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Abstract
Voting is a simple mechanism to combine together the preferences of multiple agents. Unfor-

tunately, agents may try to manipulate the result by mis-reporting their preferences. One barrier
that might exist to such manipulation is computational complexity. In particular, it has been
shown that it is NP-hard to compute how to manipulate a number of different voting rules. How-
ever, NP-hardness only bounds the worst-case complexity. Recent theoretical results suggest that
manipulation may often be easy in practice. In this paper, we show that empirical studies are
useful in improving our understanding of this issue. We consider two settings which represent
the two types of complexity results that have been identified in this area: manipulation with un-
weighted votes by a single agent, and manipulation with weighted votes by a coalition of agents.
In the first case, we consider Single Transferable Voting (STV), and in the second case, we consider
veto voting. STV is one of the few voting rules used in practice where it is NP-hard to compute
how a single agent can manipulate the result when votes are unweighted. It also appears one of
the harder voting rules to manipulate since it involves multiple rounds. On the other hand, veto
voting is one of the simplest representatives of voting rules where it is NP-hard to compute how a
coalition of weighted agents can manipulate the result. In our experiments, we sample a number
of distributions of votes including uniform, correlated and real world elections. In many of the
elections in our experiments, it was easy to compute how to manipulate the result or to prove that
manipulation was impossible. Even when we were able to identify a situation in which manipula-
tion was hard to compute (e.g. when votes are highly correlated and the election is “hung”), we
found that the computational difficulty of computing manipulations was somewhat precarious (e.g.
with such “hung” elections, even a single uncorrelated voter was enough to make manipulation
easy to compute).

1. Introduction

The Gibbard-Satterthwaite theorem proves that, under some weak assumptions like three or more
candidates and the absence of a dictator, voting rules are manipulable (Gibbard, 1973; Satterth-
waite, 1975). That is, it may pay for agents not to report their preferences truthfully. One appealing
escape from this result was proposed by Bartholdi, Tovey and Trick (1989). Whilst a manipulation
may exist, perhaps it is computationally too difficult to find. To illustrate this idea, they demon-
strated that the second order Copeland rule is NP-hard to manipulate. Shortly after, Bartholdi and
Orlin (1991) proved that the more well known Single Transferable Voting (STV) rule is NP-hard
to manipulate. A whole subfield of social choice has since grown from this proposal, studying the
computational complexity of manipulation and of the control of voting rules. Two good surveys have
recently appeared that provide many references into the literature (Faliszewski, Hemaspaandra, &
Hemaspaandra, 2010; Faliszewski & Procaccia, 2010). Computational complexity results about the
manipulation of voting rules typically vary along five different dimensions.

Weighted or unweighted votes: Are the votes weighted or unweighted? Although many elec-
tions involve unweighted votes, weighted votes are used in a number of real-world settings like
shareholder meetings, and elected assemblies. Weights are also useful in multi-agent systems
where we have different types of agents. Weights are interesting from a computational per-
spective for at least two reasons. First, weights can increase computational complexity. For
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example, computing how to manipulate the veto rule is polynomial with unweighted votes but
NP-hard with weighted votes (Conitzer, Sandholm, & Lang, 2007). Second, the weighted case
informs us about the unweighted case when we have probabilistic information about the votes.
For instance, if it is NP-hard to compute if an election can be manipulated with weighted
votes, then it is NP-hard to compute the probability of a candidate winning when there is
uncertainty about how the unweighted votes have been cast (Conitzer & Sandholm, 2002a).

Bounded or unbounded number of candidates: Do we have a (small) fixed number of candi-
dates? Or is the number of candidates allowed to grow? For example, with unweighted votes,
computing a manipulation of the STV rule is polynomial if we bound the number of candi-
dates and only NP-hard when the number of candidates is allowed to grow with problem size
(Bartholdi & Orlin, 1991). Indeed, with unweighted votes and a bounded number of candi-
dates, it is polynomial to compute how to manipulate most voting rules (Conitzer et al., 2007).
On the other hand, with weighted votes, it is NP-hard to compute how to manipulate many
voting rules with a bounded number of candidates. For example, it is NP-hard to compute a
manipulation with the veto rule and 3 or more candidates (Conitzer et al., 2007).

One manipulator or a coalition of manipulators: Is a single agent trying to manipulate the
results or is a coalition of agents acting together? A single agent is unlikely to be able to change
the outcome of many elections. A coalition, on the other hand, may be able to manipulate
the result. With some rules, like STV, it is NP-hard to compute how a single agent needs to
vote to manipulate the result or to prove that manipulation by this single agent is impossible
(Bartholdi & Orlin, 1991). With other rules like Borda, it may require a coalition of two
agents for manipulation to be NP-hard to compute (Davies, Katsirelos, Narodytska, & Walsh,
2011; Betzler, Niedermeier, & Woeginger, 2011). With other rules like veto, we may require
a coalition of manipulating agents whose size is unbounded (and allowed to grow with the
problem size) for manipulation to be NP-hard to compute (Conitzer et al., 2007).

Complete or incomplete information: Many results assume that the manipulator(s) have com-
plete information about the other agents’ votes. Of course, we may not know precisely how
other agents will vote in practice. However, there are several reasons why the case of com-
plete information is interesting. First, if we can show that it is computationally intractable to
compute how to manipulate the election with complete information then it is also intractable
when we have incomplete information. Second, the complete information case informs the case
when we have uncertainty. For instance, if it is computationally intractable for a coalition to
compute how to manipulate an election with complete information then it is also intractable
for an individual to compute how to manipulate an election when we have only probabilistic
information about the votes (Conitzer et al., 2007).

Constructive or destructive manipulation: Is the manipulator trying to make one particular
candidate win (constructive manipulation) or prevent one particular candidate from winning
(destructive manipulation)? Destructive manipulation is easier to compute than constructive
manipulation. For instance, constructive manipulation of the veto rule by a coalition of agents
with weighted votes is NP-hard but destructive manipulation is polynomial (Conitzer et al.,
2007). However, there are also rules where both destructive and constructive manipulation are
in the same complexity class. For example, both constructive and destructive manipulation of
plurality are polynomial to compute, whilst both constructive and destructive manipulation
of plurality with runoff for weighted votes are NP-hard (Conitzer et al., 2007).

In Figure 1, we give a representative selection of results about the complexity of manipulating
voting. References to many of these results can be found in the work of Conitzer et al. (2007).
In this paper, we will focus on two cases that cover the main types of computational complexity
results that have been identified: manipulation of STV with unweighted votes by a single agent
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unweighted votes, weighted votes,
constructive constructive destructive

number of candidates manipulation 2 3 ≥4 2 ≥3

plurality P P P P P P
Borda NP-c P NP-c NP-c P P

veto P P NP-c NP-c P P
STV NP-c P NP-c NP-c P NP-c

plurality with runoff P P NP-c NP-c P NP-c
Copeland NP-c P P NP-c P P

Figure 1: Computational complexity of deciding if various voting rules can be manipulated by an
agent (unweighted votes) or a coalition of agents (weighted votes). P means that the
problem is polynomial, and NP-c that the problem is NP-complete. For example, con-
structive manipulation of the veto rule is polynomial for unweighted votes or for weighted
votes with 2 candidates, NP-hard for 3 or more candidates. On the other hand, destruc-
tive manipulation of the veto rule is polynomial for weighted votes with a coalition of
manipulating agents and 2 or more candidates.

and an unbounded number of candidates in the election, and manipulation of veto voting with
weighted votes by a coalition of agents and just 3 candidates in the election. In both cases, we
assume complete information about the votes of the other agents. The two cases thus cover cases
in which computational complexity is associated: unweighted votes, a small (bounded) number of
manipulators and a large (unbounded) number of candidates; weighted votes, a large (unbounded)
number of manipulators, and a small (bounded) number of candidates.

STV is a very obvious and interesting case to consider when we study the computational com-
plexity of manipulation. STV is one of the few voting rules used in practice where manipulation is
NP-hard to compute when votes are unweighted. Bartholdi and Orlin argued that STV is one of
the most promising voting rules to consider in this respect:

“STV is apparently unique among voting schemes in actual use today in that it is com-
putationally resistant to manipulation.”, (Bartholdi & Orlin, 1991, p. 341).

STV also appears more difficult to manipulate than many other rules. For example, Chamberlain
(1985) studied four different measures of the manipulability of a voting rule: the probability that
manipulation is possible, the number of candidates who can be made to win, the coalition size
necessary to manipulate, and the margin-of-error which still results in a successful manipulation.
Compared to other commonly used rules like plurality and Borda, his results showed that STV was
the most difficult to manipulate by a substantial margin. He concluded that:

“[this] superior performance . . . combined with the rather complex and implausible nature
of the strategies to manipulate it, suggest that it [the STV rule] may be quite resistant to
manipulation”, (Chamberlin, 1985, p. 203).

The second case considered in this paper (manipulation of the veto rule by a coalition of ma-
nipulators with three candidates) is interesting to study for several reasons. First, the veto rule is
a simple representative of voting rules where manipulation by a coalition of agents with weighted
votes and a small number of candidates is NP-hard to compute. Second, the veto rule is very easy
to reason about. Unlike STV, there are not multiple rounds and the elimination of candidates to
worry about. In fact, as we show, manipulation of the veto rule is equivalent to a simple number
partitioning problem. We can therefore use efficient number partitioning algorithms to compute ma-
nipulations. Third, the veto rule is on the borderline of tractability since constructive manipulation
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of the rule by a coalition of weighted agents is NP-hard but destructive manipulation is polynomial
(since the best way to ensure a candidate does not win is simply to veto this candidate) (Conitzer
et al., 2007).

Our empirical study considers the computational difficulty of computing manipulations in prac-
tice. NP-hardness results only describe the worst-case. There is increasing concern that computa-
tional complexity results like these may not reflect the actual difficulty of computing manipulations
in practice. For instance, a number of recent theoretical results suggest that manipulation may
often be computationally easy (Conitzer & Sandholm, 2006; Procaccia & Rosenschein, 2007b; Xia &
Conitzer, 2008a; Friedgut, Kalai, & Nisan, 2008; Xia & Conitzer, 2008b). Our results demonstrate
that we can profitably study this issue empirically. There are several reasons why empirical analysis
like that undertaken here is useful. First, theoretical analysis is often asymptotic so does not show
the size of hidden constants. In addition, elections are typically bounded in size. Can we be sure
that asymptotic behaviour is relevant for the finite sized electorates met in practice? For instance,
our results suggest that we can easily compute manipulations for almost any type of STV election
with up to 100 candidates. Second, theoretical analysis is often restricted to particular distributions
(e.g. independent and identically distributed votes). Manipulation may be very different in practice
due to correlations between votes. For instance, if all preferences are single-peaked then a voting
rule which selects the median candidate is not manipulable. With the median voting rule, it is
in the best interests of all agents to state their true preferences. It is thus clear that correlations
between votes can have an impact on the manipulability of an election. Indeed, a number of recent
results have studied whether manipulation remains computationally hard when votes are limited to
be single-peaked (Walsh, 2007; Faliszewski, Hemaspaandra, Hemaspaandra, & Rothe, 2009; Brandt,
Brill, Hemaspaandra, & Hemaspaandra, 2010). Our experiments will therefore look at elections
in which there are correlations between votes. Third, many of the theoretical results about the
computational complexity of manipulation have been hard won and are limited in their scope. For
instance, a long standing open result was recently settled, proving that computing a manipulation of
the Borda rule by a coalition of manipulators is NP-hard (Davies et al., 2011; Betzler et al., 2011).
However, both proofs require precisely 2 manipulators. It remains open if computing a manipula-
tion of the Borda rule by a larger coalition is NP-hard. An empirical study may quickly suggest
whether the result extends to larger coalitions. Finally, empirical studies may suggest new avenues
for theoretical study. For example, the experiments reported here suggest a simple and universal
form for the probability that a coalition of agents in a veto election can elect a desired candidate.
It would be interesting to try to derive this form theoretically.

2. Background

We give some notation and background that will be used throughout the rest of the paper. Let m
be the number of candidates in the election. A vote is a linear order (a transitive, antisymmetric,
and total relation) over the set of m candidates. Let n the the number of agents voting. A profile
is a n-tuple of votes. We let N(i, j) be the number of agents preferring i to j in a profile. A voting
rule is a function that maps any profile to an unique winning alternative. In this paper, we consider
a number of common voting rules:

Scoring rules: (w1, . . . , wm) is a vector of weights, the ith candidate in a total order scores wi, and
the winner is the candidate with highest total score. The plurality rule has the weight vector
(1, 0, . . . , 0), the veto rule has the vector (1, 1, . . . , 1, 0), whilst the Borda rule has the vector
(m− 1,m− 2, . . . , 0). With the veto rule, each voter effectively vetoes one candidate and the
candidate with the fewest vetoes wins.

Single transferable vote (STV): STV proceeds in a number of rounds. Unless one candidate
has a majority of first place votes, we eliminate the candidate with the least number of first
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place votes. Any ballots placing the eliminated candidate in first place are re-assigned to the
second place candidate. We then repeat until one candidate has a majority.

Copeland (aka tournament): The candidate with the highest Copeland score wins. The Copeland
score of candidate i is

∑
i6=j(N(i, j) > n

2 ) − (N(i, j) < n
2 ). The Copeland winner is the can-

didate that wins the most pairwise elections. In the second order Copeland rule, if there is a
tie, the winner is the candidate whose defeated competitors have the largest sum of Copeland
scores.

Maximin (aka Simpson): The candidate with the highest maximin score wins. The maximin
score of candidate i is mini 6=jN(i, j). The Simpson winner is the candidate whose worst
performance in pairwise elections is best.

All these rules can be easily modified to work with weighted votes. A vote of integer weight w can be
viewed as w agents who vote identically. All these voting rules are anonymous as the order of votes in
the profile is unimportant. A profile can therefore be thought of as a multi-set of n votes. To ensure
the winner is unique, we will sometimes need to break ties (e.g. when two candidates have the same
number of vetoes, or when two candidates have the same number of first place votes). In the UK,
for example, when an election is tied, the returning officer will choose between the candidates using
a random method like lots or a coin toss. A typical assumption made in the literature (and in this
paper) is that ties are broken in favour of the manipulator. More precisely, given a choice of several
candidates, we tie-break in favour of the candidate most preferred by the manipulator. Suppose the
manipulator can make their preferred candidate win assuming ties are broken in their favour but
ties are in fact broken at random. Then we can conclude that the manipulator can increase the
chance of getting their preferred result. It would be interesting to consider other tie-breaking rules.
Indeed, tie-breaking can even introduce computational complexity into manipulation. For example,
computing how to manipulate the Copeland rule with weighted votes is polynomial if ties are scored
with 1 but NP-hard if they are scored with 0 (Faliszewski, Hemaspaandra, & Schnoor, 2008).

We will consider one agent or a coalition of k agents trying to manipulate the result of the election.
Manipulation is the situation where the manipulators vote differently to their true preferences in
order to improve the outcome from their perspective. As is common in the literature, we assume
that the manipulators have complete knowledge of the other votes (and, where appropriate, complete
knowledge of all the weights associated with all the votes). Whilst it may be unrealistic in practice
to assume we have complete knowledge about the other votes, there are several reasons why this case
is interesting to consider. First, complete information is likely to be a special case of any uncertainty
model. Hence, any computational hardness results for complete information directly imply hardness
for the corresponding uncertainty model. Second, results about the hardness of manipulation by
a coalition with weighted votes and complete information imply hardness of manipulation by an
individual agent with unweighted votes and incomplete information (Conitzer et al., 2007). Third,
by assuming complete information, we factor out any complexity coming from the uncertainty model
and focus instead on computing just the manipulation.

In addition to some of the standard uniform and random models of votes, we will consider
two restricted types of votes: single-peaked and single-troughed votes. With single-peaked votes,
candidates can be placed on a line, and an agent’s preference for a candidate decreases with distance
from their single most preferred candidate. Single-peaked preferences are interesting from several
perspectives. First, single-peaked preferences are likely to occur in a number of domains. For
example, if you are buying a house, you might have an optimal price in mind and your preference
for a house decreases as the distance from this price increases. Second, single-peaked preferences
are easy to elicit. Conitzer (2007, 2009) gives a strategy for eliciting any single-peaked preference
ordering with a linear number of pairwise ranking questions. Third, single-peaked preferences prevent
certain problematic situations arising when aggregating preferences. In particular, they prevent the
existence of Condorcet cycles. In fact, the median candidate of a single-peaked profile beats all
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others in pairwise comparisons (that is, the median candidate is the Condorcet winner) (Black,
1948). With single-troughed votes, on the other hand, candidates can be placed on a line, and an
agent’s preference for a candidate increases with distance from their single least preferred candidate.
For example, if the candidates are locations to build a new incinerator, you might have a least
preferred location (your own neighbourhood), and your preference increases the further away the
incinerator is from this. Single-troughed votes have similar nice properties to single-peaked votes
(Barberà, Berga, & Moreno, 2009).

3. Single Transferable Voting

We begin with an empirical study of manipulation in STV elections. STV is used in a wide variety
of real-world settings including the election of the Irish presidency, the Australian House of Repre-
sentatives, the Academy awards, and many organisations including the American Political Science
Association, the International Olympic Committee, and the British Labour Party. Interestingly it
is NP-hard to compute if a single agent can manipulate the STV rule. Indeed, it is one of the
few voting rules used in practice where manipulation is NP-hard to compute in this setting. More
precisely, STV is NP-hard to manipulate by a single agent if the number of candidates is unbounded
and votes are unweighted (Bartholdi & Orlin, 1991), or by a coalition of agents if there are 3 or
more candidates and votes are weighted (Conitzer et al., 2007). Coleman and Teague give an enu-
merative method for a coalition of k unweighted agents to compute a manipulation of the STV rule
which runs in O(m!(n + mk)) time where n is the number of agents voting and m is the number
of candidates (Coleman & Teague, 2007). For a single manipulator, Conitzer, Sandholm and Lang
give an O(n1.62m) time algorithm (called CSL from now on) to compute the set of candidates that
can win an STV election (Conitzer et al., 2007).

In Figure 2, we give a modified version of the CSL algorithm for computing a manipulation of
the STV rule. This uses a similar recursion as CSL but changes the original algorithm in several
ways to take advantage of the fact that we only want to compute if one distinguished candidate can
win and do not need to know all of the other candidates that can possibly win. There are two main
changes to CSL. First, we can ignore elections in which the chosen candidate is eliminated. Second,
we can terminate search as soon as a manipulation is found in which the chosen candidate wins. In
particular, we do not need to explore the left branch of the search tree when the right branch gives
a successful manipulation.

We tested the modified algorithm with the simplest possible scenario: elections in which each
vote is equally likely. We have one agent trying to manipulate an election of m candidates where
n other agents vote. Votes are drawn uniformly at random from all m! possible votes. This is the
Impartial Culture (IC) model. To show the benefits of our modifications to the CSL algorithm, we
ran a simple experiment in which m = n. The experiment was run in CLISP 2.42 on a 3.2 GHz
Pentium 4 with 3GB of memory running Ubuntu 8.04.3. Table 1 gives the mean nodes explored
and runtime needed to compute a manipulation or prove none exists. Median and other percentiles
display similar behaviour. We see that our modified method can be considerably faster than the
original CSL algorithm. In addition, as problems get larger, the improvement increases. At n = 32,
our method is nearly 10 times faster than CSL. This increases to roughly 40 times faster at n = 128.
These improvements reduce the time to find a manipulation on the largest problems from several
hours to a couple of minutes.

3.1 Varying Number of Agents

We next performed some detailed experiments looking for phase transition behaviour and hard ma-
nipulation problems. In many other NP-hard problem domains, the computationally hard instances
have been shown to be often associated with the region of the parameter space in which there is
a rapid transition in the probability that a solution exists (Cheeseman, Kanefsky, & Taylor, 1991;
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Manipulate(c,R, (s1, . . . , sm), f)
1 if |R| = 1 ; Is there one candidate left?
2 then return (R = {c}) ; Is it the chosen candidate?
3 if f = 0 ; Is the top of the manipulator’s vote currently free?
4 then
5 d← arg minj∈R(sj) ; Who will currently be eliminated?
6 sd ← sd + w ; Suppose the manipulator votes for them
7 e← arg minj∈R(sj)
8 if d = e ; Does this not change the result?
9 then return

10 (c 6= d) and Manipulate(c,R− {d},Transfer((s1, . . . , sm), d, R), 0)
11 else return
12 ((c 6= d) and Manipulate(c,R− {d},Transfer((s1, . . . , sm), d, R), 0)) or
13 ((c 6= e) and Manipulate(c,R− {e},Transfer((s1, . . . , sm), e, R), d))
14 else ; The top of the manipulator’s vote is fixed
15 d← arg minj∈R(sj) ; Who will be eliminated?
16 if c = d ; Is this the chosen candidate?
17 then return false
18 if d = f ; Is the manipulator free again to change the result?
19 then return Manipulate(c,R− {d},Transfer((s1, . . . , sm), d, R), 0)
20 else return Manipulate(c,R− {d},Transfer((s1, . . . , sm), d, R), f)

Figure 2: Our modified algorithm to compute if an agent can manipulate an STV election.
We use integers from 1 to m for the candidates, integers from 1 to n for the agents (with n being the
manipulator), c for the candidate who the manipulator wants to win, R for the set of un-eliminated
candidates, sj for the weight of agents ranking candidate j first amongst R, w for the weight of the
manipulator, and f for the candidate most highly ranked by the manipulator amongst R (or 0 if
there is currently no constraint on who is most highly ranked). The function Transfer computes the
a vector of the new weights of agents ranking candidate j first amongst R after a given candidate is
eliminated. The algorithm is initially called with R set to every candidate, and f to 0.

Mitchell, Selman, & Levesque, 1992). The “phase transition” between a satisfiable and an unsatis-
fiable phase resembles that seen in statistical physics in Ising magnets and similar systems. There
are several good surveys of this area (Dubois, Monasson, Selman, & Zecchina, 2001; Hartmann &
Weigt, 2005; Gomes & Walsh, 2006).

Our first experiment varied the number of agents voting. In Figures 3 and 4, we plot the
probability that a manipulator can make a random agent win, and the cost to compute if this is
possible when we fix the number of candidates but vary the number of agents in the STV election. In
this and subsequent experiments, we tested 1000 problems at each point. The number of candidates
and of agents voting are varied in powers of 2, typically from 20 (= 1) to 27 (= 128) unless otherwise
indicated.

The ability of an agent to manipulate the election decreases as the number of agents increases.
Only if there are few votes and few candidates is there a significant chance that the manipulator will
be able to change the result. Phase transition behaviour has been observed in many NP-complete
problem domains including propositional satisfiability (Mitchell et al., 1992; Gent & Walsh, 1994,
1996b), constraint satisfaction (Prosser, 1994; Smith, 1994; Gent, MacIntyre, Prosser, & Walsh, 1995;
Gent, MacIntyre, Prosser, Smith, & Walsh, 2001), graph colouring (Walsh, 1998, 1999, 2001), number
partitioning (Gent & Walsh, 1996a, 1998; Mertens, 2001) and the travelling salesperson problem
(Zhang & Korf, 1996; Gent & Walsh, 1996c). Unlike these domains, the probability curve observed
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CSL algorithm Modified algorithm
n nodes time/s nodes time/s
2 1.46 0.00 1.24 0.00
4 3.28 0.00 1.59 0.00
8 11.80 0.00 3.70 0.00

16 59.05 0.03 12.62 0.01
32 570.11 0.63 55.20 0.09
64 14,676.17 33.22 963.39 3.00

128 8,429,800.00 6,538.13 159,221.10 176.68

Table 1: Comparison between the original CSL algorithm and the modified version which computes
a constructive manipulation of an STV election. The table gives the mean nodes explored
and runtime needed to compute a manipulation or prove none exists. Median and other
percentiles display similar behaviour. Each election has n agents voting uniformly at ran-
dom over n different candidates. Best results in each row are in bold.
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Figure 3: Manipulability of an STV election containing random uniform votes. The number of
candidates is fixed and we vary the number of agents voting. The vertical axis measures
the probability that a single manipulating agent can make a random candidate win. The
horizontal axis measures the total number of agents voting. Note that n is the number of
agents voting besides the manipulator so that a log scale can be used on the horizontal
axis.
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here does not appear to sharpen to a step function around a fixed point. The probability curve
resembles the smooth phase transitions seen in polynomial problems like 2-colouring (Achlioptas,
1999) and 1-in-2 satisfiability (Walsh, 2002). As indicated before, we assume that ties are broken in
favour of the manipulator. For this reason, the probability that an election is manipulable is greater
than 1

m . Finding a manipulation or proving none is possible is easy unless we have both a large
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Figure 4: Search cost to compute if an agent can manipulate an STV election containing random
uniform votes. The number of candidates, m is fixed and we vary the number of agents.
The vertical axis measures the mean nodes explored to compute if a single manipulating
agent can make a random candidate win. The horizontal axis measures the number of
agents voting besides the manipulator. Median and other percentiles are similar.

number of agents and a large number of candidates. However, in this situation, the chance that the
manipulator can change the result is very small.

3.2 Varying Number of Candidates

Our next experiment slices the parameter space in an orthogonal direction, varying the number of
candidates in the election. In Figure 5, we plot the cost to compute if the manipulator can make
a random agent win an STV election when we fix the number of agents but vary the number of
candidates. The probability curve that the manipulator can make a random agent win resembles
Figure 3. Whilst the cost of computing a manipulation appears to increase exponentially with the
number of candidates m, the observed scaling is much better than the 1.62m worst case scaling of
the original CSL algorithm. We can easily compute manipulations for up to 128 candidates. Note
that 1.62m is over 1026 for m = 128. Thus, we appear to be far from the worst case. We fitted the
observed data to the function cdm and found a fit with d = 1.008 and a coefficient of determination
R2 = 0.95 indicating a good fit.

3.3 Correlated Votes

In many real life situations, votes are not completely uniform and uncorrelated with each other.
What happens if we introduce correlation between votes? Here we consider random votes drawn
from the Polya-Eggenberger urn model (Berg, 1985). In this model, we have an urn containing all
m! possible votes. We draw votes out of the urn at random, and put them back into the urn with
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Figure 5: Search cost to compute if an agent can manipulate an STV election containing random
uniform votes. The number of agents, n is fixed and we vary the number of candidates.
The vertical axis measures the mean number of nodes explored to compute a manipulation
or prove that none exists. The horizontal axis measures m, the number of candidates in
the election. Median and other percentiles are similar.

a additional votes of the same type (where a is a parameter). As a increases, there is increasing
correlation between the votes. This generalises both the Impartial Culture model (a = 0) in which
all votes are equally likely and the Impartial Anonymous Culture (a = 1) model in which all profiles
are equally likely (McCabe-Dansted & Slinko, 2006). To give a parameter independent of problem
size, we consider b = a

m! . For instance, with b = 1, there is a 50% chance that the second vote is the
same as the first.

In Figures 6 and 7, we plot the probability that a manipulator can make a random agent win
an STV election, and the cost to compute if this is possible as we vary the number of candidates in
an election where votes are drawn from the Polya-Eggenberger urn model. As before, the ability of
an agent to manipulate the election decreases as the number of candidates, m increases. The search
cost to compute a manipulation appears to increase exponentially with the number of candidates
m. However, we can easily compute manipulations for up to 128 candidates. We fitted the observed
data to the function cdm and found a fit with d = 1.001 and a coefficient of determination R2 = 0.99
indicating a good fit.

In Figure 8, we plot the cost to compute a manipulation when we fix the number of candidates
but vary the number of agents. As before, the ability of an agent to manipulate the election decreases
as the number of agents increases. Only if there are few votes and few candidates is there any chance
that the manipulator will succeed. As in previous experiments, finding a manipulation or proving
none exists is easy even if we have many agents and candidates. We also observed results which are
almost indistinguishable when votes were correlated by being single-peaked (or single-troughed) and
were drawn either uniformly at random or from an urn model.
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Figure 6: Manipulability of an STV election containing correlated votes. The number of agents is
fixed and we vary the number of candidates, m. The n fixed votes are drawn from the
Polya-Eggenberger urn model with b = 1. The vertical axis measures the probability that
the manipulator can make a random candidate win. The horizontal axis measures the
number of candidates, m in the election.
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Figure 7: Search cost to compute if an agent can manipulate an STV election containing correlated
votes. The number of agents, n is fixed and we vary the number of candidates, m. The
n fixed votes are drawn using the Polya-Eggenberger urn model with b = 1. The vertical
axis measures the mean number of search nodes explored to compute a manipulation or
prove that none exists. The horizontal axis measures the number of candidates, m in the
election. The curves for different n fit closely on top of each other. Median and other
percentiles are similar.
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Figure 8: Search cost to compute if an agent can manipulate an STV election with correlated votes.
The number of candidates, m is fixed and we vary the number of agents, n. The n fixed
votes are drawn using the Polya-Eggenberger urn model with b = 1. The vertical axis
measures the mean number of search nodes explored to compute a manipulation or prove
that none exists. The horizontal axis measures the number of agents, n. Median and other
percentiles are similar.

4. Coalition Manipulation

Our algorithm for computing manipulation of an STV election by a single agent can also be used
to compute if a coalition can manipulate an STV election when the members of coalition vote in
unison. This ignores more complex manipulations where the members of the coalition need to vote
in different ways. Insisting that the members of the coalition vote in unison might be reasonable if
we wish manipulation to have both a low computational and communication cost (Slinko & White,
2008). In Figures 9 and 10, we plot the probability that a coalition voting in unison can make a
random agent win an STV election, and the cost to compute if this is possible as we vary the size of
the coalition. Theoretical results due to Procaccia and Rosenschein (2007a) and Xia and Conitzer
(2008a) suggest that the critical size of a coalition that can manipulate an election grows as

√
n.

We therefore normalize the coalition size by
√
n.

The ability of the coalition to manipulate the election increases as the size of the coalition
increases. When the coalition is about

√
n in size, the probability that the coalition can manipulate

the election so that a candidate chosen at random wins is around 1
2 . The cost to compute a

manipulation (or prove that none exists) decreases as we increase the size of the coalition. It is
easier for a larger coalition to manipulate an election than for a smaller one.

These experiments again suggest different behaviour occurs here than in other combinatorial
problems like propositional satisfiability and graph colouring. For instance, we do not see a rapid
transition that sharpens around a fixed point as in 3-satisfiability. When we vary the coalition size,
we see a transition in the probability of being able to manipulate the result around a coalition size
k =

√
n. However, this transition appears smooth and does not seem to sharpen towards a step

function as n increases. In addition, hard instances do not occur around k =
√
n. Indeed, the

hardest instances are when the coalition is smaller than this and has only a small chance of being
able to manipulate the result.
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Figure 9: Manipulability of an STV election as we vary the size of the manipulating coalition. The
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votes are uniformly drawn at random from the n! possible votes. The vertical axis measures
the probability that the coalition can make a random candidate win. The horizontal axis
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Figure 10: Search cost to compute if a coalition can manipulate an STV election as we vary coalition
size. The vertical axis measures the mean number of search nodes explored to compute a
manipulation or prove that none exists. The horizontal axis measures the coalition size,
k normalized by

√
n. Median and other percentiles are similar.
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5. Sampling Real Elections

Elections met in practice may differ from those sampled so far. There might, for instance, be some
votes which are never cast. On the other hand, with the models studied so far every possible vote
has a non-zero probability of being seen. We therefore sampled some real voting records. We have
previously studied phase transition behaviour in other real world problems using similar sampling
techniques (Gent & Walsh, 1995; Gent, Hoos, Prosser, & Walsh, 1999).

Our first experiment uses the votes cast by 10 teams of scientists to select one of 32 different
trajectories for NASA’s Mariner spacecraft (Dyer & Miles, 1976). Each team ranked the different
trajectories based on their scientific value. We sampled these votes. For elections with 10 or fewer
agents voting, we simply took a random subset of the 10 votes. For elections with more than 10
agents voting, we simply sampled from the 10 votes with uniform frequency. For elections with 32
or fewer candidates, we simply took a random subset of the 32 candidates. Finally for elections
with more than 32 candidates, we duplicated each candidate and assigned them the same ranking.
Since STV works on total orders, we then forced each agent to break any ties randomly. Each
agent broke ties independently of any other agent. New candidates introduced in this way are
clones of the existing candidates. It would be interesting to consider other, perhaps more random
methods for introducing new candidates. Nevertheless, we note that “clones” are a feature of a
number of real world elections. Indeed, one way to manipulate an election is to introduce clone
candidates for the opposition, and thereby to divide their vote. For example, as motivation for
studying clones, Tideman (1987) describes how he successfully won the vote for class treasurer as
a somewhat precocious 12 year old by nominating the best friend of his main rival. We therefore
believe it may be of interest to consider elections like those generated here in which clones can be
present.

In Figures 11 to 12, we plot the cost to compute if a manipulator can make a random agent
win an STV election as we vary the number of candidates and agents. Votes are sampled from the
NASA experiment as explained earlier. The probability that the manipulator can manipulate the
election resembles the probability curve for uniform random votes. The search needed to compute a
manipulation again appears to increase exponentially with the number of candidates m. However,
the observed scaling is much better than the 1.62m worst-case scaling of the original CSL algorithm.
We can easily compute manipulations for up to 128 candidates.

In our second experiment, we used votes from a faculty hiring committee at the University of
California at Irvine (Dobra, 1983). This dataset had 10 votes for 3 different candidates. We sampled
from this data set in the same ways as from the NASA dataset and observed very similar results.
Results are reported in Figures 13 and 14. As in the previous experiments, it was easy to find a
manipulation or prove that none exists. The observed scaling was again much better than the 1.62m

worst-case scaling of the original CSL algorithm.

6. Veto Rule

We now turn to the manipulation of elections where there is a small, bounded number of candidates,
the votes are weighted and there is a coalition of agents trying to manipulate the result. For this
part of the empirical study, we consider the veto rule. We recall that veto is a scoring rule in
which each agent gets to cast a veto against one candidate. The candidate with the fewest vetoes
wins. As the next theorem shows, simple number partitioning algorithms can be used to compute a
successful manipulation of the veto rule. More precisely, as the following theorem demonstrates, the
manipulation of an election with 3 candidates and weighted votes by a coalition (which is NP-hard
to compute) can be directly reduced to 2-way number partitioning problem. We therefore compute
manipulations in our experiments using an efficient number partitioning algorithm like that proposed
by Korf (1995).
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Figure 11: Search cost to compute if an agent can manipulate an STV election with votes sampled
from the NASA experiment. The number of agents, n is fixed and we vary the number
of candidates, m. The vertical axis measures the mean number of search nodes explored
to compute a manipulation or prove that none exists. The horizontal axis measures the
number of candidates, m. Median and other percentiles are similar.
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Figure 12: Search cost to compute if an agent can manipulate an STV election with votes sampled
from the NASA experiment. The number of candidates, m is fixed and we vary the
number of agents, n. The vertical axis measures the mean number of search nodes
explored to compute a manipulation or prove that none exists. The horizontal axis
measures the number of agents, n. Median and other percentiles are similar.
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Figure 13: Search cost to compute if an agent can manipulate an STV election with votes sampled
from a faculty hiring committee. The number of agents voting, n is fixed and we vary
the number of candidates, m. The vertical axis measures the mean number of search
nodes explored to compute a manipulation or prove that none exists. The horizontal
axis measures the number of candidates, m. Median and other percentiles are similar.
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Figure 14: Search cost to compute if an agent can manipulate an STV election with votes sampled
from a faculty hiring committee. The number of candidates, m is fixed and we vary
the number of agents voting, n. The vertical axis measures the mean number of search
nodes explored to compute a manipulation or prove that none exists. The horizontal axis
measures the number of agents, n. Median and other percentiles are similar.
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Theorem 1 There exists a successful manipulation of an election with 3 candidates by a weighted
coalition using the veto rule if and only if there exists a partitioning of W ∪ {|a− b|} into two bags
such that the difference between their two sums is less than or equal to a+b−2c+

∑
i∈W i, where W

is the multiset of weights of the manipulating coalition, a, b and c are the weights of vetoes assigned
to the three candidates by the non-manipulators and the manipulators wish the candidate with weight
c to win.

Proof: It never helps a coalition manipulating the veto rule to veto the candidate that they
wish to win. The coalition does, however, need to decide how to divide their vetoes between the
candidates that they wish to lose. Consider the case a ≥ b. Suppose the partition has weights
w −∆/2 and w + ∆/2 where 2w =

∑
i∈W∪{|a−b|} i and ∆ is the difference between the two sums.

The same partition of vetoes is a successful manipulation if and only if the winning candidate
has no more vetoes than the next best candidate. That is, c ≤ b + (w − ∆/2). Hence ∆ ≤
2w + 2b− 2c = (a− b) + 2b− 2c+

∑
i∈W i = (a+ b− 2c) + 2

∑
i∈W i. In the other case, a < b and

∆ ≤ (b+ a− 2c) +
∑
i∈W i. Thus ∆ ≤ a+ b− 2c+

∑
i∈W i. 2

As with the STV rule, we start our analysis with uniform votes. We first consider the case that
the n agents veto uniformly at random one of the 3 possible candidates, and vetoes carry weights
drawn uniformly from (0, w]. When the coalition is small in size, it has too little weight to be able
to change the result. On the other hand, when the coalition is large in size, it is sure to be able to
make a favoured candidate win. There is thus a transition in the manipulability of the problem as
the coalition size increases (see Figure 15).
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Figure 15: Manipulability of a veto election. The vertical axis measures the probability that a
coalition of k agents elect a chosen candidate in a veto election where n agents have
already voted. The horizontal axis measures the number of manipulators, k. Vetoes are
weighted and weights are uniformly drawn from (0, 28]. At k = 0, there is a 1/3rd chance
that the non-manipulators have already elected this candidate.

Based on the work of Procaccia and Rosenschien (2007a) and of Xia and Conitzer (2008a), we
expect the critical coalition size to increase as

√
n. In Figure 16, we see that the phase transition

displays a simple and universal form when plotted against k/
√
n. The phase transition appears to

be smooth, with the probability varying slowly and not approaching a step function as problem
size increases. We obtained a good fit with 1 − 2

3e
−k/
√
n. Other smooth phase transitions have

been seen with 2-colouring (Achlioptas, 1999), 1-in-2 satisfiability and Not-All-Equal 2-satisfiability
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Figure 16: Manipulability of a veto election with rescaled axes. The vertical axis measures the prob-
ability that a coalition of k agents can elected a chosen candidate in a veto election where
n agents have already voted. The horizontal axis measures the number of manipulators,
k divided by the square root of the number of agents who have already voted. Vetoes are
weighted and weights are uniformly drawn from (0, 28]. Note that the horizontal axis is
scaled by 1/

√
n compared to the previous figure.

(Achlioptas, Chtcherba, Istrate, & Moore, 2001; Walsh, 2002). It is interesting to note that all these
decision problems are polynomial.

The theoretical results mentioned earlier leave open how hard it is to compute whether a ma-
nipulation is possible when the coalition size is critical. Figure 17 displays the computational cost
to find a manipulation (or prove none exists) using Korf’s efficient number partitioning algorithm.
Even in the critical region where problems may or may not be manipulable, it is easy to compute
whether the problem is manipulable. All problems are solved in a few branches. This contrasts
with phase transition behaviour in NP-complete problems like propositional satisfiability or in other
complexity classes (Gent & Walsh, 1999; Bailey, Dalmau, & Kolaitis, 2001; Slaney & Walsh, 2002)
where the hardest problems tend to occur around the phase transition.

7. Why Hard Veto Problems Are Rare

Based on our reduction of manipulation problems to number partitioning, we give a heuristic argu-
ment why hard manipulation problems become vanishing rare as n;∞ and k = Θ(

√
n). The basic

idea is simple: by the time the coalition is large enough to be able to change the result, the variance
in scores between the candidates is likely to be so large that computing a successful manipulation
or proving none is possible will be easy. Our argument is approximate. For example, we replace dis-
crete sums with continuous integrals, and call upon limiting results like the Central Limit Theorem.
Nevertheless, it provides insight into why manipulations are typically easy to compute.

Suppose that n vetoes voted by the non-manipulators carry weights drawn uniformly from [0, w].
Suppose also that the k manipulators also have weights drawn uniformly from [0, w], that they want
candidates A and B to lose so that C wins, and that they have cast vetoes of weight a, b and c
for A, B and C respectively. Without loss of generality we suppose that a ≥ b. There are three
cases to consider. In the first case, a ≥ c and b ≥ c. It is then easy for the manipulators to make
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Figure 17: Computational cost for Korf’s number partitioning algorithm to decide if a coalition of
k agents can manipulate a veto election where n agents have already voted. Vetoes are
weighted and weights are uniformly drawn from (0, 2k]. The vertical axis measures the
mean number of branches used by the algorithm to find a manipulation or prove none
exists. As in the previous figure, the horizontal axis measures the number of manipula-
tors, k divided by the square root of the number of agents who have already voted. We
note that all problems are solved with little search. Most took a single branch to solve.
Only a few took 2 or more branches.

C win since C wins whether they veto A or B. In the second case, a ≥ c > b. Again, it is easy
for the manipulators to decide if they can make C win. They all veto B. There is a successful
manipulation if and only if C now wins. In the third case, a < c and b < c. The manipulators
must partition their k vetoes between A and B so that the total vetoes received by A and B exceeds
those for C. Let d be the deficit in weight between A and C and between B and C. That is,
d = (c− a) + (c− b) = 2c− a− b. We can approximate d by the sum of n random variables drawn
uniformly with probability 1/3 from [0, 2w] and with probability 2/3 from [−w, 0]. These variables
have mean 0 and variance 2w2/3. By the Central Limit Theorem, d tends to a normal distribution
with mean 0, and variance t2 = 2nw2/3. For a manipulation to be possible, d must be less than
s, the sum of the weights of the vetoes of the manipulators. By the Central Limit Theorem, s also
tends to a normal distribution with mean µ = kw/2, and variance σ2 = 2kw2/3.

A simple heuristic argument due to (Karmarkar, Karp, Lueker, & Odlyzko, 1986) and also based
on the Central Limit Theorem upper bounds the optimal partition difference of k numbers from
[0, w] by O(w

√
k/2k). In addition, based on the phase transition in number partitioning (Gent &

Walsh, 1998), we expect partitioning problems to be easy unless log2(w) = Θ(k). Combining these
two observations, we expect hard manipulation problems when 0 ≤ s− d ≤ α

√
k for some constant

α. The probability of this occurring is:∫ ∞
0

1√
2πσ

e−
(x−µ)2

2σ2

∫ x

x−α
√
k

1√
2πt

e−
y2

2t2 dy dx

By substituting for t, µ and σ, we get:∫ ∞
0

1√
4πkw2/3

e
− (x−kw/2)2

4kw2/3

∫ x

x−α
√
k

1√
4πnw2/3

e
− y2

4nw2/3 dy dx
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For n;∞, this tends to:∫ ∞
0

1√
4πkw2/3

e
− (x−kw/2)2

4kw2/3
α
√
k√

4πnw2/3
e
− x2

4nw2/3 dx

As e−z ≤ 1 for z > 0, this is upper bounded by:

α
√
k√

4πnw2/3

∫ ∞
0

1√
4πkw2/3

e
− (x−kw/2)2

4kw2/3 dx

Since the integral is bounded by 1, k = Θ(
√
n) and log2(w) = Θ(k), this upper bound varies as:

O(
1√
k2k

)

Thus, we expect hard instances of manipulation problems to be exponentially rare. Since even a
brute force manipulation algorithm takes O(2k) time in the worst-case, we do not expect the hard
instances to have a significant impact on the average-case as n (and thus k) grows. We stress this
is only a heuristic argument. It makes many assumptions about the complexity of manipulation
problems (in particular that hard instances should lie within the narrow interval 0 ≤ s− d ≤ α

√
k).

These assumptions are currently only supported by empirical observation and informal argument.
However, the experimental results reported in Figure 17 support these conclusions.

8. Other Distributions of Vetoes

The theoretical analyses of manipulation due to Procaccia and Rosenschein (2007a) and Xia and
Conitzer (2008a) suggest that the probability of an election being manipulable is largely independent
of w, the size of the weights attached to the vetoes. Figure 18 demonstrates that this indeed appears
to be the case in practice. When weights are varied in size from 28 to 216, the probability does not
appear to change. In fact, the probability curve fits the same simple and universal form plotted
in Figure 16. We also observed that the cost of computing a manipulation or proving that none is
possible did not change as the weights were varied in size.

Similarly, theoretical results typically place few assumptions about the distribution of votes.
For example, the results of Procaccia and Rosenschein (2007a) and Xia and Conitzer (2008a) that
there is a critical coalition size that increases as Θ(

√
n) hold for any independent and identically

distributed random votes. Similarly, our heuristic argument about why hard manipulation problems
are vanishingly rare depends on application of the Central Limit Theorem. It therefore works with
other types of independent and identically distributed random votes.

We considered therefore another type of independent and identically distributed vote. In par-
ticular, we study an election in which weights are independently drawn from a normal distribution.
Figure 19 shows that there is again a smooth phase transition in manipulability. We also plotted
Figure 19 on top of Figures 16 and 18. All curves appear to fit the same simple and universal form.
As with uniform weights, the computational cost of deciding if an election is manipulable was small
even when the coalition size was critical. Finally, we varied the parameters of the normal distribu-
tion. The probability of electing a chosen candidate as well as the cost of computing a manipulation
did not appear to depend on the mean or variance of the distribution. We do not reproduce the
figures as they look identical to the previous figures.

9. Correlated Vetoes

We conjecture that one place to find hard manipulation problems for veto voting is when votes are
highly correlated. For example, consider a “hung” election where all n agents veto the candidate
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Figure 18: Independence of the size of the weights and the manipulability of a veto election. The
vertical axis measures the probability that a coalition of k agents can elect a chosen
candidate where n agents have already voted. As in the previous figure, the horizontal
axis measures the number of manipulators, k divided by the square root of the number
of agents who have already voted. Vetoes are weighted and weights are uniformly drawn
from (0, w].
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Figure 19: Manipulability of a veto election with weighted votes taken from a normal distribution.
The vertical axis measure the probability that a coalition of k agents can elect a chosen
candidate in a veto election where n agents have already voted. As in the previous figure,
the horizontal axis measures the number of manipulators, k divided by the square root
of the number of agents who have already voted. Vetoes are weighted and drawn from a
normal distribution with mean 28 and standard deviation 27.
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Figure 20: Manipulability of a veto election where votes are highly correlated and the result is
“hung”. Vetoes of the manipulators are weighted and weights are uniformly drawn from
(0, w], the other agents have all vetoed the candidate that the manipulators wish to win,
and the sum of the weights of the manipulators is twice that of the non-manipulators.
The vertical axis measures the probability that a coalition of k agents can elect a chosen
candidate. The horizontal axis measures log2(w)/k.
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Figure 21: The search cost to decide if a “hung” veto election can be manipulated. Vetoes of
the manipulators are weighted and weights are uniformly drawn from (0, w], the other
agents have all vetoed the candidate that the manipulators wish to win, and the sum
of the weights of the manipulators is twice that of the non-manipulators. The vertical
axis measures the mean number of branches explored by Korf’s algorithm to decide if
a coalition of k agents can manipulate a veto election. The horizontal axis measures
log2(w)/k.

22



Where Are the Hard Manipulation Problems?

that the manipulators wish to win, but the k manipulators have exactly twice the weight of vetoes
of the n agents. This election is finely balanced. The preferred candidate of the manipulators wins
if and only if the manipulators perfectly partition their vetoes between the two candidates that
they wish to lose. Note that this is precisely the trick used in reducing number partitioning to the
manipulation problem by Conitzer et al. (2007). In Figure 20, we plot the probability that the k
manipulators can make their preferred candidate win in such a “hung” election as we vary the size
of their weights w. Similar to number partitioning (Gent & Walsh, 1998), we see a rapid transition
in manipulability around log2(w)/k ≈ 1. In Figure 21, we observe that there is a rapid increase in
the computationally complexity to compute a manipulation around this point.

What happens when the votes are less correlated? We consider an election which is perfectly
hung as before except for one agent who vetoes at random one of the three candidates. In Figure 22,
we plot the cost of computing a manipulation as the weight of this single random veto increases.
Even one uncorrelated vote is enough to make manipulation easy if it has the same magnitude in
weight as the vetoes of the manipulators. This suggests that we will find hard manipulation problems
in veto elections only when votes are highly correlated.
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Figure 22: The impact of one random agent on the manipulability of a “hung” veto election. Vetoes
of the manipulators are weighted and weights are uniformly drawn from (0, w], the non-
manipulating agents have all vetoed the candidate that the manipulators wish to win,
and the sum of the weights of the manipulators is twice that of the non-manipulators
except for one random non-manipulating agent whose weight is uniformly drawn from
(0, w′]. The vertical axis measures the mean number of search branches explored by
Korf’s algorithm to decide if a coalition of k agents can manipulate a veto election. The
horizontal axis measures log2(w′)/ log2(w). When the veto of the one random agent has
the same weight as the other agents, it is computationally easy to decide if the election
can be manipulated.

10. Related Work

As indicated earlier, a number of theoretical results suggest elections are easy to manipulate in
practice despite worst case NP-hardness results. For example, Procaccia and Rosenschein proved
that for most scoring rules and a wide variety of distributions over votes, when the size of the
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coalition is o(
√
n), the probability that they can change the result tends to 0, and when it is

ω(
√
n), the probability that they can manipulate the result tends to 1 (Procaccia & Rosenschein,

2007a). They also gave a simple greedy procedure that will find a manipulation of a scoring rule
in polynomial time with a probability of failure that is an inverse polynomial in n (Procaccia &
Rosenschein, 2007b). However, we should treat this result with caution as the “junta” distributions
used in this work may be of limited usefulness (Erdélyi, Hemaspaandra, Rothe, & Spakowski, 2009).

As a second example, Xia and Conitzer have shown that for a large class of voting rules including
STV, as the number of agents grows, either the probability that a coalition can manipulate the result
is very small (as the coalition is too small), or the probability that they can easily manipulate the
result to make any alternative win is very large (Xia & Conitzer, 2008a). They left open only a
small interval in the size for the coalition for which the coalition is large enough to manipulate but
not obviously large enough to manipulate the result easily.

Friedgut, Kalai and Nisan proved that if the voting rule is neutral and far from dictatorial and
there are 3 candidates then there exists an agent for whom a random manipulation succeeds with
probability Ω( 1

n ) (Friedgut et al., 2008). They were, however, unable to extend their proof to four
(or more) candidates. More recently, Isaksson, Kindler and Mossel proved a similar result for 4
or more candidates using geometric arguments (Isaksson, Kindler, & Mossel, 2010). Starting from
different assumptions again, Xia and Conitzer showed that a random manipulation would succeed
with probability Ω( 1

n ) for 3 or more candidates for STV, for 4 or more candidates for any scoring
rule and for 5 or more candidates for Copeland (Xia & Conitzer, 2008b).

As discussed earlier, Coleman and Teague proposed some algorithms to compute manipulations
for the STV rule (Coleman & Teague, 2007). They also conducted an empirical study which demon-
strated that only relatively small coalitions are needed to change the elimination order of the STV
rule. They observed that most uniform and random elections are not trivially manipulable using a
simple greedy heuristic. On the other hand, our results suggest that, for manipulation by a single
agent, often only a small amount of backtracking is needed to find a manipulation or prove that
none exists.

11. Conclusions

We have studied empirically whether computational complexity is a barrier to the manipulation for
the STV and veto rules when the manipulating agents have complete information about the other
votes. We have looked at a number of different distributions of votes including uniform random
votes, correlated votes drawn from an urn model, and votes sampled from some real world elections.
We have looked at manipulation by a single unweighted agent in the case of STV, and by a coalition
of weighted agents in the case of veto voting. In many of the elections in our experiments, it was easy
to compute a manipulation or to prove no manipulation was possible. The situations we identified
where manipulations were computationally difficult to find depended either on the election having
hundreds of candidates or on the election being very tightly hung. These results increase the concern
that computational complexity may not be a significant barrier to manipulation in practice.

What other lessons can be learnt from this study? First, whilst we have focused on the STV and
veto rules, similar behavior is likely with other voting rules. It would, for instance, be interesting to
study the Borda rule as this is one of the few rules used in practice where computing a manipulation
is NP-hard with unweighted votes (Davies et al., 2011; Betzler et al., 2011). It would also be
interesting to study voting rules like Copeland, maximin and ranked pairs. These rules are members
of the small set of voting rules which are NP-hard to manipulate without weights on the votes
(Xia, Zuckerman, Procaccia, Conitzer, & Rosenschein, 2009). Second, there may be a connection
between the smoothness of the phase transition and problem hardness. Sharp phase transitions
like that for propositional satisfiability are associated with hard decision problems, whilst smooth
transitions are associated with easy instances of NP-hard problems and with polynomial problems
like 2-colourability. The phase transitions observed here appear to be smooth. Third, given the
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insights provided by empirical studies, it would be interesting to consider similar studies for related
problems. For example, is computational complexity an issue in preference elicitation (Conitzer &
Sandholm, 2002b; Walsh, 2008; Pini, Rossi, Venable, & Walsh, 2008)? Fourth, we have assumed that
the manipulators have complete information about the votes of the other agents. It is an interesting
future direction to determine if uncertainty in how agents have voted adds to the computational
complexity of manipulation in practice (Conitzer & Sandholm, 2002a; Walsh, 2007; Lang, Pini,
Rossi, Venable, & Walsh, 2007).
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