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Abstract

Symmetry is an important problem in many combinatorial
problems. One way of dealing with symmetry is to add con-
straints that eliminate symmetric solutions. We survey recent
results in this area, focusing especially on two common and
useful cases: symmetry breaking constraints for row and col-
umn symmetry, and symmetry breaking constraints for elim-
inating value symmetry.

Introduction
Symmetry occurs in many constraint satisfaction and
optimisation problems (Gent, Petrie, and Puget 2006). For
example, suppose we have a proper coloring of a graph,
and we permute the colors then we will obtain another
symmetric coloring. Symmetries are problematic as they
increase the size of the search space. We will waste time
visiting symmetric solutions. Worse still, we will waste
even more time visiting the (many failing) parts of the
search tree which are symmetric to already visited states.
A common and effective method to deal with symmetry is
to add constraints which eliminate some, but not all sym-
metric solutions (e.g. (Puget 1993; Crawford et al. 1996;
Shlyakhter 2001; Aloul, Sakallah, and Markov 2003;
Puget 2005c; Law and Lee 2006; Walsh 2006a)). In this
paper, we survey recent results on symmetry breaking
constraints. We hope that this survey is of wider interest as
many of the results are likely to translate to other domains
like planning, model checking and heuristic search.

Symmetry breaking constraints have a number of good
and bad properties. On the positive side, a few simple
constraints can often eliminate most if not all symmetry
in a problem quickly and easily. In addition, propagation
between the problem and the symmetry breaking con-
straints can reduce search considerably. On the negative
side, we pick out particular solutions in each symmetry
class, and this may conflict with the direction of the
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branching heuristic. An alternative to posting static sym-
metry breaking constraints is a more dynamic approach
that modifies the search method to ignore symmetric
states (Backofen and Will 1999; Gent and Smith 2000;
Fahle, Schamberger, and Sellmann 2001;
Sellmann and Hentenryck 2005; Puget 2006). The ad-
vantage of a dynamic method is that it can reduce the
conflict with the branching heuristic. However, we may also
get less propagation. The results reported here on static
symmetry breaking constraints typically have implications
for dynamic methods as most dynamic methods are equiva-
lent to adding static symmetry breaking constraints “on the
fly”.

There are several aspects of symmetry breaking that this
survey does not cover. We do not discuss methods to iden-
tify symmetry in a problem. See, for instance, (Puget 2005a;
Mears et al. 2008). We suppose that the symmetries are
known in advance as they often are, and our challenge
is merely to deal with them. The survey also does not
cover other active area of research like the intersection
of symmetry reasoning and nogood learning. See, for in-
stance, (Benhamou et al. 2010; Chu et al. 2011). For back-
ground material on constraint satisfaction in general, seea
text like (Rossi, van Beek, and Walsh 2006).

An Example
We consider a combinatorial problem studied in several ear-
lier works on symmetry breaking.

Running example: The Equidistant Frequency Permu-
tation Array (EFPA) problem (Huczynska et al. 2009) is a
challenging problem in coding theory. The goal is to find a
set ofv code words, each of lengthqλ such that each word
containsλ copies of the symbols 1 toq, and each pair of
code words is Hamming distanced apart. For example, for
v = 4, λ = 2, q = 3, d = 4, one solution is:

0 2 1 2 0 1
0 2 2 1 1 0
0 1 0 2 1 2
0 0 1 1 2 2

(a)

This problem has applications in communication theory, and
is related to other combinatorial problems like finding or-
thogonal Latin squares. We can model this problem by av
byqλ array of decision variables with domains1 to q.
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A symmetryof such a problem is a bijectionσ that
maps solutions onto solutions (Cohen et al. 2006). We con-
sider two special classes of symmetries:variable symmetries
which act just on variables, andvalue symmetrieswhich act
just on values. Both types of symmetry can be found in our
model of the EFPA problem.

Running example: This model of the EFPA problem has
variable symmetry since we can permute the variables in any
two rows, or in any two columns and still have a solution.
For example, we can swap the first column with the third
without changing the frequency of symbols in each row or
the Hamming distance between any two rows:

1 2 0 2 0 1
2 2 0 1 1 0
0 1 0 2 1 2
1 0 0 1 2 2

(b)

The model also has value symmetry since we can inter-
change values throughout any solution. For example, the
value symmetryθ swaps the value 0 with 2 throughout solu-
tion (a), again without changing the frequency of symbols in
each row or the Hamming distance between any two rows:

2 0 1 0 2 1
2 0 0 1 1 2
2 1 2 0 1 0
2 2 1 1 0 0

(c)

Symmetry Breaking Constraints
A simple but effective method to deal with symmetry is to
add constraints which eliminate some (but not all) symmet-
ric solutions in each symmetry class.

Running example: To eliminate the value symmetry in
the EFPA problem, we can add aPRECEDENCEconstraint
(Law and Lee 2004) to ensure that the values in the bottom
row occur in order. That is, the value 0 first occurs on the
bottom row before 1, and 1 first occurs before 2. The bottom
row of solution(a) is 001122 which satisfies this symmetry
breaking constraint. The value 0 first occurs in the first posi-
tion, the value 1 later on in the third position, and the value
2 even later on in the fifth position. Suppose we swap 0 with
2, then the bottom row of solution(a) becomes221100, the
bottom row of(c). This violates thePRECEDENCEsymme-
try breaking constraint. The value 1 first occurs in the third
position, which is before the first occurrence of the value 0
in the fifth position. Hence, by posting this symmetry break-
ing constraint, we only find solution(a), and the symmetric
solution(c) is eliminated.

Two important properties of symmetry breaking con-
straints are soundness and completeness. A set of sym-
metry breaking constraints issound iff it leaves at least
one solution in each symmetry class, andcompleteiff it
leaves at most one solution in each symmetry class. The
PRECEDENCEconstraint is, for example, sound and com-
plete. Where do symmetry breaking constraints like this
come from in general? The Lex-Leader method offers a
generic method for deriving a sound and complete set
of symmetry breaking constraints for variable symmetries

(Crawford et al. 1996) and value symmetries (Walsh 2007).
The method picks out the lexicographically smallest solu-
tion in each symmetry class. For every symmetryσ, it posts
a lexicographical ordering constraint:

〈X1, . . . , Xn〉 ≤lex σ(〈X1, . . . , Xn〉)

WhereX1 to Xn is some fixed ordering on the variables in
the problem.

Running example: Consider again the value symmetry,
θ that swaps 0 and 2. We can describe this by the mapping
θ(X) = 2−X . The Lex-Leader method eliminates this sym-
metry with the ordering constraint:

〈X1, . . . , X24〉 ≤lex 〈2 −X1, . . . , 2−X24〉

WhereX1 to X24 is some ordering of the 24 decision vari-
ables modelling our 4 by 6 instance of the EFPA problem.
This simplifies to:

〈X1, . . . , X24〉 ≤lex 〈1, . . . , 1〉

Suppose we order the variables in the matrix row-wise from
top left to bottom right. Then this constraint would accept
solution(a), but eliminate solutions(b) and(c).

Many static symmetry breaking constraints can be derived
from such Lex-Leader constraints. For example, PRECE-
DENCE constraints to break the symmetry due to inter-
changeable values can be derived from them (Walsh 2006b).
Efficient algorithms have been developed to propa-
gate lexicographical ordering constraints (Frisch et al. 2002;
Frisch et al. 2006; Katsirelos, Narodytska, and Walsh 2009;
Bessiere et al. 2011).

Symmetries of Symmetry Breaking
Constraints

One way of constructing new symmetry breaking constraints
is to use symmetry itself (Katsirelos and Walsh 2010). Any
symmetry acting on a set of symmetry breaking constraints
will itself break the symmetry in a problem. This requires
us to define the action of a symmetry on a set of symmetry
breaking constraints. We defined symmetry as acting on as-
signments, mapping solutions to solutions. We can lift this
definition to constraints. For example, the action of a vari-
able symmetry on a constraint changes the scope of the con-
straint (that is, the variables on which the constraint acts).

Theorem 1 ((Katsirelos and Walsh 2010))Given a set of
symmetriesΣ of C, if S is a sound (complete) set of symmetry
breaking constraints forΣ thenσ(S) for anyσ ∈ Σ is also
a sound (complete) set of symmetry breaking constraints for
Σ.

Different symmetries pick out different solutions in each
symmetry class. In fact, if we have a particular solution in
mind, we can pick it out using a suitable symmetry of a set
of symmetry breaking constraints. Letsol(C) be the set of
solutions of a set of constraintsC.

Theorem 2 ((Katsirelos and Walsh 2010))Given a set of
symmetriesΣ of a set of constraints C, a sound set S of sym-
metry breaking constraints, and any solution A of C, then
there is a symmetryσ ∈ Σ such thatA ∈ sol(C ∪ σ(S)).



Applying symmetry to a set of symmetry breaking con-
straints does not change the symmetries which are elimi-
nated. We say that a set of constraintsS breaksa symmetry
σ of a problemC iff there exists a solutionA of C ∪ S such
thatσ(A) is not a solution ofC ∪ S, andcompletely breaks
a symmetryσ iff for each solutionA of C ∪ S, σ(A) is not
a solution ofC ∪S. Given a symmetry groupΣ, we say that
a set of constraints (completely) breaksΣ iff it breaks every
non-identity symmetry inΣ.

Theorem 3 ((Katsirelos and Walsh 2010))Given a prob-
lem C and a symmetry groupΣ, if S (completely) breaks
Σ thenσ(S) (completely) breaksΣ for anyσ ∈ Σ.

We have used these ideas as the theoretical basis for a
hybrid symmetry breaking method that tries to have the best
of both worlds, posting static symmetry breaking constraints
dynamically during search according to the direction of the
branching heuristic (Katsirelos and Walsh 2010).

Intractability of Breaking Symmetry
The symmetry groups seen in practice can be very large. As
a result, symmetry breaking can be computationally chal-
lenging. For example, if we have aq interchangeable val-
ues (as in our EFPA model), then we haveq! symmetries.
To eliminate each of these symmetries requires a separate
Lex-Leader constraint. As a consequence, the Lex-Leader
method is not tractable in general. An alternative is to break
symmetry partially by posting just a subset of the Lex-
Leader constraints (e.g. (Jefferson and Petrie 2011)).

Crawford et al. (1996) proved that breaking symmetry
completely by adding constraints to eliminate symmetric
solutions is computationally intractable in general. More
specifically, they prove that, given a matrix model with row
and column symmetries, deciding if an assignment is the
smallest in its symmetry class is NP-hard where we append
rows together and compare them lexicographically. There is,
however, nothing special about appending rows together or
comparing assignments lexicographically. We could break
symmetry withanytotal ordering over assignments.

Recently we have shown that, under modest assumptions,
breaking symmetry remains intractable if we use a different
ordering of variables, or even a different ordering over solu-
tions than the lexicographical ordering. More precisely, we
show that the problem is NP-hard for anysimpleordering
where, given an assignment, we can compute the position in
the ordering in polynomial time and, in the reverse, given
a position in the ordering, we can compute the associated
assignment in polynomial time.

Theorem 4 ((Walsh 2011))Given any simple ordering,
there exists a symmetry group such that deciding if an as-
signment is smallest in its symmetry class according to this
ordering is NP-hard.

Since breaking symmetry appears intractable in gen-
eral, a major research direction is to identify special cases
which occur in practice where the symmetry group is more
tractable to break. We consider two such cases: row and col-
umn symmetry, and value symmetry.

Row and Column Symmetry
A matrix of decision variables hasrow symmetryiff given
a solution, any permutation of the rows is also a solution.
Similarly, it hascolumn symmetryiff given a solution, any
permutation of the columns is also a solution. For example,
our model of the EFPA problem has both row and column
symmetry. Row and column symmetry occurs in many mod-
els with matrices of decision variables (Flener et al. 2001a;
Flener et al. 2001b; Flener et al. 2002). We can break row
and and column symmetry using the Lex-Leader method.
However, this is not practical in general. An by m matrix
hasn!m! row and column symmetries, and each symmetry
would require a separate lexicographical ordering constraint.

To break all row symmetry, we can post a linear number of
constraints that lexicographically order the rows. Similarly,
to break all column symmetry we can post a linear number of
constraints that lexicographically order the columns. When
we have both row and column symmetry, we can post a
DOUBLELEX constraint that lexicographical orders both the
rows and columns (Flener et al. 2002). In fact, DOUBLELEX
constraints can be derived from a subset of the constraints
introduced by the Lex-Leader method (Flener et al. 2001a).
As a result, DOUBLELEX does not break all row and col-
umn symmetry. Nevertheless, it is often highly effective in
practice.

Running example: Consider again solution(a). If we
order the rows of(a) lexicographically, we get a solution in
which rows and columns are ordered lexicographically:

0 2 1 2 0 1
0 2 2 1 1 0
0 1 0 2 1 2
0 0 1 1 2 2

order
⇒

rows

0 0 1 1 2 2
0 1 0 2 1 2
0 2 1 2 0 1
0 2 2 1 1 0

(d)

Similarly if we order the columns of(a) lexicographically,
we get a different solution in which both rows and columns
are again ordered lexicographically:

0 2 1 2 0 1
0 2 2 1 1 0
0 1 0 2 1 2
0 0 1 1 2 2

order
⇒

cols

0 0 1 1 2 2
0 1 0 2 1 2
0 1 2 0 2 1
0 2 2 1 1 0

(e)

All three solutions are thus in the same row and col-
umn symmetry class. Note that both(d) and (e) satisfy the
DOUBLELEX constraint. ThereforeDOUBLELEX can leave
multiple solutions in each symmetry class and is not a com-
plete symmetry breaking method.

In fact, DOUBLELEX is a very incomplete method for
breaking symmetry. It can leaven! symmetric solutions in an
2n by2nmatrix model. In addition, it only partially provides
tractability. Whilst it is polynomial to check a DOUBLELEX
constraint given a complete assignment, it is not tractableto
propagate it completely given a partial assignment. That is,
pruning all symmetric values is NP-hard.

Theorem 5 ((Katsirelos, Narodytska, and Walsh 2010))
Propagating theDOUBLELEX constraint is NP-hard.

We have identified three tractable cases where we can
break all row and column symmetry in polynomial time
(Katsirelos, Narodytska, and Walsh 2010): (1) a matrix with



a bounded number of rows (or columns); (2) a 0/1 matrix
model where every row sum is 1; (3) an all-different ma-
trix where all entries are different. The first two are perhaps
the most interesting and useful cases. We have, for exam-
ple, used the first case as the basis of a complete method
for breaking row and column symmetry. We used this to
measure how many symmetries are left by DOUBLELEX
in practice. See Table 1 for some results that demonstrate
DOUBLELEX actually leaves very few symmetric solutions
in practice despite the worst case result that it can leave a
factorial number of such solutions. More recently, Yip and
Van Hentenryck (2011) have turned this theoretical result
into a complete and efficient method for breaking all row
and column symmetry in matrix models with a small number
of rows (or columns). Another interesting research direction
is to identify other constraints that can be effectively added
to DOUBLELEX to increase the amount of row and column
symmetry broken (Frisch, Jefferson, and Miguel 2003).

(q, λ, d, v) # symmetry # symmetric DOUBLELEX

classes solutions # solutions / time

(3, 3, 2, 3) 6 1.81·105 6 / 0.00

(4, 3, 3, 3) 8 > 3.88·107 16 / 0.01

(4, 4, 2, 3) 12 > 5.87·107 12 / 0.00

(3, 4, 6, 4) 1427 > 5.57·107 11215 / 5.88

(4, 3, 5, 4) 8600 > 2.03·107 61258 / 69.90

(4, 4, 5, 4) 9696 > 5.45·106 72251 / 173.72

(5, 3, 3, 4) 5 > 4.72·106 20 / 0.36

(3, 3, 4, 5) 18 > 2.47·107 71 / 0.17

(3, 4, 6, 5) 4978 > 2.08·107 77535 / 167.50

(4, 3, 4, 5) 441 > 6.55·106 2694 / 19.37

(4, 4, 2, 5) 12 > 6.94·106 12 / 0.02

(4, 4, 4, 5) 717 > 6.27·106 4604 / 38.15

(4, 6, 4, 5) 819 > 4.08·106 5048 / 69.83

(5, 3, 4, 5) 3067 > 2.39·106 20831 / 403.97

(6, 3, 4, 5) 15192 > 2.16·106 1.11·105 / 4924.41

Table 1: Equidistant Frequency Permutation Array prob-
lems. Number of solutions left when posting DOUBLELEX
symmetry breaking constraints.

SnakeLex
An interesting alternative method for breaking row and col-
umn symmetry uses a lexicographical ordering which lin-
earizes the matrix in a snake-like manner instead of row-
wise. This method appends the first row to the reverse of the
second row, and this is appended to the third row, and then
the reverse of the fourth row, and so on. Breaking row and
column symmetry with this ordering is intractable, as it is
with the more conventional lexicographical ordering where
matrices are ordered row-wise.

Theorem 6 ((Narodytska and Walsh 2012))Deciding if
an assignment is smallest in the snake-lex ordering up to
row and column permutation is NP-hard.

The SNAKELEX constraint, which is derived from the
Lex-Leader method using such a snake-lex ordering, has
been shown to a promising alternative to DOUBLELEX

(Grayland, Miguel, and Roney-Dougal 2009). To break col-
umn symmetry, SNAKELEX ensures that the first column is
lexicographically smaller than or equal to both the second
and third columns, the reverse of the second column is lex-
icographically smaller than or equal to the reverse of both
the third and fourth columns, and so on up till the penulti-
mate column is compared to the final column. To break row
symmetry, SNAKELEX ensures that each neighbouring pair
of rows,X1,i, . . . , Xn,i andX1,i+1, . . . , Xn,i+1 satisfy the
entwined lexicographical ordering:

〈X1,i, X2,i+1, X3,i, X4,i+1, . . .〉 ≤lex

〈X1,i+1, X2,i, X3,i+1, X4,i, . . .〉

DOUBLELEX breaks the subset of the row and column
symmetries that swap neighbouring rows and columns.
SNAKELEX, by comparison, breaks a strict superset of
these symmetries. Not surprisingly, it is a little more ex-
pensive to propagate but this greater cost is often worth-
while in pruning search. Like DOUBLELEX, SNAKELEX
is also an incomplete symmetry breaking method that
can leave an exponential number of symmetric solutions
(Katsirelos, Narodytska, and Walsh 2010).

Gray Code Ordering
Another interesting alternative method for breaking symme-
try is to eliminate all but the smallest symmetric solution in
someother ordering than the lexicographical ordering. For
example, we have seen some promise in using the Gray code
ordering (Narodytska and Walsh 2012). The Gray code or-
dering is a total ordering over assignments used in error cor-
recting codes. The 4-bit Gray code orders assignments as
follows:

0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100,

1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000

Such an ordering may pick out different solutions in each
symmetry class. This can reduce the conflict between sym-
metry breaking, the problem constraints and the branching
heuristic. The Gray code ordering has some properties that
may make it useful for symmetry breaking. For example,
neighbouring assignments in the ordering only differ at one
position, and flipping one bit reverses the ordering of the
subsequent bits. Note that there is no renaming of the vari-
ables and values that maps the ordering of solutions in the
Gray code ordering onto that of the lexicographical order-
ing. Nevertheless, breaking row and column symmetry with
this ordering over solutions remains intractable.

Theorem 7 ((Narodytska and Walsh 2012))Deciding if
an assignment is smallest in the Gray code ordering up to
row and column permutation is NP-hard.

Experiments suggest some promise for symme-
try breaking methods using the Gray code ordering
(Narodytska and Walsh 2012). See Table 2 for some ex-
ample results on a benchmark domain, the maximum
density still life problem. This is prob032 in CSPLib
(Gent and Walsh 1999). Given an by n sub-matrix of the
infinite plane, we want to find the maximum density pattern



which does not change from generation to generation. This
problem has the 8 symmetries of the square as we can rotate
or reflect any still life to obtain a new one. We broke all
symmetries in the problem with either the lexicographical
or Gray code orderings, finding the smallest (lex, gray) or
largest (anti-lex, anti-gray) solution in each symmetry class.

Symmetry breaking n = 4 5 6 7 8

none 176 1,166 12,205 231,408 5,867,694

gray 91 446 5,702 123,238 2,507,747

anti-lex 84 424 5,473 120,112 2,416,266

lex 33 406 2,853 87,781 1,982,698

anti-gray 26 269 2,288 38,476 1,073,659

Table 2: Backtracks required to find and prove optimal the
maximum density still life of sizen by n.

Value Symmetry
A second important class of symmetries which are more
tractable to break than symmetries in general are value
symmetries. When a problem has many value symme-
tries, the Lex-Leader method again introduces too many
symmetry breaking constraints to be practical. Puget
has proposed an effective alternative that maps value
symmetries into variables symmetries (Puget 2005b). His
method channels into some auxiliary variables which, as
in (Smith, Stergiou, and Walsh 2000), permit the (symmetry
breaking) constraints to be easily specified.Zj records the
first index using each valuej with constraints of the form:

Xi = j ⇒ Zj ≤ i

Zj = i ⇒ Xi = j

Puget then breaks the variable symmetry on theZj by post-
ing binary ordering constraints. For example, if the values1
to q are interchangeable, we can strictly order theZj :

Z1 < Z2 < Z3 < . . . < Zq

This ensures that the first occurrence of 1 is before that of 2,
that of 2 is before 3, etc. This is the condition enforced by
the PRECEDENCE constraint mentioned previously. Puget
proved that we can breakanynumber of value symmetries
(and not just those due to interchangeable values) with a lin-
ear number of ordering constraints on theZj . This means
that we can break any number of value symmetries in poly-
nomial time. Unfortunately, this decomposition into order-
ing constraints onZj hinders propagation, and we may not
prune all symmetric values. This is not surprising as pruning
all symmetric values is intractable in general.

Theorem 8 ((Walsh 2007))Given a set of value symme-
tries and a partial assignment, pruning all symmetric values
is NP-hard.

We have, however, identified a common case where
pruning all symmetric values is tractable. If val-
ues partition into a fixed number of sets and val-
ues within each set are interchangeable then we can
prune all symmetric values in polynomial time us-
ing a global REGULAR constraint (Pesant 2004) or

one of its decompositions (Quimper and Walsh 2006;
Quimper and Walsh 2007). When there is a single set of
interchangeable values, we can prune all symmetric values
using a global PRECEDENCEconstraint (Law and Lee 2004)
or its decomposition (Walsh 2006b).

Combinations of Symmetries
Another important question is how we deal with with com-
binations of symmetries. We have already seen that we can
take a symmetry group that is tractable to break completely
(row symmetry), combine it with another symmetry group
that is tractable to break completely (column symmetry), and
end up with a symmetry group (row and column symmetry)
that is intractable to break and where we lack good methods
to eliminateall symmetric solutions in general.

Another challenging combination is when we have both
variable and value symmetries. How do we break both types
of symmetry simultaneously? We can use the Lex-Leader
method but this is not practical when we have many vari-
able and value symmetries. Unfortunately, Puget’s method
for breaking value symmetry on theZj variables is not com-
patible in general with breaking variable symmetry via the
Lex-Leader method on theXi variables. This corrects The-
orem 6 and Corollary 7 in (Puget 2005b) which claim that
the two methods are compatible if we use the same ordering
of variables in each method.

Theorem 9 ((Katsirelos, Narodytska, and Walsh 2010))
There exist problems on which posting lex-leader con-
straints to break variable symmetries and applying Puget’s
method to break value symmetries remove all solutions in
a symmetry class irrespective of the orderings on variables
used by both methods.

There is, however, an important and common case
where the two methods for breaking variable and value
symmetry are compatible. If values partition into in-
terchangeable sets then it is always consistent to post
symmetry breaking constraints using both methods pro-
vided we index their variables identically in both
cases (Sellmann and Hentenryck 2005; Flener et al. 2006;
Law et al. 2007). This is again a case where tractability is
limited as pruning all symmetric values is NP-hard.

Open Problems
A number of important and challenging questions about
symmetry breaking constraints remain including:

Identifying tractable cases: Are there other common
types of symmetry which occur in practice that are
polynomial to break? For instance, suppose we are
coloring the edges of a graph, and we have a clique
of interchangeable vertices. This induces a particular
symmetry on the decision variables representing the
colors of the different edges in the graph. How do we
efficiently break this large symmetry group?

Exploring other orderings: Are there other orderings be-
sides the lexicographical ordering with which we
can break symmetry effectively? We have seen some



promise for the Gray code ordering. There are, how-
ever, many other orderings we could consider. For ex-
ample, Frischet al. have proposed the multiset ordering
(Frisch et al. 2003). Even though this is only a partial or-
dering, it has also shown some promise. In addition, can
we use a different ordering in each symmetry class?

Reducing branching conflict: One of the major issues
with symmetry breaking constraints is that they may con-
flict with the direction of the branching heuristic. How
can we retain the benefits of static symmetry breaking
constraints and of dynamic branching heuristics, whilst
avoiding such conflict? How do we get the best of static
and dynamic symmetry breaking methods? How do we
choose static symmetry breaking constraints that align
with a dynamic branching heuristic?

Studying combinations of symmetries:How do we elim-
inate combinations of symmetries effectively? There are
issues of both soundness (which symmetry breaking con-
straints can be combined together safely?), completeness
(how we do eliminate all combinations of symmetry?) and
tractability (which symmetry groups that are tractable to
break individually combine together to give a symmetry
group which is also tractable to break?).

Dominance detection and elimination: in constraint opti-
misation problems, the notion of dominance plays a very
similar role to symmetry. One (partial) solution dominates
another if it is sure to be at least as good in quality. How
do we identify dominating solutions? Is there a generic
method like Lex-Leader for adding constraints that re-
move dominated solutions? What are interesting and use-
ful tractable cases?
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