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Abstract. Symmetry is a common feature of many combinatorial problems. Un-
fortunately eliminating all symmetry from a problem is often computationally in-
tractable. This paper argues that recent parameterized complexity results provide
insight into that intractability and help identify special cases in which symmetry
can be dealt with more tractably.

1 Introduction

Symmetry occurs in many constraint satisfaction problems. For example, in schedul-
ing a round robin sports tournament, we may be able to interchange all the matches
taking place in two stadia. Similarly, we may be able to interchange two teams through-
out the tournament. As a second example, when colouring a graph (or equivalently
when timetabling exams), the colours are interchangeable. We can swap red with blue
throughout. If we have a proper colouring, any permutation of the colours is itself a
proper colouring. Problems may have many symmetries at once. In fact, the symme-
tries of a problem form a group. Their action is to map solutions (a schedule, a proper
colouring, etc.) onto solutions.

Symmetry is problematic when solving constraint satisfaction problems as we may
waste much time visiting symmetric solutions. In addition, we may visit many (failing)
search states that are symmetric to those that we have already visited. One simple but
effective mechanism to deal with symmetry is to add constraints which eliminate sym-
metric solutions [1]. Unfortunately eliminating all symmetry is NP-hard in general [2].
However, recent results in parameterized complexity give us a good understanding of
the source of that complexity. In this survey paper, I summarize results in this area. For
more background, see [3–7].

2 An example

To illustrate the ideas, we consider a simple problem from musical composition. The
all interval series problem (prob007 in CSPLib.org [8]) asks for a permutation of the
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numbers 0 to n− 1 so that neighbouring differences form a permutation of 1 to n− 1.
For n = 12, the problem corresponds to arranging the half-notes of a scale so that
all musical intervals (minor second to major seventh) are covered. This is a simple
example of a graceful graph problem in which the graph is a path. We can model this
as a constraint satisfaction problem in n variables with Xi = j iff the ith number in the
series is j. One solution for n = 11 is:

X1, X2, . . . , X11 = 3, 7, 4, 6, 5, 0, 10, 1, 9, 2, 8 (1)

The differences form the series: 4, 3, 2, 1, 5, 10, 9, 8, 7, 6.
The all interval series problem has a number of different symmetries. First, we can

reverse any solution and generate a new (but symmetric) solution:

X1, X2, . . . , X11 = 8, 2, 9, 1, 10, 0, 5, 6, 4, 7, 3 (2)

Second, the all interval series problem has a value symmetry as we can invert values. If
we subtract all values in (1) from 10, we generate a second (but symmetric) solution:

X1, X2, . . . , X11 = 7, 3, 6, 4, 5, 10, 0, 9, 1, 8, 2 (3)

Third, we can do both and generate a third (but symmetric) solution:

X1, X2, . . . , X11 = 2, 8, 1, 9, 0, 10, 5, 4, 6, 3, 7 (4)

To eliminate such symmetric solutions from the search space, we can post additional
constraints which eliminate all but one solution in each symmetry class. To eliminate
the reversal of a solution, we can simply post the constraint:

X1 < X11 (5)

This eliminates solution (2) as it is a reversal of (1). To eliminate the value symmetry
which subtracts all values from 10, we can post:

X1 ≤ 5, X1 = 5⇒ X2 < 5 (6)

This eliminates solutions (2) and (3). Finally, eliminating the third symmetry where we
both reverse the solution and subtract it from 10 is more difficult. We can, for instance,
post:

[X1, . . . , X11] ≤lex [10−X11, . . . , 10−X1] (7)

Note that of the four symmetric solutions given earlier, only (4) with X1 = 2, X2 = 8
and X11 = 7 satisfies all three sets of symmetry breaking constraints: (5), (6) and (7).
The other three solutions are eliminated.

3 Formal background

We will need some formal notation to present some of the more technical results. A
constraint satisfaction problem (CSP) consists of a set of variables, each with a finite



domain of values, and a set of constraints [9]. Each constraint is specified by the allowed
combinations of values for some subset of variables. For example, X 6= Y is a binary
constraint which ensures X and Y do not take the same values. A global constraint
is one in which the number of variables is not fixed. For instance, the global constraint
NVALUE([X1, . . . , Xn], N) ensures that n variables,X1 toXn, takeN different values
[10]. That is, N = |{Xi |1 ≤ i ≤ n}|.

Constraint solvers typically use backtracking search to explore the space of partial
assignments. After each assignment, constraint propagation algorithms prune the search
space by enforcing local consistency properties like domain or bound consistency. A
constraint is domain consistent (DC) iff when a variable is assigned any of the values
in its domain, there exist compatible values in the domains of all the other variables of
the constraint. Such values are called a support. A CSP is domain consistent iff every
constraint is domain consistent.

Recently, Bessiere et al. have shown that a number of common global constraints
are intractable to propagate [11, 12]. For instance, enforcing domain consistency on
the NVALUE constraint is NP-hard [13, 14]. Parameterized complexity can provide a
more fine-grained view of such results, identifying more precisely what makes a global
constraint (in)tractable. We will say that a problem is fixed-parameter tractable (FPT)
if it can be solved in O(f(k)nc) time where f is any computable function, k is some
parameter, c is a constant, and n is the size of the input. For example, vertex cover
(“Given a graph with n vertices, is there a subset of vertices of size k or less that
cover each edge in the graph”) is NP-hard in general, but fixed-parameter tractable with
respect to k since it can be solved in O(1.31951kk2 + kn) time [15]. Hence, provided
k is small, vertex cover can be solved effectively.

4 Symmetry breaking

As we have argued, symmetry is a common feature of many real-world problems that
dramatically increases the size of the search space if it is not factored out. Symmetry
can be defined as a bijection on assignments that preserves solutions. The set of sym-
metries form a group under the action of composition. We focus on two special types
of symmetry. A value symmetry is a bijective mapping, σ of the values such that if
X1 = d1, . . . , Xn = dn is a solution then X1 = σ(d1), . . . , Xn = σ(dn) is also. For
example, in our all interval series example, there is a value symmetry σ that maps the
value i onto n − i. A variable symmetry, on the other hand, is a bijective mapping,
θ of the indices of variables such that if X1 = d1, . . . , Xn = dn is a solution then
Xθ(1) = d1, . . . , Xθ(n) = dn is also. For example, in our all interval series example,
there is a variable symmetry θ that maps the index i onto n + 1 − i. This swaps the
variable Xi with Xn+1−i.

A simple and effective mechanism to deal with symmetry is to add constraints to
eliminate symmetric solutions [1, 2, 16–19]. The basic idea is very simple. We pick
an ordering on the variables, and then post symmetry breaking constraints to ensure
that the final solution is lexicographically less than any symmetric re-ordering of the
variables. That is, we select the “lex leader” assignment. For example, to break the



variable symmetry θ, we post the constraint:

[X1, . . . , Xn] ≤lex [Xθ(1), . . . , Xθ(n)]

Efficient inference methods exist for propagating such constraints [20, 21]. The symme-
try breaking constraints in our all interval series example can all be derived from such
lex leader constraints.

In theory, the lex leader method solves the problem of symmetries, eliminating all
symmetric solutions and pruning many symmetric states. Unfortunately, the set of sym-
metries might be exponentially large (for example, in a graph k-colouring, there are
k! symmetries). There may therefore be too many symmetry breaking constraints to
post. In addition, decomposing symmetry breaking into many lex leader constraints
typically hinders propagation. We focus on three special but commonly occurring cases
where symmetry breaking is more tractable and propagation can be more powerful:
value symmetry, interchangeable values, and row and column symmetry. In each case,
we identify islands of tractability but show that the quick-sands of intractability remain
close to hand.

5 Value symmetry

Value symmetries are a commonly occurring symmetry that are more tractable to break
[6]. For instance, Puget has proved that a linear number of symmetry breaking con-
straints will eliminate any number of value symmetries in polynomial time [22]. Given
a set of value symmetries Σ, we can eliminate all value symmetry by posting the global
constraint LEXLEADER(Σ, [X1, . . . , Xn]) [16]. This is a conjunction of lex leader con-
straints, ensuring that, for each σ ∈ Σ:

〈X1, . . . , Xn〉 ≤lex 〈σ(X1), . . . , σ(Xn)〉

Unfortunately, enforcing domain consistency on this global constraint is NP-hard.
However, this complexity depends on the number of symmetries. Breaking all value
symmetry is fixed-parameter tractable in the number of symmetries.

Theorem 1 Enforcing domain consistency on LEXLEADER(Σ, [X1, . . . , Xn]) is NP-
hard in general but fixed-parameter tractable in k = |Σ|.

Proof: NP-hardness is proved by Theorem 1 in [23], and fixed-parameter tractability
by Theorem 7 in [24]. 2

One situation where we may have only a small number of symmetries is when we
focus on just the generators of the symmetry group [2, 25]. This is attractive as the size
of the generator set is logarithmic in the size of the group, many algorithms in compu-
tational group theory work on generators, and breaking just the generator symmetries
has been shown to be effective on many benchmarks [25]. In general, breaking just the
generators may leave some symmetry. However, on certain symmetry groups (like that
for interchangeable values considered in the next section), all symmetry is eliminated
(Theorem 3 in [23]).



6 Interchangeable values

By exploiting special properties of the value symmetry group, we can identify even
more tractable cases. A common type of value symmetry with such properties is that
due to interchangeable values. We can break all such symmetry using the idea of value
precedence [26]. In particular, we can post the global symmetry breaking constraint
PRECEDENCE([X1, . . . , Xn]). This ensures that for all j < k:

min{i | Xi = j ∨ i = n+ 1} < min{i | Xi = k ∨ i = n+ 2}

That is, the first time we use j is before the first time we use k for all j < k. For
example, consider the assignment:

X1, X2, X3, . . . , Xn = 1, 1, 1, 2, 1, 3, . . . , 2 (8)

This satisfies value precedence as 1 first occurs before 2, 2 first occurs before 3, etc.
Now consider the symmetric assignment in which we swap 2 with 3:

X1, X2, X3, . . . , Xn = 1, 1, 1, 3, 1, 2, . . . , 3 (9)

This does not satisfy value precedence as 3 first occurs before 2. A PRECEDENCE con-
straint eliminates all symmetry due to interchangeable values. In [27], we give a linear
time propagator for enforcing domain consistency on the PRECEDENCE constraint. In
[23], we argue that PRECEDENCE can be derived from the lex leader method (but offers
more propagation by being a global constraint).

Another way to ensure value precedence is to map onto dual variables, Zj which
record the first index using each value j [22]. This transforms value symmetry into
variable symmetry on the Zj . We can then eliminate this variable symmetry with some
ordering constraints:

Z1 < Z2 < Z3 < . . . < Zm (10)

In fact, Puget proves that we can eliminate all value symmetry (and not just that due
to value interchangeability) with a linear number of such ordering constraints. Unfor-
tunately, this decomposition into ordering constraints hinders propagation even for the
tractable case of interchangeable values (Theorem 5 in [23]). Indeed, even with just
two value symmetries, mapping into variable symmetry can hinder propagation. This is
supported by the experiments in [23] where we see faster and more effective symmetry
breaking with the global PRECEDENCE constraint. This global constraint thus appears
to be a promising method to eliminate the symmetry due to interchangeable values.

A generalization of the symmetry due to interchangeable values is when values
partition into sets, and values within each set (but not between sets) are interchange-
able. The idea of value precedence can be generalized to this case [27]. The global
GENPRECEDENCE constraint ensures that values in each interchangeable set occur
in order. More precisely, if the values are divided into s equivalence classes, and the
jth equivalence class contains the values vj,1 to vj,mj

then GENPRECEDENCE ensures
min{i |Xi = vj,k ∨ i = n+1} < min{i |Xi = vj,k+1 ∨ i = n+2} for all 1 ≤ j ≤ s
and 1 ≤ k < mj . Enforcing domain consistency on GENPRECEDENCE is NP-hard in
general but fixed-parameter tractable in k = s [23, 24].



7 Row and column symmetry

Another common type of symmetry where we can exploit special properties of the
symmetry group is row and column symmetry [28]. Many problems can be modelled
by a matrix model involving a matrix of decision variables [29–31]. Often the rows and
columns of such matrices are fully or partially interchangeable [28]. For example, the
Equidistant Frequency Permutation Array (EFPA) problem is a challenging combinato-
rial problem in coding theory. The aim is to find a set of v code words, each of length
qλ such that each word contains λ copies of the symbols 1 to q, and each pair of code
words is at a Hamming distance of d apart. For example, for v = 4, λ = 2, q = 3,
d = 4, one solution is:

0 2 1 2 0 1
0 2 2 1 1 0
0 1 0 2 1 2
0 0 1 1 2 2

(11)

This problem has applications in communications, and is closely related to other combi-
natorial problems like finding orthogonal Latin squares. Huczynska et al. [32] consider
a simple matrix model for this problem with a v by qλ array of variables, each with
domains 1 to q. This model has row and column symmetry since we can permute the
rows and the columns of any solution. Although breaking all row and column symme-
try is intractable in general, it is fixed-parameter tractable in the number of columns (or
rows).

Theorem 2 With a n by m matrix, checking lex leader constraints that break all row
and column symmetry is NP-hard in general but fixed-parameter tractable in k = m.

Proof: NP-hardness is proved by Theorem 3.2 in [2], and fixed-parameter tractability
by Theorem 1 in [33]. 2

Note that the above result only talks about checking a constraint which breaks all
row and column symmetry. That is, we only consider the computational cost of deciding
if a complete assignment satisfies the constraint. Propagation of such a global constraint
is computationally more difficult.

Just row or column symmetry on their own are tractable to break. To eliminate
all row symmetry we can post lexicographical ordering constraints on the rows. Sim-
ilarly, to eliminate all column symmetry we can post lexicographical ordering con-
straints on the columns. When we have both row and column symmetry, we can post a
DOUBLELEX constraint that lexicographically orders both the rows and columns [28].
This does not eliminate all symmetry since it may not break symmetries which per-
mute both rows and columns. Nevertheless, it is more tractable to propagate and is
often highly effective in practice. Note that DOUBLELEX can be derived from a strict
subset of the LEXLEADER constraints. Unfortunately propagating such a DOUBLELEX
constraint completely is already NP-hard.

Theorem 3 With a n by m matrix, enforcing domain consistency on DOUBLELEX is
NP-hard in general.



Proof: See Threorem 3 in [33]. 2
There are two special cases of matrix models where row and column symmetry is

more tractable to break. The first case is with an all-different matrix, a matrix model in
which every value is different. If an all-different matrix has row and column symmetry
then the lex-leader method ensures that the top left entry is the smallest value, and the
first row and column are ordered [28]. Domain consistency can be enforced on such
a global constraint in polynomial time [33]. The second more tractable case is with a
matrix model of a function. In such a model, all entries are 0/1 and each row sum is 1. If
a matrix model of a function has row and column symmetry then the lex-leader method
ensures the rows and columns are lexicographically ordered, the row sums are 1, and
the sums of the columns are in decreasing order [34, 35, 28]. Domain consistency can
also be enforced on such a global constraint in polynomial time [33].

8 Related work

The study of computational complexity in constraint programming has tended to fo-
cus on the structure of the constraint graph (e.g. especially measures like tree width
[36, 37]) or on the semantics of the constraints (e.g. [38]). However, these lines of re-
search are mostly concerned with constraint satisfaction problems as a whole, and do
not say much about individual (global) constraints. For global constraints of bounded
arity, asymptotic analysis has been used to characterize the complexity of propagation
both in general and for constraints with a particular semantics. For example, the generic
domain consistency algorithm of [39] has an O(dn) time complexity on constraints of
arity n and domains of size d, whilst the domain consistency algorithm of [40] for the
n-ary ALLDIFFERENT constraint has O(n

3
2 d) time complexity. Bessiere et al. showed

that many global constraints like NVALUE are also intractable to propagate [11]. More
recently, Samer and Szeider have studied the parameterized complexity of the EGCC
constraint [41]. Szeider has also studied the complexity of symmetry in a propositional
resolution calculus [42]. See Chapter 10 in [43] for more about symmetry of proposi-
tional systems.

9 Conclusions

We have argued that parameterized complexity is a useful tool with which to study
symmetry breaking. In particular, we have shown that whilst it is intractable to break
all symmetry completely, there are special types of symmetry like value symmetry and
row and column symmetry which are more tractable to break. In these case, fixed-
parameter tractability comes from natural parameters like the number of generators
which tend to be small. In future, we hope that insights provided by such analysis will
inform the design of new search methods. For example, we might build a propagator
that propagates completely when the parameter is small, but only partially when it is
large. In the longer term, we hope that other aspects of parameterized complexity like
kernels will find application in the domain of symmetry breaking.
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