} forms a group under 
composition of permutations



Permutation group

• Consider value symmetry in 3 colouring 
from the set {r,g,b}

• e = identity

• a = (r g)

• b = (g b)

• S3 = {e,a,b,ab,ba,aba} gives the 6 possible 
permutations of the 3 colours



Group theory

• Generators

• {e,a,b} generates S3 = {e,a,b,ab,ba,aba}

• a=(1 2), b=(2 3)

• Not necessarily unique

• {e,a,aba} also generates S3

• a=(1 2), aba=(1 3)



Dealing with symmetry

• Don’t want to visit symmetric search states

• “Identical” solutions

• “Identical” failing states

• How do we eliminate these from search?



Reformulation

• Change representation

• WhiteQueen[1]=(1,1),  WhiteQueen[2]=
(1,2), .., BlackQueen[1]=(5,7), ..

• X[1,1]=white queen, X[1,2]=white queen, 
.., X[5,7]=black queen



All interval series

• Order numbers 0 to n-1 so that

• Each difference between neighbouring 
numbers occurs once

• E.g. 0 8 1 7 2 6 3 5 4 

• Diff: 8 7 6 5 4 3 2 1

• What symmetries does this problem 
have?



All interval series

• Order numbers 0 to n-1 so that

• Each difference between neighbouring 
numbers occurs once

• E.g. 0 8 1 7 2 6 3 5 4 

• Diff: 8 7 6 5 4 3 2 1

• Reversal symmetry: 4 5 3 6 2 7 1 8 0



All interval series

• Order numbers 0 to n-1 so that

• Each difference between neighbouring 
numbers occurs once

• E.g. 0 8 1 7 2 6 3 5 4 

• Diff: 8 7 6 5 4 3 2 1

• Complementation: 8 0 7 1 6 2 5 3 4



Reformulation of AIS

• Cyclic view

• Order numbers 0 to n-1 in a cycle

• Each difference 1 to n-1 occurs

• E.g.  0 8 1 7 2 6 3 5 4

• Diffs: 8 7 6 5 4 3 2 1 4

• What symmetries does this now have? 



Reformulation of AIS

• Cyclic view

• Order numbers 0 to n-1 in a cycle

• Each difference 1 to n-1 occurs

• E.g.  0 8 1 7 2 6 3 5 4

• Diffs: 8 7 6 5 4 3 2 1 4

• Reversal symmetry



Reformulation of AIS

• Cyclic view

• Order numbers 0 to n-1 in a cycle

• Each difference 1 to n-1 occurs

• E.g.  0 8 1 7 2 6 3 5 4

• Diffs: 8 7 6 5 4 3 2 1 4

• Complementation symmetry



Reformulation of AIS

• Cyclic view

• Order numbers 0 to n-1 in a cycle

• Each difference 1 to n-1 occurs

• E.g.  0 8 1 7 2 6 3 5 4

• Diffs: 8 7 6 5 4 3 2 1 4

• Rotation symmetry



Reformulation of AIS

• Cyclic view

• Order numbers 0 to n-1 in a cycle

• Each difference 1 to n-1 occurs

• E.g. 0 8 1 7 2 6 3 5 4

• Diffs: 8 7 6 5 4 3 2 1 4

• Symmetry easily broken: sequence starts 
0 n-1 1



Reformulation of AIS
• E.g. 0 8 1 7 2 6 3 5 4

• Diffs: 8 7 6 5 4 3 2 1 4

• Given solution to cyclic view

• reverse:        4 5 3 6 2 7 1 8 0

• complement: 8 0 7 1 6 2 5 3 4

• both:             4 3 5 2 6 1 7 0 8

• common diff:  6 3 5 4 0 8 1 7 2 (and its 
symmetries)



Breaking symmetry

• Add symmetry breaking constraints

• Match[1,1]=AvB

• Match[2,1]=CvD

• ...



Rehearsal problem

• X[i] = scene rehearsed in ith time slot

• Actors must arrive before their first 
scene and stay till their last scene

• Reflection symmetry

• Can reverse any rehearsal sequence

• Prevent this with constraint: X[1] < X[n]



LEX LEADER

• For variable symmetries, [Crawford et al. 
KR96] give general method:

• Pick order on vars: X[1] to X[n]

• For each variable symmetry σ, post LEX 
LEADER constraint: 

• (X[1],..X[n]) ≤lex (X[σ(1)],..X[σ(n)]) 



Lexicographical order

• (Y1,Y2,...) ≤lex (Z1,Z2,..) iff

• Y1<Z1 or 

• Y1=Z1 & (Y2,...) ≤lex (Z2,...)

• Order used in dictionaries, etc

• (1,1,2,1,2,3,1..) ≤lex (1,1,3,1,3,2,1,..)

• Linear time propagator [Frisch, Hnich, 
Kiziltan, Miguel, Walsh CP02]



Rehearsal problem

• X[i] = scene rehearsed in ith time slot

• Actors must arrive before their first 
scene and stay till their last scene

• Reflection symmetry

• Can reverse any rehearsal sequence

• (X[1],..X[n]) ≤lex (X[n],..X[1])

• Simplifies to X[1] < X[n]



Non-attacking queens

• X[i,j] ∈ {white queen, black queen, empty}

• 90 rotation symmetry

• (X[1,1],X[1,2],..,X[1,8],X[2,1],..,X[2,8],..)≤lex     
(X[8,1],X[7,1],..,X[1,1],X[8,2],..,X[1,2],..)



Non-attacking queens

• X[i,j] ∈ {white queen, black queen, empty}

• 180 rotation symmetry

• (X[1,1],X[1,2],..,X[1,8],X[2,1],..,X[2,8],..)≤lex     
(X[8,8],X[8,7],..,X[8,1],X[7,8],..,X[7,1],..)



Non-attacking queens

• X[i,j] ∈ {white queen, black queen, empty}

• 270 rotation symmetry

• (X[1,1],X[1,2],..,X[1,8],X[2,1],..,X[2,8],..)≤lex     
(X[1,8],X[2,8],..,X[8,8],X[1,7],..,X[8,7],..)



Non-attacking queens

• X[i,j] ∈ {white queen, black queen, empty}

• horizontal reflection

• (X[1,1],X[1,2],..,X[1,8],X[2,1],..,X[2,8],..)≤lex     
(X[8,1],X[8,2],..,X[8,8],X[7,1],..,X[7,8],..)



Non-attacking queens

• X[i,j] ∈ {white queen, black queen, empty}

• vertical reflection

• (X[1,1],X[1,2],..,X[1,8],X[2,1],..,X[2,8],..)≤lex     
(X[1,8],X[1,7],..,X[1,1],X[2,8],..,X[2,1],..)



LEX LEADER method

• Three challenges

• Extend method to work with other types 
of symmetry (e.g. value symmetries)

• Deal with exponential number of 
symmetries

• Conflict between branching heuristic and 
symmetry breaking constraints



Variable symmetry

• Bijection σ on vars which maps solutions 
onto solutions

• E.g. reflection symmetry:                        
X[1]→X[n], X[2]→X[n-1], ...

• LEX LEADER method

• E.g. (X[1],..X[n]) ≤lex (X[n],..X[1])



Value symmetry

• Bijection ϑ on values which maps solutions 
onto solutions

• E.g. suppose two scenes have same 
actors, then can permute these two 
scenes (=values) in any rehearsal

• LEX LEADER method

• (X[1],..X[n]) ≤lex (ϑ(X[1]),..ϑ(X[n]))



Value symmetry

• Puget’s propagator

• Construct symmetric assignment:

• E.g. Element(X[i], [ϑ(1),..ϑ(m)], Y[i])            

• Lex ordering result

• (X[1],..X[n]) ≤lex (Y[1],..Y[n])

• But does not acheive GAC!



Value symmetry
• Linear time GAC propagator

•   X[1]    X[2]    ..   X[n] ≤lex                          
ϑ(X[1])  ϑ(X[2])   .. ϑ(X[n])                                                                             
B[1]=0    B[2]    ..   B[n]     B[n+1]

• Post C(X[i],B[i],B[i+1]) where 

• B[i]=B[i+1]=0 and X[i]=ϑ(X[i]), or 

• B[i]=0, B[i]=1 and X[i]<ϑ(X[i]), or

• B[i]=B[i+1]=1

• Example: X[1]∈{1,2}, X[2]=2, σ(1)=2,σ(2)=1



Var and value 
symmetry

• Bijection σ on vars, and bijection ϑ on values 
that maps solutions to solutions

• E.g. reversal of rehearsal (var symmetry) 
and permutation of scenes (val symmetry)

• LEX LEADER method

• (X[1],..X[n]) ≤lex (ϑ(X[σ(1)]),..ϑ(X[σ(n)]))



Var/value symmetrey

• Symmetries may act simultaneously on vars 
and values

• Cannot be decomposed into bijection on 
vars, and bijection on values

• E.g. in n queens problem, rotate 90˚:        
X[i]=j → X[j]=n-i+1

• Bijection on (vars,values)

• E.g. σ(i,j)= j,n-i+1



Var/value symmetrey

• Not all (partial) assignments map onto proper 
(partial) assignments

• E.g. X[1]=1, X[2]=1 ..→ X[1]=n, X[1]=n-1 ..

• LEX leader method

• Admissible([X[1],..X[n]]) &                       
(X[1],..X[n]) ≤lex σ(X[1],..X[n])



Lots of symmetries

• LEX LEADER method posts one constraint 
per symmetry

• Can be exponential number of 
symmetries

• E.g. m indistinguishable values gives m! 
value symmetries

• How can we deal efficiently and effectively 
with such situations?



Modifying search

• Avoid visiting symmetric states

• SBDS (symmetry breaking during search)

• SBDD (symmetry breaking by dominance 
detection)

• GE-trees (group equivalence trees)



Modifying search

• Symmetry Breaking During Search

• add a constraint at each node to rule out 
symmetric equivalents in the future

• Symmetry Breaking by Dominance 
Detection

• check each node before entering it, to 
make sure you have not been to an 
equivalent in the past



SBDS

• Branch

• Given assignments so far X[1]=a[1], .. ,   
X[k-1]=a[k-1]

• Try X[k]=b



SBDS

• Branch

• Given assignments so far X[1]=a[1], .. ,    
X[k-1]=a[k-1]

• Try X[k]=b, if this fails

• Post X[k]≠b



SBDS

• Branch

• Given assignments so far X[1]=a[1], .. ,    
X[k-1]=a[k-1]

• Try X[k]=b, if this fails

• Post X[k]≠b, and don’t visit a symmetric 
state to the last branch



SBDS

• Branch

• Given assignments so far X[1]=a[1], .. ,   
X[k-1]=a[k-1]

• Try X[k]=b, if this fails

• Post X[k]≠b,  if σ(X[1]=a[1]) & ...          
σ(X[k-1]=a[k-1]) then ¬σ(X[k]=b)



SBDS

• E.g. reflection symmetry

• Given assignments so far X[1]=a[1], .. ,           
X[k-1]=a[k-1]

• Try X[k]=b, if this fails

• Post X[k]≠b,  if X[n]=a[1] & ...  X[n-k+2]=a[k] 
then X[n-k+1]≠b



SBDS

• +ve

• Does not conflict with branching 
heuristics

• -ve

• Need to post symmetry breaking 
constraint for each symmetry

• In general, may be exponential number of 
symmetries



SBDD

• Fahle, Schamberger, Sellmann, 2001

• Foccaci, Milano, 2001

• prefigured by Brown, Finkelstein, Purdom, 
1988

• do not search a node if you have searched its 
equivalent before

• check before entering a node



SBDD

• +ve

• Does not conflict with branching 
heuristic

• -ve

• Need to code dominance detection

• Only “forward checking”

• Can take exponential time on problems 
static methods solve without search



Special cases

• Value symmetry

• Interchangeable values

• Variable symmetry

• Row and column symmetry



Interchangeable values

• Often we have some (sub)set of values 
which can be freely interchanged

• {golfer1, golfer2,...}

• {white queen, black queen}

• Given solution, we can uniformly swap 
values



Interchangeable values

• Often we have some (sub)set of values 
which can be freely interchanged

• {golfer1, golfer2,...}

• {white queen, black queen}

• If there are m values, m! symmetries

• But we can deal with them efficiently and 
effectively!



Interchangeable 
variables

• Often we have some (sub)set of variables 
which can be freely interchanged

• Queen[1]=(1,2), Queen[2]=(4,3), ..

• Easy to break this symmetry!

• Order variables, Queen[1] < Queen[2] < 
..



Interchangeable vars 
and values

• Sometimes we can have both 
interchangeable variables and values

• Consider graph colouring

• Node1 = red, Node2 = blue, ..

• Suppose Node1 and Node2 have the 
same neighbours



Interchangeable vars 
and values

• Sometimes we can have both 
interchangeable variables and values

• Consider pigeonhole problem

• Hole1 = pigeon1, Hole2 = pigeon3, ..

• Holes and pigeons all interchangeable



Row and col 
symmetries

• Many problems can be 
modelled with matrix of 
decision variables

• Combinatorial problems 
like BIBD

• Rows and cols can be 
freely permuted

0 1 1 0 0 1 0
1 0 1 0 1 0 0
0 0 1 1 0 0 1
1 1 0 0 0 0 1
0 0 0 0 1 1 1
1 0 0 1 0 1 0
0 1 0 1 1 0 0 



Row and col 
symmetries

• Many problems can be 
modelled with matrix of 
decision variables

• Scheduling problems like 
social golfer

• Group[i,j] are golfers 
playing in ith group on 
week j

• Rows and cols can be 
freely permuted



Row and col 
symmetries

• Many problems can be 
modelled with matrix of 
decision variables

• Production planning 
problems

• Order[i,j,k]=1 iff order i 
goes on machine j in shift k

• Rows and cols can be 
(partially) permuted



Row and col 
symmetries

• If we have a n by m matrix of decision 
variables

• m!n! row and col symmetries

• However, as we shall see later, efficient and 
effective means to deal with this large 
number of symmetries

• Again uses the LEX constraint!



Outline

• What is symmetry?

• Bijection on assignments preserving solutions/
constraints

• Variable and value symmetry

• Two important special cases

• Interchangeable values

• Row and col symmetry



Outline
• Why is symmetry a problem?

• Increases size of search space!

• How do we deal with symmetry?

• Reformulate problem

• Add constraints

• LEX LEADER method

• Modify search

• SBDS, SBDD, GE-tree



Conclusions

• Symmetry occurs in many problems

• We must deal with it or face a 
combinatorial explosion!

• We have some generic methods (for small 
numbers of symmetries)

• In special cases, we can break all 
symmetries



Questions?




