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Abstract. We propose the PeerRank method for peer assessment.
This constructs a grade for an agent based on the grades proposed by
the agents evaluating the agent. Since the grade of an agent is a mea-
sure of their ability to grade correctly, the PeerRank method weights
grades by the grades of the grading agent. The PeerRank method also
provides an incentive for agents to grade correctly. As the grades of
an agent depend on the grades of the grading agents, and as these
grades themselves depend on the grades of other agents, we define
the PeerRank method by a fixed point equation similar to the PageR-
ank method for ranking web-pages. We identify some formal proper-
ties of the PeerRank method (for example, it satisfies axioms of una-
nimity, no dummy, no discrimination and symmetry), discuss some
examples, compare with related work and evaluate the performance
on some synthetic data. Our results show considerable promise, re-
ducing the error in grade predictions by a factor of 2 or more in many
cases over the natural baseline of averaging peer grades.

1 INTRODUCTION

We consider how to combine together peer assessments of some
work to construct an overall evaluation of this work. An important
application of our proposed framework is to evaluation in massive
open online courses (MOOC:s). In such a setting, it may be impracti-
cal to offer anything but automated marking (where this is possible)
or peer assessment (e.g. for essays where this might not be possible).
Another application of the proposed framework is to peer assessment
of grant applications. Often there is only a small pool of experts who
are capable of reviewing grant applications in a particular sub-area.
In many cases, these people have also submitted grant applications
themselves. It is natural therefore to consider designing a mechanism
in which those people submitting proposals also review them.
Unfortunately, peer assessment suffers from several fundamental
problems. First, how can we provide an incentive to agents to assess
their peers well? Second, as peers may have different expertise, how
do we compensate for any unintentional biases that peer assessment
may introduce? Third, as peers may not be disinterested in the out-
come, how do we compensate for any intentional biases that peer as-
sessment may introduce? In this paper, we view this as a mechanism
design problem in which we look to provide incentives for peers to
assess well, as well as a means to try to compensate for any biases.
Our main contribution is to propose the PeerRank method for peer
assessment. This constructs a grade for an agent based on the grades
proposed by the agents evaluating the agent. The PeerRank method
makes two basic assumptions about how peer grades should be com-
bined. First, it supposes that the grade of an agent is a measure of
their ability to grade correctly. Hence, grades are weighted by the

1 NICTA and UNSW, Sydney, Australia. NICTA is funded by the Australian
Government as represented by the Department of Broadband, Communica-
tions and the Digital Economy and the Australian Research Council. The
author is also supported by AOARD Grant FA2386-12-1-4056.

grades of grading agents. Second, agents should be rewarded for
grading correctly. This gives agents an incentive to provide accurate
peer assessments. We identify some formal properties of the Peer-
Rank method. We also evaluate the performance on some synthetic
data. As our method favours consensus, it is most suited to domains
where there are objective answers but the number of agents is too
large for anything but peer grading.

We hope that this work will encourage others to consider peer as-
sessment from a similar (social choice) perspective. There are other
axiomatic properties we could formalise and study. For instance, the
PeerRank rule is not monotonic. Increasing the grade for an agent
can hurt an agent if they thereby receive a bigger proportion of their
support from agents that grade poorly. On the other hand, the Peer-
Rank rule likely satisfies a more complex form of monotonicity, in
which reducing the error in the grade of an agent only ever helps that
agent. We expect there are important axiomatic results to be obtained
about peer assessment. Finally, an interesting extension would be to
return a distribution or interval of grades, reflecting the uncertainty
in the estimate.

2 PEER RANK RULE

We suppose there are m agents, and agent j provides a grade A; ; for
the exam of agent 7. Grades are normalised into the interval [0, 1]. We
suppose agents grade their own work but this can be relaxed. In addi-
tion, as we show in the experimental section, the proposed PeerRank
rule is relatively insensitive to any bias that an agent might have to-
wards grading their own work or that of other agents. The grade of
each agent is constructed from the grades of the agents evaluating the
agent. Since the grade is a measure of their ability to grade correctly,
we weight the grade an agent gives another agent by their own grade.
The grade of an agent is thus the weighted average of the grades of
the agents evaluating the agent. Now the grades of the agents eval-
uating an agent are themselves the weighted averages of the grades
of the agents evaluating the agents. Hence we set up a set of equa-
tions and look for the fixed point of the system. This is reminiscent
of the problem faced by the PageRank algorithm [8]. In PageRank,
web-pages are ranked according to the ranks of the web-pages that
link to them, these ranks depend on the ranks of the web-pages that
like to them, and so on.

Let X" be the grade of agent i in the nth iteration of the PeerRank
ruleand 0 < o < 1. We define the grades at each iteration as follows:

Ly
J

(e}
1—a)X] + = > X[ A
2 X5 5

X7
XM o=

The last term is merely the average grade of an agent weighted by the
current grades. The PeerRank grades are the fixed point of these set



of equations. Note that whilst we start with the (unweighted) aver-
age grade, this choice is not very critical and we will typically reach
the same fixed point with other initial seeds. Similarly, the choice of
the exact value of « is not critical and largely affects the speed of
convergence. This is because the fixed point is an eigenvector of the
grade matrix A.

Proposition 1 (Fixed point) The PeerRank rule returns grades that
are an eigenvector of the grade matrix A.

Proof:
In matrix notation, at the fixed point, we have:

«@
X=1-a)X+—A4AX
| X|
That is, o
X=X-aX+—AX
| X

Rearranging and cancelling gives:

«

Dividing by « and letting A = | X|, we get:
AX =)2X

3 SOME EXAMPLES

To illustrate how the PeerRank rule works on some simple cases, we
consider a few examples.

Unanimous grade matrix

Suppose that every entry in the grade matrix A is the grade k with
0 < k < 1. Now an eigenvector of A, and the PeerRank solution
assigns each agent with this grade k. The weighted average of identi-
cal grades is always the same whatever the weights. This is what we
might expect. The grade matrix tells us nothing more than this.

Identity grade matrix

Suppose the grade matrix A is the identity matrix. That is, each agent
gives themselves the maximum grade 1, and every other agent the
minimum grade 0. Now an eigenvector of A, and the PeerRank so-
lution assigns each agent with the average grade % Again, this is
what we might expect. The grade matrix tells us nothing more than
all agents are symmetric, and so dividing the mark between them
might seem reasonable.

Bivalent grade matrices

Suppose that agents partition into two types: good and bad. The good
agents give a grade of 1 to other good agents, and 0 to bad agents. The
bad agents gives a grade of 1 to every agent. In each iteration of the
PeerRank method, the grades of the good agents remain unchanged
at 1. On the other hand, the grades of the bad agents monotonically
decrease towards their fixed point at 0. We also get the same fixed
point if the bad agents give a grade of 0 to every agent besides them-
selves (irrespective of the grade that they give themselves). Again,
this is what we might expect. The PeerRank method identifies the
good and bad agents, and rewards them appropriately.

4 PROPERTIES

The PeerRank rule has a number of desirable (axiomatic) properties.
Several of these properties (e.g. no dummy and no discrimination)
are properties that have been studied by in peer selection of a prize
[4]. First, we argue that the PeerRank rule returns a normalised grade.

Proposition 2 (Domain) The PeerRank rule returns grades in [0, 1].

Proof:

Clearly X" > 0 for all n as it is the sum of two terms which are
never negative. We prove that X;* < 1 by induction on n In the base
case, X? < 1 as it is the average of terms which are themselves less
than or equal to 1. In the step case, suppose 0 < X;* < 1 for all 4.
Let X' =1 — e where 0 < e < 1. Then
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Note that these bounds are reachable. In particular, if all peer grades
are 0 (1) then the PeerRank rule gives every agent this grade. ¢
Next we argue that if all agents give an agent the same grade then
this is their final grade.

Proposition 3 (Unanimity) If all agents give an agent the grade k
then the PeerRank rule gives this grade k to the agent.

Proof:
Suppose all agents give agent ¢ the grade k. Consider the ith compo-
nent of the fix point equation:

o
Zj Xj ; J J
Rearranging gives:
o
OéXi = = XA»L, 1
Z]' Xj zj: J J
Dividing by o and multiplying up the fraction gives:
O _X)Xe = > XAy
J J
O X))k
J

Dividing by the common term, Zj X, weget: X; = k.o
The PeerRank rules also satisfies a no discrimination axiom. Every
vector of grades is possible.

Proposition 4 (No discrimination) Given any vector of grades,
there exists a grade matrix with which the PeerRank rule returns this
vector.

Proof:

Suppose we want agent ¢ to get the grade k;. Then we construct the
grade matrix with A; ; = k; and appeal to unanimity. ¢

The PeerRank rules also satisfies a no dummy axiom since every
agent has some influence over the final grade.



Proposition 5 (No dummy) There exist two grade matrices which
differ in just the grades assigned by one agent for which PeerRank
returns different final grades.

Proof:

Consider the grade matrix in which every agent gives the maximum
grade of 1 to every other agent, and the grade matrix which is iden-
tical except agent ¢ gives every agent the minimum grade of 0. Then
PeerRank gives a grade of 1 to agent ¢ in the first case and O in the
second. Hence ¢ is not a dummy. ¢

The PeerRank rules also satisfies a simple symmetry axiom.

Proposition 6 (Symmetry) If we swap the grades of two agents and
the grades that the two agents are given then the PeerRank rule
swaps the grades assigned to the two agents.

It is also interesting to identify properties that the PeerRank rule does
not have. For example, it is not impartial. Your grades of others do
affect your own final grade. As a second example, it is not anony-
mous. It does matter who gives you a grade. It is better to get a good
grade from an agent who themself receives good grades than from an
agent who themself receives poor grades.

5 GENERALIZED PEERRANK

The PeerRank rule proposed so far does not incentivize agents to
evaluate other agents or even themselves accurately. We therefore
add an additional term to provide such an incentive. Suppose o and
B are parameters with « + 8 < 1. Then we define the generalised
PeerRank rule recursively by the following equation:

«

ot Xy-L.AZ‘,j#»

8 .
Z5 14— X
w1 s = X

XM = (l-a-B).XI+

This degenerates to the earlier form of the rule when 5 = 0. The new
term measures the normalised absolute error in the grades given by
an agent. This is similar to the reward given in the recent mechanism
for reviewing NSF proposals in the SSS program [6]. The agent “re-
ceives” a credit towards their grade of 3 times this normalised error.

If A;; = X for all j then the grades assigned by an agent are
exact and we add §3 to their score. If | A; ; — X'| = 1forall j then the
grades assigned by an agent are completely wrong (either the agent
gives a grade of 1 when it should be 0 or vice versa). In this case,
their grade is reduced by a factor (3 for evaluating incorrectly.

The generalised PeerRank rule continues to satisfy the domain,
no discrimination, no dummy, and symmetry properties. For no dis-
crimination, and no dummy, we can just set 3 = 0 and appeal to the
previous results. For the domain property, we need to prove afresh
that the additional term cannot take us outside the interval [0, 1].

Proposition 7 (Domain) The generalized PeerRank rule returns
grades in [0, 1].

Proof:

Clearly X;* > 0 for all n as it is the sum of terms which are not
negative. We prove that X" < 1 by induction on n In the step case,
suppose 0 < X" < 1forall¢.Let X;' =1 — ewhere 0 < e < 1.

Then
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Recall that « + 8 < 1 and € > 0. Thus, (1 — (a4 8)) > 0. Hence
XMl <10

To demonstrate the impact of the new term that encourages accu-
rate peer grading, we consider again the simple grade matrices con-
sidered previously.

Unanimous grade matrix

Suppose every entry in the grade matrix A is the grade k. Now
the generalised PeerRank solution assigns each agent with a grade
greater than or equal to k& (with equality when m = 1, k = 1 or
B = 0). Grades increase above k as agents receive some credit for
grading accurately.

Identity grade matrix

Suppose the grade matrix A is the identity matrix. That is, each agent
gives themselves the maximum grade 1, and every other agent the
minimum grade 0. Now the generalised PeerRank solution assigns
each agent a grade greater than or equal to i (with equality when
m = 1 or 8 = 0). Grades are larger than % as agents receive credit
for grading themselves semi-accurately.

Bivalent grade matrices

Suppose that agents partition into two types: good and bad. The good
agents give a grade of 1 to the good agents, and 0 to the bad agents.
The bad agents gives a grade of 1 to every agent. Now the generalised
PeerRank method give the good agents a grade less than or equal to
1, and the bad agents a grade more than or equal to 0. The bad agents
get some credit for grading the good agents (semi-)accurately. This
means that the grade of the bad agents by the good agents was a little
too harsh, and their own grade suffers.

6 EXPERIMENTAL EVALUATION

We tested the performance of the generalised PeerRank rule on some
synthetic data. In all experiments, we set « = 8 = 0.1. Results
are, however, relatively insensitive to the actual choice of « or 3.
Based on the promise shown in these experiments, we are currently
preparing a real world test with undergraduate students. Our typical
experimental setup is 10 agents who give an integer mark to each
other of between 0 and 10, and an actual mark of between O and
100. Therefore a simple baseline against which we compare is the
sum of these peer graded marks (or equivalently the average of the
normalised peer grade). We denote this as the AVERAGE rule.



We studied a number of different distributions of marks amongst
the agents (e.g. binomial, normal, uniform). These are discussed in
more detail in the next section. We also need a marking model to de-
termine how well the grading agents grade. We used a simple model
based on each mark being awarded independently with a probabil-
ity given by the grade of the grading agent. In our experiments, this
means that the agents are effectively answering 10 questions, that the
probability of each of these questions being answered correctly is
their actual grade, and that the probability of each of these questions
being graded correctly is the grade of the grading agent. This gives a
distribution of marks that is the sum of two binomials.

For instance, if the actual mark of an agent is 62 out of 100, then
we expect their peer grade to be (on average) 6 out of 10. Suppose
their work is marked by an agent whose actual mark is 72 out of 100.
On the 6 questions that the agent is expected to get right, we suppose
that each is marked correctly by this peer with probability 0.72. This
gives a binomial distribution of 6 marks with a probability of 0.72.
On the 4 questions that they got wrong, we suppose also that they
are marked correctly by this peer (as false) with probability 0.72,
and incorrectly (as true) with probability 1-0.72. This gives again a
binomial distribution of 4 marks with a probability of 1-0.72. Hence,
the final mark given to the agent by their peer is the sum of these
two binomial distributions: bin(6,0.72) + bin(4,1 — 0.72) where
bin(m, p) is a binomial distribution of m trials with probability p.

We tried other marking models including normally distributed
peer grades with a standard deviation that is inversely proportional to
the grade of the marking agent, and uniform distributed peer grades
with a range that is also inversely proportional to the grade of the
marking agent. As we obtained similar results with these other mark-
ing models, we focus here on our simple sum of binomials model.

6.1 Mark distributions

We begin with a simple binomial distribution of marks. We let the
actual mark of the agents be a binomial distribution of 100 trials with
a given probability p. In Figure 1, we plot the RMSE (root mean
square error) of the predicted mark as a percentage of the 100 marks
for varying p. Thus a RMSE of 5% means that the PeerRank grade is
off with a root mean square error of 5 marks (out of the 100 possible
marks). If we map back onto grades out of 10, this means we are off
by less than half a grade. For p > 0.6 (in other words, for where the
marks are typically above 60 out of 100), the generalised PeerRank
method outperforms simply averaging the peer grades. For p > 0.65,
the error is 4% or less. This compares well with the error returned by
simply averaging the peer grades (which is mostly above 10% in this
region). Note that for PeerRank to get any useful signal out of the
data, we need p > 0.5. At p = 0.5, we will often answer (or mark)
an exam just as well by tossing a coin. With the PeerRank method,
we need the exam to be informative (that is, to have p > 0.6), to be
able to extract much information from the grade matrix.

We next turned to a normal distribution of marks. This permits us
to study the impact of increasing the standard deviation in marks.
With the previous binomial distribution of marks, the standard devi-
ation is 1/100p(1 — p) which is fixed by p. In Figure 2, we plot the
error in the predicted mark for varying standard deviations. The mean
grade is fixed at 70 marks out of 100. We again see that the gener-
alised PeerRank method outperforms simply averaging peer grades
except when there is a very large standard deviation in marks.

Finally, we consider a simple uniform distribution of marks. We
suppose that every mark from [o to 100 is equally likely. In Figure 3,
we plot the error in the predicted grade whilst we vary lo, the lowest
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Figure 1. Performance of the generalised PeerRank method on marks
coming from a binomial distribution with parameter p.
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Figure 2. Performance of the generalised PeerRank method on marks from
a normal distribution with a mean of 70 as we vary the standard deviation.
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Figure 3. Performance of the generalised PeerRank method on marks
coming from the uniform distribution [lo, 100] for varying lower bound lo.

possible mark. From lo > 20, the generalised PeerRank method out-
performs simply averaging the peer grades. For lo > 50, the error is
less than 10%. As with binomially distributed marks, the exam needs
to be informative (that is, for marks to be above 50), to be able to
extract information from the grade matrix.

6.2 Group size

So far, we have supposed that there are 10 agents who grade each
other. We next consider the impact that the size of this group has on
the accuracy of the peer grades. We therefore ran an experiment in
which we varied the number of agents peer marking. We again use
a binomial distribution of marks with a mean of 70. With 5 or more
agents, the error of the generalised PeerRank method was less than
5% and was half or less of that of simply averaging the peer grades.
With 10 to 20 agents, the error of the generalised PeerRank method
was less than a third of that of simply averaging the peer grades.
These results suggest that the PeerRank method does not need many
peer grades in order to obtain an accurate result. Ideally, we need
around 10 grades for each agent, but even with just 5 grades, we are
often able to obtain acceptable results.

6.3 Biased marks

Peer grades may be systematically biased. For instance, students may
collude and agree to grade each other generously. Even if there is no
explicit collusion, there are studies which suggest that students grade
each other generously (e.g. [5]). To study this, we inflate or deflate
the mean of the peer grades by a factor r. For instance, if r = 1.1
then the mean peer mark is increased by 10%. On the other hand, if
r = 0.9 then the mean peer mark is decreased by 10%. We again use
a binomial distribution of actual marks with a mean of 70.

In Figure 4, we plot the RMSE of the predicted grade again as a
percentage of the 100 marks whilst we vary the bias in peer grades.
For 0.75 < r < 1.25, the error of the generalised PeerRank method
is 5% or less of the total marks. That is, we are able to tolerate a
bias of 25% in peer grades without significantly increasing the er-
ror. These results suggest that the generalised PeerRank method has
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Figure 4. Performance of the generalised PeerRank method on marks
coming from a binomial distribution with a mean of 70 (i.e. p = 0.7) as we
vary the bias in the peer marking. For r > 1, peers return inflated marks. For
r < 1, peers return deflated marks.

some robustness against bias. The minimum in errors for averaging
peer grades at around r = 1.5 is likely an artefact of the model. Aver-
aging peer grades tend to under-estimate the actual grade. Therefore
a positive bias on the peer grades tends to reduce this.

7 RELATED WORK

There is a large literature on peer assessment but the focus is mostly
on pedagogical aspects of peer assessment (for example, how peer as-
sessment itself contributes to the learning experience). There is less
literature on how best to combine peer assessments together. Many of
the peer assessments systems being used in practice today often have
simple and rather ad hoc mechanisms for combining together peer
assessments. In addition to multiple choice questions and computer
grading, peer assessment has been used on a number of Coursera
courses. Students first train with a grading rubric. To get feedback
on their own work, a student has to grade five essays. The student
then receives peer grades from five other students. Using machine
learning algorithms, Piech er al. have estimated and corrected for
grader biases and reliabilities [9]. They demonstrate significant im-
provement in grading accuracy on real world data of over 63,000
peer grades. Their models are probabilistic so give a belief distribu-
tion over grades (as opposed to a single score) for each student.

PEAS is a new peer evaluation extension for the EdX open source
MOOC platform [10]. Students are incentivized to grade accurately
by a calibration method that constructs an incentive score based on
the accuracy of their grading. To improve review quality, students
are divided into groups based on this incentive score, and each as-
signment is peer graded by one student from each group. A sim-
ple normalisation of grades is also performed to reduce bias in peer
grading. Expert grading can be used to resolve discrepancies in peer
grades, and to provide training data for Machine Learning algorithms
to grade automatically. An important difference with our work is that
the calibration in PEAS is just once, whilst PeerRank potentially uses
multiple rounds of adjustment of grades.

One of the closest works to ours is a peer reviewing mechanism be-



ing piloted by the National Science Foundation (NSF) for the Signal
and Sensing Systems (SSS) program. The mechanism is designed to
help deal with an increase in proposals which is putting an increasing
stress on the grant reviewing process. This increase in proposals has
led to a degradation in the quality of reviews, as well as a shrinking
pool of qualified but non-conflicted reviewers. The NSF has there-
fore decided to pilot a mechanism for peer review that is adapted
from one first proposed by Merrifield and Saari [6]. To incentivize
applicants to review well, and to deter strategic ranking, reviewers
receive additional score for reviewing well which can increase them
a maximum of 2 places in the final ranked list. This mechanism is
somewhat different to ours as the NSF mechanism ranks proposals,
whilst our mechanism returns a grade. In our mechanism, final grades
returned may not totally rank the proposals.

Another work which is close to ours is the CrowdGrader mecha-
nism for peer evaluation from UC Santa Cruz [2]. CrowdGrader lets
students submit and collaboratively grade solutions to homework as-
signments. The tool permitted both ranking and grading of home-
work. However, de Alfaro and Shavlovsky found that students much
preferred to grade than to rank. They expressed uneasiness in ranking
their peers, perceiving ranking as a blunt tool compared to grading.
At the heart of CrowdGrader is the Vancouver algorithm for combin-
ing peer grades. There are two significant differences between the
Vancouver algorithm and the PeerRank rule. First, the Vancouver al-
gorithm measures variance in grades whilst PeerRank (like the NSF
rule) measures the absolute deviation. A rule based on variance will
tend to penalise inexperienced agents more greatly. Second, the re-
ward term in the Vancouver algorithm is added after a fixed point is
reached, whilst in the PeerRank rule, it is part of the fixed point cal-
culation. We conjecture that it is more robust to include it in the fixed
point calculation when there is significant variation in the accuracy
of grades assigned by a single agent.

There are a number of closely related problems to ours in the so-
cial choice literature. For example, Holzman and Moulin have stud-
ied a related problem in which a set of agents wish to select one
amongst them to receive a prize [4]. A fundamental assumption of
this work is that nominations are impartial: your message never influ-
ences whether you win the prize. In our setting, such an assumption
is less appropriate. We want your evaluation of the work of another
agent to influence your evaluation. There are several reasons behind
this change. First, your ability to evaluate the work of other agents
measures in part your command of the subject being examined. Sec-
ond, you will be incentivized to grade accurately by a better final
grade. If your message cannot influence your evaluation, then you
have no incentive to provide good evaluations. For this reason, even
if we extend the sort of methods proposed by Holzman and Moulin
to the task of ranking, the starting assumptions are very different.

Another related problem is “selection from the selectors” [1]. The
goal here is to select a subset of k agents from a group (e.g. to select
a subcommittee). The problem of awarding a prize from a group of
peers can be seen as the special case of k = 1. As approval voting is
not impartial, Alon, Fischer, Procaccia and Tennenholtz look for im-
partial rules that approximate approval voting (that is, guarantee that
the total approval scores of the £ winners are within a fixed fraction
of the optimal answer). Again, a difference with this work is that we
are not trying to achieve or approximate impartiality.

A closely related problem is the division of cash between a group
of partners [3]. Each partner cares selfishly about their share but is
supposed to be disinterested about the distribution of the money that
he or she does not get. Partners rate the relative contributions of the
other partners. With four or more partners, there exist symmetric and

impartial division rules. By comparison, whilst our PeerRank rule is
symmetric, it is not designed to be impartial. The grades assigned by
an agent can definitely influence their final grade.

8 Conclusions

We have proposed the PeerRank method for peer assessment. The
PeerRank method weights grades by the grades of the grading agents.
In addition, it rewards agents for grading well and penalises those
that grade poorly. As the grades of an agent depend on the grades
of the grading agents, and as these grades themselves depend on the
grades of other agents, the PeerRank method is defined by a fixed
point equation similar to the PageRank method. We have identified
some formal properties of the PeerRank method, discussed some ex-
amples, and evaluated the performance on some synthetic data. The
method reduces the error in grade predictions by a factor of 2 or
more in many cases over the natural baseline of simply averaging
peer grades. As the method favours consensus, it is most suited to
domains where there are objective answers but the number of agents
is too large for anything but peer grading.

There are many possible extensions. For example, we might con-
sider peer assessments where agents only grade a subset of each
other. The PeerRank rule lifts easily to this case. As a second ex-
ample, we might permit external calibration by having some agents
graded externally. As a third example, we might consider peer as-
sessment when agents order rather than grade. They might be willing
to say “agent a should be graded higher than agent b”, or “agent
a should receive a similar grade as agent b” but the grading agents
might be less willing to give an absolute grade without seeing the
work of all other agents. Another interesting direction would be to
return a distribution or interval of grades, reflecting the uncertainty
in the estimate. This could be calculated based on the intermediate
grades seen before the fixed point is reached.
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