Complexity & Symmetry

Toby Walsh NICTA and UNSW

Global constraints

- Capture common patterns
 - Alldifferent(XI,...,Xn)
 - Nvalues(N,XI,...,Xn)
 - Lex([XI,...,Xn],[YI,...,Yn])

Efficient & effective specialized propagators
 – Prune parts of search tree

Our hammer

- Use basic tools of computational complexity to study limits of
 - reasoning with global constraints
 - global constraints for breaking symmetry

COMPUTERS AND INTRACTABILITY A Guide to the Theory of NP-Completeness

Michael R. Garey / David S. Johnson

Limits of Global Constraints

- Enforce lesser consistency
- Constraints cannot be combined
- Constraints cannot be generalized
- Decomposition will hurt pruning

- Consider (generalized) arc-consistency
 - Every value for every variable can be extended to satisfy the constraint
 - That is, every value has support

- Similar results for other local consistencies
 - Bounds consistency for integer variables
 - Bounds consistency for set variables

- Global constraints are intractable

 ACSupport? is NP-complete
 Does this value have support?

 Consider C(X1,...,Xn)

 Where Xi=j implies Xj=true, Xi=-j implies Xj=false
 SAT in k vars, j clauses → C(X1,...,Xj+k)
 - XI to $Xk \in \{true, false\}$
 - ith clause is x1 v -x3 v x5 \rightarrow Xk+i \in {1,-3,5}
 - Consider reduction of: {x1, -x1 v x2}

- Global constraints are intractable
 - ACSupport? is NP-complete
 - Does this value have support?
 - MaxAC? is DP-complete
 - Are these domains the maximal arc-consistent domains?
 - DP is NP U coNP
 - Answers NP question: are these domains AC? Yes!
 - Answers coNP questions: is any smaller domain AC? No!

- Global constraints are intractable
 ACSupport? is NP-complete
 MaxAC? is DP-complete
- Even some specific constraints proposed in the past are intractable
 - NValues(N,XI,...Xn)
 - AtMostI(SI,...,Sn)

• • •

NValues

- NValues(N,XI,...,Xn)
 - N values used in XI,...,Xn
 - Useful for resource allocation
- Simple reduction of SAT to NValues
 - SAT problem in k vars, j clauses
 - $-Xi = \{i,-i\}$ for $1 \le i \le k$
 - $-X_{k+i} = \{1, -3, 5\}$ if *i*-th clause is: (x | v x3 v x5)
 - $N = \{n\}$
 - Consider reduction of: {x1, -x1 v x2}

NValues

- NValues(N,XI,...,Xn)
 - N values used in X1,...,Xn
 - Useful for resource allocation
- Simple reduction of SAT to NValues
 - Finding support (and hence enforcing arcconsistency) is NP-hard
 - Look to enforce *lesser* level of local consistency like bound consistency

Composing constraints

Take two tractable constraints

- E.g. Disjoint(S1,...,Sn) and FixedCard(S1,...,Sn)
- Could we combine them into one bigger global constraint?
 - E.g. FixedCardDisjoint(S1,...,Sn)
 - No, NP-hard to propagate!

GCC

- Take a tractable constraint
 - E.g. GCC([XI,..,Xn],[II,..,Im],[uI,..,um])
 - Value j occurs between lj and oj times in XI,...,Xn
- Generalize some constants to variables
 - E.g. GCC([XI,...,Xn],[OI,...,Om])
 - Value j occurs Oj times in XI,...,Xn
- NP-hard to make generalized arc-consistent
 - [Claude-Guy Quimper 2003]

GCC

- Reduction of I in 3 SAT on +ve clauses to GCC
 - If ith clause is $x | v x^3 v x^5$ then $Xi \in \{1,3,5\}$
 - Oj∈{0,k} where k is number of occurrences of xj in clauses
 - Consider {x | v x2 v x4, x2 v x3 v x4, x | v x3 v x4}

Decomposing constraints

- Consider a global constraint that is NP-hard to propagate
 - E.g. AtMost I (S1,...,Sn)
- Consider a decomposition into smaller constraints
 - $|-|Si \cap Sj| \le 1$ for all i<j
- If it is polynomial to propagate decomposition
 - decomposition must hinder propagation (assuming P≠NP)

Symmetry breaking

- Add (global) constraints to eliminate symmetries
 - E.g. lex order rows, lex order cols
- Can we break *all* row & col symmetry with a single global constraint?
 - Enforcing GAC on such a global constraint is NP-hard

Conclusions

- Computational complexity is a useful hammer to study global constraints
- Uncovers fundamental limits of reasoning with global constraints
 - Lesser consistency needs to be enforced
 - Decomposition hurts pruning

• • •

- Composition or generalization intractable
- Symmetry breaking is inherently limited