
Search in a Small WorldToby WalshDepartment of Computer ScienceUniversity of StrathclydeGlasgow G1 1XLScotlandtw@cs.strath.ac.ukAbstractIn a graph with a \small world" topology, nodesare highly clustered yet the path length be-tween them is small. Such a topology can makesearch problems very di�cult since local deci-sions quickly propagate globally. We show thatgraphs associated with many di�erent searchproblems have a small world topology, and thatthe cost of solving such search problems canhave a heavy-tailed distribution. The strategyof randomization and restarts appears to elimi-nate these heavy tails. A novel restart schedulein which the cuto� bound is increased geomet-rically appears particularly e�ective.1 IntroductionGraphs that occur in many biological, social and man-made systems are often neither completely regular norcompletely random, but have instead a \small world"topology in which nodes are highly clustered yet the pathlength between them is small [Watts and Strogatz, 1998].By comparison, random graphs with a similar numberof nodes and edges have short path lengths but littleclustering, whilst regular graphs like lattices tend to havehigh clustering but large path lengths. A small worldtopology can have a signi�cant impact on properties ofthe graph. For instance, if you are introduced to someoneat a party in a small world, you can usually �nd a shortchain of mutual acquaintances connecting you together.One reason for the occurrence of small world graphsis that it only takes a few short cuts between neighbour-hood cliques to turn a large world (in which the averagepath length between nodes is large) to a small world(in which the average path length is small). Watts andStrogatz have shown that a social graph (the collabora-tion graph of actors in feature �lms), a biological graph(the neural network of the nematode worm C. elegans)and a man-made graph (the electrical power grid of thewestern United States) all have a small world topology.In a simple model of an infectious disease. they demon-strate that disease spreads much more easily and quicklyin a small world. A small world topology may thereforehave a signi�cant impact on the behavior of dynamicalsystems. How do they a�ect search problems?

2 Testing for a small worldTo formalize the notion of a small world, Watts and Stro-gatz de�ne the clustering coe�cient and the characteris-tic path length. The path length is the number of edgesin the shortest path between two nodes. The character-istic path length, L is the path length averaged over allpairs of nodes. The clustering coe�cient is a measure ofthe cliqueness of the local neighbourhoods. For a nodewith k neighbours, then at most k(k � 1)=2 edges canexist between them (this occurs if they form a k-clique).The clustering of a node is the fraction of these allow-able edges that occur. The clustering coe�cient, C isthe average clustering over all the nodes in the graph.Watts and Strogatz de�ne a small world graph as onein which L & Lrand and C � Crand where Lrand andCrand are the characteristic path length and clusteringcoe�cient of a random graph with the same number ofnodes n and edges e. Rather than this simple qualitativetest, it might be useful to have a quantitative measure of\small worldliness". We can then compare the topologyof di�erent graphs. To this end, we de�ne the proximityratio � as the ratio of C=L normalized by Crand=Lrand.In graphs with a small world topology, the proximityratio � � 1. By comparison, the proximity ratio � isunity in random graphs, and small in regular graphs likelattices. In table 1, we show that the proximity ratio, �is large in those graphs studied in [Watts and Strogatz,1998] with a small world topology.L Lrand C Crand ��lm actors 3.65 2.99 0.79 0.00027 2396power grid 18.7 12.4 0.080 0.005 10.61C. elegans 2.65 2.25 0.28 0.05 4.755Table 1. Characteristic path lengths, clustering coe�-cients and proximity ratios for graphs studied in [Wattsand Strogatz, 1998] with a small world topology.3 Modeling a small worldWatts and Strogatz propose a model for small worldgraphs. Starting from a regular graph, they introducedisorder into the graph by randomly rewiring each edgewith probability p. If p = 0 then the graph is completelyregular and ordered. If p = 1 then the graph is com-pletely random and disordered. Intermediate values of pgive graphs that are neither completely regular nor com-pletely disordered. Watts and Strogatz start from a ring



p = 0 0 > p > 1 p = 1ring lattice small world random graphFigure 1. Random rewiring of a regular ring lattice. We start a ring of n nodes, each connected to the k nearestneighbours. With probability p, we randomly rewire each edge. For clarity, n = 16 and k = 4 in the above example.However, larger n and k are used in the rest of this paper.lattice with n nodes and k nearest neighbours. They ob-serve similar qualitative behavior with other initial reg-ular graphs and with other mechanisms for introducingdisorder. A rewired edge is reconnected to a node chosenuniformly at random from the lattice. If rewiring an edgewould create a duplicate edge, they leave it unchanged.To focus on large, sparse graphs, they demand thatn � k � ln(n) � 1, where k � ln(n) ensures thatthe graphs remain connected. For such graphs, C � 3=4and L � n=2k � 1 for p = 0, and C � k=n � 1 andL � ln(n)= ln(k) for p = 1. Note that the proximityratio � � 3 ln(n)=2 ln(k) for p = 0 (and this is small ask� ln(n) and hence ln(k) � ln(n)) and � = 1 by de�ni-tion for p = 1. That is, graphs do not have a small worldtopology for p = 0 and p = 1. As p increases from 0, thecharacteristic path length drops sharply since a few long-range edges introduce short cuts into the graph. Theseshort cuts have little e�ect on the clustering coe�cient.As a consequence the proximity ratio rises rapidly andthe graph develops a small world topology. As p ap-proaches 1, the neighbourhood clustering start to breakdown, and the short cuts no longer have a dramatic ef-fect at linking up nodes. The clustering coe�cient andthe proximity ratio therefore drop, and the graph losesits small world topology. These topological changes areclearly visible in Figure 2.4 Search problemsThere are many search problems in AI that involvegraphs (for example, the constraint graph in a con-straint satisfaction problem, and the adjacency graphin a Hamiltonian circuit problem). Do such graphs havea small world topology? Does this have an impact onthe hardness of solving problems? If so, can we designalgorithms to take advantage of the topology?4.1 Graph coloringOne search problem directly a�ected by the structureof an underlying graph is graph coloring. We there-fore tested the topology of some graph coloring prob-lems from the DIMACS benchmark library. We focusedon the register allocation problems as these are basedon real code. Table 2 demonstrates that these problemshave large clustering coe�cients like regular graphs, yetsmall characteristic path lengths like random graphs.They therefore have a small world topology. We ob-served similar results with other problems from the DI-MACS benchmark library.
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uFigure 2. Characteristic path length, clustering coef-�cient (left axis, normalized by the values for a regularlattice) and proximity ratio (right axis) for a randomlyrewired ring lattice. As in [Watts and Strogatz, 1998],we use n = 1000 and k = 10. We vary log2(p) from-15 to 0 in steps of 1, and generate 100 graphs at eachvalue of p. A logarithmic horizontal scale helps to iden-tify the interval in which the characteristic path lengthdrops rapidly, the clustering coe�cient remains almostconstant, and the proximity ratio, � peaks.L Lrand C Crand �fpsol2i.1 1.677 1.915 0.906 0.0949 10.902zeroini.1 1.479 1.815 0.883 0.185 5.857mulsoli.1 1.586 1.799 0.887 0.203 4.956Table 2. Characteristic path lengths and clustering co-e�cients for some of the DIMACS graph coloring bench-marks.4.2 Time tablingMany time-tabling problems can be naturally modelledas graph coloring problems. We therefore tested somereal world time-tabling problems from the Industrial En-gineering archive at the University of Toronto. Table 3demonstrates that sparse problems in this dataset havelarge clustering coe�cients like regular graphs, but smallcharacteristic path lengths like random graphs. Theytherefore have a small world topology. By comparison,dense problems from this dataset have nodes of largedegree which are less clustered. Such graphs thereforehave less of a small world topology. We conjecture thatgraphs will often start with a sparse small world topol-ogy but will become more like dense random graphs as



edges added \saturate" the structure.sparse graphs L Lrand C Crand �LSE 2.484 2.149 0.575 0.0625 7.960U Toronto 2.419 2.161 0.534 0.0855 5.579St Andrews 1.872 1.808 0.867 0.196 4.272dense graphs L Lrand C Crand �Earl Haig Col. 1.814 1.729 0.639 0.271 2.247York Mill Col. 1.749 1.697 0.578 0.303 1.851Ecole H Etudes 1.587 1.583 0.680 0.417 1.627Table 3. Characteristic path lengths and clustering co-e�cients for time-tabling benchmarks from the Univer-sity of Toronto archive. Sparse problems have an edgedensity of less than 15%. Dense graphs have an edgedensity of more than 25%.4.3 Quasigroup problemsA quasigroup is a Latin square, a m by m multiplica-tion table in which each entry appears just once in eachrow or column. Quasigroups model a variety of practicalproblems like tournament scheduling and designing drugtests. AI search techniques have been used to answersome open questions in �nite mathematics about the ex-istence (or non-existence) of quasigroups with particularproperties [Fujita et al., 1993]. More recently, Gomesand Selman have proposed a class of quasigroup prob-lems as a challenging benchmark for constraint satisfac-tion algorithms [Gomes and Selman, 1997].An order m quasigroup problem can be representedas a constraint satisfaction problem with m2 variables,each with a domain of size m. The constraint graphfor such a problem (see �gure 3) consists of 2m cliques,one for each row and column, with each clique being ofsize m. Calculation shows that, for large m, such con-straint graphs have a small world topology. As any pairFigure 3. The constraint graph of a m by m quasi-group problem for m = 4. The graph has m2 nodes andm2(m � 1) edges. The edges form 2m cliques, each ofsize m.of entries in a quasigroup either directly constrain eachother or indirectly through at most one intermediate en-try, the characteristic path length, L � 2 is small. Arandom graph with the same number of edges and nodesalso has a characteristic path length Lrand � 2. As eachvariable has 2m � 1 neighbours and these form 2 m-cliques, the clustering coe�cient, C � 1=2 is large. Arandom graph with the same number of edges and nodeshas a smaller clustering coe�cient Crand � 2=m. AsL � Lrand and C � Crand for large m, the constraint

graph has a small world topology, with a proximity ratio� � m=4. Computation con�rms these calculations (seetable 4).m L Lrand C Crand m=4 �20 1.905 1.929 0.486 0.0952 5 5.16916 1.882 1.908 0.483 0.118 4 4.15012 1.846 1.874 0.476 0.154 3 3.138Table 4. Characteristic path lengths and clustering co-e�cients for m by m quasigroup problems.5 Search costGraphs with a small world topology demonstrate that lo-cal properties (i.e. clustering) can be bad predictors forglobal property (i.e. characteristic path length). Unfor-tunately, heuristics often use local properties to guide thesearch for a (global) solution. For example, the Brelazheuristic colors the node with the least available colorswhich is connected to the most uncolored nodes. Be-cause of this mismatch between local and global proper-ties, a small world topology may mislead heuristics andmake search problems hard to solve. To test this the-sis, we colored graphs generated according to Watts andStrogatz's model using an algorithm due to Mike Trick.which is based upon Brelaz's Dsatur algorithm [Brelaz,1979]. To ensure that problems were of a manageablesize for this algorithm, we used graphs with n = 100and k = 8. For these graphs, the proximity ratio peaksaround log2(p) � �4 similar to Figure 2. Whilst mostgraphs of this size can be colored without too muchsearch, one graph was not solved in 1010 nodes and morethan a week of CPU time. We therefore imposed a searchcuto� at 108 nodes. On a 133 MHz Pentium, this is ap-proximately 1 hour of computation. As we distributedour experiments over a variety of networked computers,we do not report runtimes but use nodes visited in thebacktracking search tree. On any given machine, run-times are roughly proportional to the number of nodessearched.
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graphs develop a small world topology, the search costin the higher percentiles rises rapidly. However, as p ap-proaches 1 and graphs lose their small world topology,the search cost in the higher percentiles falls back. Forgraphs with a small world topology, most problems tookless than 105 nodes to color. However, 1% took morethan 108 nodes. We suspect that problems with a smallworld topology can be di�cult to color since local deci-sions quickly propagate globally.6 Heavy-tailed distributionsExceptionally hard problems like this have been observedin other search problems, though usually with less fre-quency. For example, Gent and Walsh found that afew satis�ability problems from the constant probabil-ity model were orders of magnitude harder than the me-dian [Gent and Walsh, 1994]. Grant and Smith alsofound a few exceptionally hard problems in a randommodel of binary constraint satisfaction problems [Grantand Smith, 1995]. More recently, Gomes and Selmanhave observed similar behavior in quasigroup comple-tion problems (whose constraint graph, we recall, has asmall world topology) [Gomes et al., 1997] and in tour-nament scheduling, planning and circuit synthesis prob-lems [Gomes et al., 1998]. They show that such behaviorcan often be modeled by a \heavy-tailed" distribution ofthe Pareto-L�evy form. In such a distribution, the tailhas the form, Pr(X > x) � C:x��where Pr(X > x) is the probability that the variable Xexceeds some value x, and � > 0 is a constant called the\index of stability". If � < 2 then any moment of X oforder less than � is �nite but higher orders are in�nite1.For example, if � = 1:4, then X has �nite mean butin�nite variance.To test for such heavy-tails in the distribution ofsearch costs, we plot the nodes searched against theprobability that the search takes more than this numberof nodes using log scales. A heavy-tailed distribution ofthe Pareto-L�evy form gives a straight line with gradient��. In Figure 5, we plot the distribution of search costsat a variety of di�erent values of log2(p). This �gureshows that for graphs with a small world topology (i.e.log2(p) = �4), we can model the distribution of searchcosts by a heavy-tailed distribution of the Pareto-L�evyform. The gradient suggests that the index of stability,� < �1=2. That is, the model of the distribution ofsearch costs has in�nite mean and variance. By com-parison, for random graphs (i.e. log 2(p) = 0) and morestructured graphs (i.e. log2(p) = �8), search costs inthe tail of the distribution drop more rapidly.As in [Gomes et al., 1997; 1998], we observe similarheavy-tail behavior even when solving a single probleminstance. We picked the �rst problem from the sample1Backtracking algorithms like Dsatur have an upperbound on their running time that is exponential in the prob-lem size. The mean or variance in their running time cannottherefore be in�nite. However, for large problem instances,the upper bound may be so astronomically large that we canmodel it as if it were in�nite.
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Figure 7. The e�ect of randomization and geometricrestarts on the cost to color a graph generated accordingto Watts and Strogatz's model with n = 100, k = 8 andlog2(p) = �4. On the ith restart, search is cuto� aftern:ri nodes have been visited. We use the same problemand the same y scales as in Figure 6 to aid comparison.cess rate being high when the cuto� value is close tooptimal. Increasing the cuto� value geometrically en-sures that we get close to the optimal value within a fewrestarts. We then hope to solve the problem within afew more restarts, before the cuto� value has increasedtoo far from optimum. Figure 7 shows that the RGRstrategy is even better at reducing search than the RRRstrategy on this problem instance. The RGR strategywas also less sensitive to the setting of the cuto� pa-rameters than the RRR strategy. We obtained similarimprovements on other problem instances. It would be

interesting to see if the RGR strategy is e�ective on othersearch problems like planning and scheduling.8 Approximate entropyHogg notes that real constraint satisfaction problems of-ten have variables that are more clustered than in ran-dom problems [Hogg, 1998]. He uses a notion of \approx-imate entropy" to distinguish between problems drawnfrom a clustered ensemble and those from a random en-semble. Can approximate entropy act as a replacementmeasure for the clustering coe�cient?The approximate entropy is a measure of the similar-ity between substructures in a problem. It therefore de-pends on the representation used. As in [Hogg, 1998], weconsider the substructures of a graph to be subgraphs,and compare them up to isomorphism. Consider the ddistinct subgraphs of size m. If fi is the frequency ofthe ith distinct subgraph, and �m = �Pdi=1 fi log fithen the approximate entropy for subgraphs of size m isde�ned by, Sm =def �m+1 ��m (1)This measures the log-likelihood that two subgraphs ofsize m + 1 are isomorphic given that they contain sub-graphs of size m that are isomorphic.As there are only two distinct subgraphs of size 2 upto isomorphism (the 2 node subgraph with an edge, andthe one without) S1 = �2 = �f log(f)�(1�f) log(1�f)where f = 2e=n(n � 1). Hence, S1 depends only on nand e, and not on the topology of the graph. We willneed to consider Sm for m � 2 to distinguish randomgraphs from clustered ones. Fortunately, the number ofnon-isomorphic subgraphs grows rapidly with m, so it isusually adequate to consider S2 or S3. In Figure 8, weplot S1, S2 and S3 for randomly rewired ring latticesgenerated by Watts and Strogatz's model. As we takelogarithms to base 2, the approximate entropy is mea-sured in bits. The approximate entropy for subgraphs upto size 3 shows no obvious correlation with the rewiringprobability, p (and therefore the clustering coe�cient).Unfortunately, computing the approximate entropy forlarger subgraphs is not computationally practical as itinvolves considering all subgraphs of size 5 (or, at least,a representitive sample of them).9 Related workGrant and Smith studied binary constraint satisfactionproblems with a \braided" constraint graph similar toa ring lattice [Grant and Smith, 1995]. In this problemclass, exceptionally hard problems occur more frequentlyand with greater vigor than in a purely random ensem-ble. They suggest that, as problems met in practice arelikely to have constraint graphs with this sort of struc-ture, such problems deserve further investigation. Ourresearch supports and re�nes these observations.To generate graphs with more realistic structures,Hogg has proposed a clustered ensemble based on group-ing the nodes into a tree-like structure [Hogg, 1996]. In arandom ensemble, each graph with n nodes and e edgesis equally likely. In Hogg's clustered ensemble, an ultra-metric distance between the n nodes is de�ned by group-ing them into a binary tree and measuring the distance
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