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Abstract

This paper addresses issues related to containment join
processing in tree-structured data such as XML documents.
A containment join takes two sets of XML node elements
as input and returns pairs of elements such that the con-
tainment relationship holds between them. While there
are previous algorithms for processing containment joins,
they require both element sets either sorted or indexed.
This paper proposes a novel and complete containment
query processing framework based on a new coding scheme,
PBiTree code. The PBiTree code allows us to determine
the ancestor-descendant relationship between two elements
from their PBiTree-based codes efficiently. We present algo-
rithms in the framework that are optimized for various com-
binations of settings. In particular, the newly proposed par-
titioning based algorithms can process containment joins
efficiently without sorting or indexes. Experimental results
indicate that the containment join processing algorithms
based on the proposed coding scheme outperform existing
algorithms significantly.

1. Introduction

This paper addresses issues related to containment join
processing in tree-structured data. By tree-structured data,
we mean the data that can be modelled by trees or their
variants. Examples of such data include textual documents,
XML data and semi-structured data. With the rapid devel-
opment of the Internet and the World-Wide-Web, and the
trend of XML being a standard of information exchange
and sharing over the Internet, querying such type of data
has received great attention recently. Tree-based models
were also proposed to model such data, such as the Doc-
ument Object Model (DOM). With the tree models, data
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objects, e.g., elements, attributes, text data, etc, are mod-
elled as nodes of a tree, and relationships among the data
elements are represented by edges connecting them. Fig-
ure 1(a) is a simple example of XML data and Figure 1(b)
is the tree that models the data, where the internal nodes are
elements, the leaf nodes are text data, and the edges repre-
sent nesting between an internal node and its child nodes.
Note that the containment relationship is equivalent to the
ancestor-descendant relationship in the tree data model.
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Figure 1. An XML document and its data tree
Different from “flat” data in relational database systems,

data with structures can be queried by values, structures,
or their combinations. Although XML query languages
proposed so far have different syntaxes, features, and con-
structs, it is identified that queries based on containment re-
lationship are a core component to all such query languages
[20, 12]. For example, the XQuery query

//Section[Title=“Introduction”]//Figure
finds all figures that are contained in a section with title
“Introduction”. Such query is also termed as containment
query and can be efficiently processed by containment join
algorithms [1, 4]. Formally, we define containment join as
follows.

Definition 1 (Containment Join) Given an ancestor set
A = {a1, a2, . . . , am} and a descendant set D =
{d1, d2, . . . , dn} (where both A and D consist of nodes
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from the data tree), a containment join of A and D, denoted
as A CA,D D, returns all tuple pairs (ai, dj) where ai ∈ A
and dj ∈ D such that ai is an ancestor of dj .1

The importance of the containment query lies in the fact
that it is commonly believed as the core part of XML query
processing engine [1]. It is identifed that all XML queries
based on structural conditions can be decomposed into a se-
ries of sub containment queries [12]. Many algorithms have
been proposed recently to process such joins efficiently.
They are all based on certain coding schemes. A good
coding scheme makes it possible to check the ancestor-
descendant or parent-child relationship of two elements in
O(1) time without accessing data other than the elements
themselves. For example, in the most popular region cod-
ing scheme, each element is tagged with a region in the
form of (Start, End), which records the (logical or physi-
cal) starting and ending positions of the element. To check
the ancestor-descendant relationship (which is equivalent to
containment relationship) between x and y, it suffices to
check whether (x.Start < y.Start ∧ y.End < x.End)
holds.

However, existing containment join algorithms make one
of the following assumptions: 1) both element sets have in-
dexes or 2) both element sets are sorted or 3) both. [20] pro-
posed index nested loop join algorithm which requires B+-
tree indexes on the input element sets. [16] proposed con-
verting the containment join to spatial containment join and
using R-Trees to process the join efficiently. [20, 12] pro-
posed a sort merge based join algorithm which requires both
input element sets sorted. [1] improved the previous algo-
rithm by using a stack. Their stack-tree algorithms have op-
timal worst-case I/O and CPU complexities. More recently,
[4] considered the case when both element sets are sorted
and there are B+-tree indexes on them. Their Anc Des B+
algorithm can make use of the additional indexes to skip
part of the elements that will not participate in the join.

Note that not all elements in an XML database are sorted
or indexed. Furthermore, indexes do not exist on interme-
diate results. To apply the above mentioned existing algo-
rithms, such datasets have to be either indexed or sorted on
the fly, which will be costly. To the best of our knowledge,
there has been no known efficient method to join two data-
sets which are neither sorted nor indexed, except for some
naı̈ve solutions that usually do not perform well. Motivated
by this observation, we propose in this paper a new cod-
ing scheme called PBiTree coding. We show that PBiTree
codes are more versatile than the traditional region codes
in that 1) it can support verification of ancestor-descendant
relationship efficiently, which is the fundamental property
required by any coding scheme and 2) it can be efficiently
converted to region codes. We also propose a set of novel
partitioning based algorithms that can efficiently process
containment join by making full use of the good properties
offered by PBiTree codes. They are demonstrated experi-

1A CA,D D can be abbreviated to A C D if there is no ambiguity.

mentally to be superior to existing algorithms when neither
sorted data or indexes are available. Meanwhile, we show
how existing algorithms can be adapted to work with PBi-
Tree encoded data with little overhead.

The contributions of our work reported in this paper can
be summarized as follows.

1. We propose to use a new scheme, PBiTree coding, to
assign identifiers to data elements. The coding scheme
has a nice property that, given two element identifiers,
we can determine whether one element is an ances-
tor of the other with minimal computation cost with-
out need of any other information. Furthermore, the
coding scheme is independent from the physical data
organization. It can be easily implemented along with
any data storage scheme proposed in the literature, and
the containment join can be efficiently processed based
on the identifiers. Discussion of various issues of PBi-
Tree code, in comparison with the popular region code,
is also presented.

2. We developed a set of algorithms that process contain-
ment join where the elements in the sets are identified
by their PBiTree codes. While data encoded in PBi-
Tree codes can still take advantage of the state-of-the-
art structural join algorithms, new algorithms based on
horizontal and vertical partitioning schemes are also
possible choices. We show that the new partitioning
based structural join algorithms are complementary to
the state-of-the-art join algorithms. In particular, they
are favorable when none of the input sets is sorted or
indexed.

3. We conducted extensive experiments of the proposed
algorithms based on PBiTree code. The results veri-
fied our analysis that the newly proposed algorithms
can outperform existing ones significantly when none
of the data is sorted or indexed and provided insight
into the relative performance of different algorithms in
different parameter settings.

We would like to emphasize the significance of the work
reported here. With the newly proposed coding scheme and
related containment join algorithms, we have a complete
set of efficient containment join processing algorithms for
input datasets with different characteristics, as listed in Ta-
ble 1. As a result, our work broadens the scope of choices
for XML query optimizers. We believe that it has positive
impact to the query processing and optimization of XML
data. The techniques and related issues in transforming an
XML query into logical processing plans including contain-
ment joins are themselves an open research area, and they
are out of the scope of this paper. Interested readers can
refer to [12] for a preliminary study.

The remainder of the paper is organized as follows.
Section 2 describes the PBiTree coding scheme and dis-
cusses its related issues. Section 3 presents our containment
join processing algorithm framework based on the PBiTree
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Table 1. Selection of containment join algo-
rithms

Index Sorted Existing Coding Scheme With PBiTree Coding
√ × Index Nested Loop Index Nested Loopa

× √
Stack-Tree Algorithms Stack-Tree Algorithmsa

√ √
Anc Des B+b Anc Des B+b a

× × Unknown MHCJ+Rollup or VPJ

aAdapted for PBiTree encoded data.
bXR-stack has been shown to outperform Anc Des B+ algorithm in [8].

code. Section 4 presents the experimental results and Sec-
tion 5 presents the related works. Section 6 concludes the
paper.

2. PBiTree and PBiTree coding for tree struc-
tured data

In this section, we introduce the PBiTree and its proper-
ties, followed by an efficient algorithm to assign identifiers
to elements in structured data using a PBiTree. We conclude
this section with a brief discussion.

2.1. PBiTree

Definition 2 A PBiTree is a tagged perfect binary tree,
where each non-leaf node has two children and all leaf
nodes are at the same level. Each node is tagged (or en-
coded) with a number (of the in-order of traversal of the
tree). The number associated with a node is called the code
of that node.
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Figure 2. An example PBiTree

An example PBiTree is shown in Figure 2. The height
of the tree, H , is 5. Leaf level nodes have height equal to
0. For ease of reference, we also marked the level of tree
from root to leaf such that the level of root is 0. The code of
each node is also shown in the figure. The code of a node ni

is referred to as ni.Code. In the following discussion, we
use the node (ni) and its code (ni.Code) interchangeably,
because the code uniquely identifies a node. The important
properties of PBiTree coding are as follows.

Property 1 For a given node ni of a perfect binary tree, its
ancestor nj at a given height hj can be directly calculated
by F(ni, hj) = 2hj+1 · bni/2

hj+1c + 2hj .

For example, for the node with code 18 in Figure 2, its
ancestor at height 2 is encoded as 22+1 · b18/22+1c+ 22 =
20. Similarly, the codes of its ancestors at height 3 and 4 are
exactly 24 and 16, respectively. It is important to note that
the F function can be evaluated using shifting and integer
operations and will be fast on modern architectures. For
example, b18/22+1c is to right-shift 18 by 3. No floating
point operations are needed.

Property 2 Given the code of a node n, its height
height(n) is the position of the rightmost ‘1’ bit in its bi-
nary representation. The level of a node, therefore, can be
obtained by H − height(n) − 1.

For example, in Figure 2, code 18 is for a node at height
1, because the rightmost ‘1’ bit is the second rightmost bit
in the binary representation 100102 (= 1810) (position 1).
Its level is 5 − 1 − 1 = 3. In other words, the height/level
information of a node is also encoded in its code.

With the above properties, we have the following lem-
mas.

Lemma 1 Given two nodes ni and nj in a PBiTree, ni is
an ancestor of nj if and only if ni = F(nj , height(ni)).

Lemma 1 shows that, given two nodes ni and nj , we
can simply check whether ni is an ancestor of nj . By
this lemma, as we will see later, if the elements involved
in a containment join are PBiTree coded, the join can be
evaluated in a similar way as the equality join in relational
database systems.

Lemma 2 For any node n in the PBiTree, let l be the
level of n and α be the zero-based position index of ele-
ment nodes from left to right, i.e. α ∈ [0, 2l − 1], then
n.Code = G(α, l), where G(α, l) = (1 + 2α) ∗ 2H−l−1.

We term such (l, α) code as top-down PBiTree code, or
top-down code. Lemma 2 shows the equivalence between
the (original) PBiTree code and the top-down PBiTree code.
The latter is used in the PBiTree construction algorithm dis-
cussed in the following sections. For example, for node
18, it is the 5-th node on the 3rd level, therefore its top-
down code is (4, 3) and the PBiTree code can be obtained
by G(4, 3) = (1 + 2 ∗ 4) ∗ 25−3−1 = 18.

2.2. Encoding tree structured data with PBiTree

Tree structured data, as shown in Figure 1(b), is usually
not modelled as a perfect binary tree. In order to make use
of the properties of perfect binary trees, we embed the orig-
inal data into a corresponding PBiTree. Let ui and uj be
nodes in the original data tree. The relationship between
the PBiTree and the original data tree can be described us-
ing an injective function h, such that

1. h(ui) = h(uj) if and only if ui = uj .
2. h(ui) is an ancestor of h(uj) in the PBiTree if and only

if ui is an ancestor of uj in the original data tree.
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Figure 3 shows a PBiTree that corresponds to the data
tree in Figure 1(b). The codes of the elements in the origi-
nal data are obtained from their corresponding nodes in the
PBiTree. For example, the code of “&9 (fervvac)” is
1. From Figure 3, we can see that, in the PBiTree represen-
tation, there are some virtual nodes which do not exist in the
original data tree. All the unshaded nodes in the figure are
virtual nodes.
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Figure 3. Embed a data tree into a PBiTree

We call the process of embedding a data tree in a PBi-
Tree binarization. The PBiTree code for each data tree node
can be obtained during the binarization process. Given a
data tree, there are a large number of ways to binarize it.
Currently one simple yet effective binarization algorithm is
used (by calling Algorithm 1 with (T, root(T ), 0, 0)). The
key observation used in the algorithm is that binarization
of a data tree can be done by 1) binarize the current node
and its child nodes and 2) recursively binarize the subtrees
rooted at each child node. For the first step we use a heuris-
tic that places all child nodes of a node in the data tree con-
tiguously at the same level in the PBiTree, which will assist
processing containment and proximity queries. If the level
of the mapped parent node is l, the first possible level to
place all the child nodes is l + k, such that 2k ≥ n. For ex-
ample, suppose a node A has three child nodes in the data
tree. The child nodes will be mapped to 2 levels below the
mapped node of A in the resultant PBiTree, as 22 = 4 > 3.

The algorithm BinarizeTree (Algorithm 1) makes use
of the equivalence between PBiTree codes and their cor-
responding top-down PBiTree codes (See Lemma 2). Ini-
tially, the top-down code for the root node is set to (0, 0)
and in each recursive call, the top-down codes, i.e., l and α
values for all of its child nodes are calculated before further
recursive calls (line 6). The time complexity can be shown
to be O(n), where n is the number of nodes in the data tree.

For example, the PBiTree shown in Figure 3 is obtained
from the data tree shown in Figure 1(b) after binarization.
The binarization starts from the root node (&1), with top-
down code (0, 0). Thus the PBiTree code for the root node
is G(0, 0) = 16. The node in question has 3 child nodes
(&2, &3, &4). By our heuristic, they are placed at two
levels lower than their mapped parent node in the PBiTree
(k = 2). Thus, their α and l values ((0, 2), (1, 2) and (2, 2))
are passed on to the recursive calls respectively. Note that
the codes of the non-virtual nodes are determined solely by
their position in the data tree and thus no virtual node in the
PBiTree is physically generated.

Algorithm 1 BinarizeTree(T , e, α, l)
Input:

T is an arbitrary data tree. e is a node in T and (l, α) is the
top-down code of e.

Output:
Every node n in T has the correct PBiTree code in n.Code.

Description:
1: e.Code = G(α, l) {From Lemma 2}
2: if e is not a leaf node then
3: n = NumOfChild(e)
4: k = dlog2 ne.
5: for all child node ei (the i-th child node from left to right)

do
6: BinarizeTree(T , ei, 2k · α + i − 1, l + k);
7: end for
8: end if

2.3. Discussions

In this subsection, we compare the proposed coding
scheme with other existing coding schemes, followed by a
brief discussion on issues that astute readers may raise.

2.3.1 Comparison of coding schemes

Introduction to various codes for XML data is presented in
Section 5. Here, we will highlight the difference between
region-based coding scheme and our PBiTree based coding
scheme: a) PbiTree based coding scheme encodes nodes of
a special perfect binary tree constructed from the original
data tree and only one code is needed instead of two re-
quired by region-based schemes, and b) PbiTree code con-
tains richer structure information and thus provides support
for efficient query processing. For example, with the help of
F(n, h) function, given any node ni, we can calculate the
code of its ancestor at a given height h efficiently, without
accessing any additional data. This property is heavily used
in our newly proposed algorithms to be introduced later.
Such structural information, however, cannot be obtained
for region-based schemes without accessing additional data
together with expensive calculations, and c) PBiTree code
is more versatile than previously proposed scheme in the
sense that it is easy to convert PBiTree code to other codes
(in particular, region codes) efficiently using local informa-
tion only while the reverse conversion is costly and requires
global information. The conversion formulae are given in
Lemma 3 and Lemma 4.

Lemma 3 Given a node n, let H be the height of the
PBiTree and h be the height of n, i.e., h = height(n),
(n − (2h − 1), n + (2h − 1)) can serve as the region code
of n in the form of (Start, End).

Lemma 4 Given a node n, let H be the height of the PBi-
Tree and h be the height of n, i.e., h = height(n), the
binary representation of n � h can serve as the prefix code
of n (� is the right shift operator).
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One important implication from the advantages PBiTree
offers is that we can process queries using existing algo-
rithms originally developed for other coding schemes, as
will be illustrated in Section 3.

2.3.2 Virtual nodes

It is important to note that the virtual nodes have little im-
pact on the performance of PBiTree. This is simply because
they are never physically generated or stored. Interestingly,
virtual nodes , on the other hand, may serve as placeholders
and thus be advantageous to update.

2.3.3 Coding space

The coding space represented by a PBiTree of height H
is [1, 2H − 1], and thus each code requires H bits. How-
ever, many real datasets, such as the DBLP and Benchmark
data [18] used in our experiments, have corresponding bi-
nary trees within a constant number of levels. Therefore,
although the height of the PBiTree could be O(n) (where n
is the number of nodes in the data tree) in the worst case, we
expect such highly skewed data distribution rare in practice
and our method still applicable to most real-world datasets.

3. Containment join algorithms

In this section, we present the framework of a set of con-
tainment join algorithms that work on data encoded in PBi-
Tree code. Most of the previous algorithms are based on
data encoded in region code. In the previous section, we
have demonstrated the advantages of PBiTree code over re-
gion code. Consequently, we will show that 1) all the al-
gorithms previously proposed for region code can be triv-
ially adapted to algorithms working on PBiTree code and
2) we propose a class of new partitioning based algorithms
that requires no sorting or indexes. These new algorithms
are shown to outperform existing algorithms in our exper-
iments. Therefore, we propose a novel containment query
processing framework that includes above-mentioned algo-
rithms working on PBiTree coded data.

We will first briefly introduce how to modify previous al-
gorithms based on region code to work with data in PBiTree
code. Those algorithms are classified as non-partitioning
algorithms as they do not partition the data. In contrast, we
next focus on two classes of partitioning based algorithms:
horizontal partitioning algorithms and vertical partitioning
algorithms, which partition the data in horizontal and verti-
cal directions respectively.

In the following, we will use A and D to denote the an-
cestor and descendant sets, respectively. |R| and ||R|| de-
note the number of elements (tuples) in set R and the num-
ber of disk pages of R, respectively. B denotes the disk
page size as well as the memory buffer page size. b denotes
the number of buffer pages.

3.1. Non-partitioning algorithms

This class of algorithms is originally designed for data
coded in region format, e.g., (Start, End). PBiTree codes
can be efficiently converted to such format on the fly and
thus these algorithms are still applicable. Due to the limited
space, we will only briefly introduce the algorithms and the
necessary modification. Interested readers can refer to the
original papers for further details.

Index based The index nested loop (INLJN) algorithm
[20] iterates over the outer relation, probes the index built
on the inner relation and outputs the result. Given the
(Start, End) information of each node, the containment
relationship of (a, d) holds if and only if (a.Start <
d.Start) ∧ (d.End < a.End). The condition can be sim-
plified as (a.Start < d.Start) ∧ (d.Start < a.End) for
well nested structures, such as trees. In [20], B+-tree index
is considered. Index-probing D with A can be efficiently
supported because it is to search all d.Start within a given
range (a.Start, a.End). However, index probing A with
D is not efficient, because B+-tree can only support lexi-
cographical order on compound keys, and thus it results in
many unnecessary node accesses. We propose to use disk
based interval tree for this case [7].

Since index probing will be most likely to result in ran-
dom I/O, we use a heuristic that minimizes such index prob-
ing and thus overall cost as follows: We use the smaller set
as the outer relation and use appropriate index to probe the
inner relation for each element in the outer relation. There-
fore, the I/O cost is min(||A|| + |A| ∗ O(log |D|), ||D|| +
|D| ∗ O(log |A|)).

To use index nested loop algorithms for PBiTree encoded
data, we only need to have 1) a custom index building mod-
ule, which builds appropriate indexes based on the region
code calculated from the PBiTree code for each element and
2) calculate the (Start, End) code on the fly during the join
process.

Sort-merge based with or without indexes Multiple
Predicate Merge Join (MPMGJN), or its equivalent EE-join,
sorts both the ancestor set and the descendant set accord-
ing to the (Start, End) and Start attribute(s), respectively,
and merges them according to the ancestor-descendant rela-
tionship. The merge process will scan A once, but possibly
repeatedly scan segments of D multiple times. Stack tree
join algorithms were later proposed in [1]. Their algorithms
improve upon MPMGJN by using a stack to hold adjacent
elements (from A or D) that have ancestor/descendant rela-
tionships. Their algorithms are shown to have the optimal
worst case CPU and I/O cost. Furthermore, their algorithms
can output results in either A or D sorted order, which is fa-
vorable for further containment joins. The I/O cost of the
algorithms is O(||A|| + ||D||).

More recently, Anc Des B+ algorithm [4] was pro-
posed to utilize additional indexes (B+-tree or R-Tree) to
accelerate the stack-tree algorithms. The basic idea is to use

5



indexes to skip scanning/comparing those data that will not
participate in the join. The I/O cost is still O(||A||+ ||D||),
but the cost tends to be much smaller for many real datasets.

To use the above algorithms for PBiTree encoded data,
we only need 1) a custom sorting routine that can sort data
encoded in PBiTree code in either Start or Start, End or-
der by online conversion between the codes and 2) calculat-
ing the (Start, End) code on the fly in the join process and
3) a custom index building module (as that required in INL
case) if we want to use Anc Des B+).

Summary The efficient conversion from PBiTree codes
to the corresponding region codes enables us to use the
state-of-the-art structural join algorithms for our PBiTree
encoded data with little additional cost. It is obvious that
the adapted algorithms have the same performance with the
original algorithms in terms of disk I/O. Therefore, they are
still the preferred algorithms in our framework under their
corresponding settings.

Next we will present newly proposed partitioning based
algorithms unique to the PBiTree encoded data. They do not
need sorting or index and thus complementary to the above-
mentioned algorithms. They are further classified into hor-
izontal partitioning algorithms and vertical partitioning al-
gorithms.

3.2. Horizontal-partitioning algorithms

The horizontal partitioning algorithms take advantage of
the property that the containment relationship can be deter-
mined efficiently in a PBiTree, and are based on equijoins
rather than θ-joins. The rationale is that evaluation and opti-
mization techniques for equijoin operations are already ma-
ture, compared with those for θ-join.

Single height containment join (SHCJ) We first intro-
duce a basic algorithm to evaluate containment joins when
all nodes in the ancestor set are at the same height of the
tree. We call it single height containment join, denoted as
SHCJ. SHCJ algorithm shows that in this case PBiTree en-
coded data enables us to process such containment joins ef-
ficiently by taking advantage of the highly optimized equi-
join evaluation techniques.

The SHCJ algorithm (shown in Algorithm 2) evalu-
ates containment join A C D as to evaluate an equijoin
A ./A.Code=F(D.Code,h) D. Here, h is the identical height
of all nodes in A. D.Code is the node code for a node
d ∈ D.
Algorithm 2 SHCJ(A, D)
Input:

A is the ancestor node set of a single height and D is the de-
scendant node set.

Description:
1: Let h be the height of nodes in A.
2: Evaluate A ./A.Code=F(D.Code,h) D.

The SHCJ algorithm is both I/O and CPU efficient. First,
the F function can be applied on the Code attribute of D on
the fly, therefore, no additional disk I/O is required. Hash-
based join algorithms can be effectively used, with I/O cost
of 3(||A|| + ||D||) when enough memory is available. Sec-
ond, let � (�) be right (left) shift operators. Because
F(n, h) = 2h+1bn/2h+1c + 2h = ((n � (h + 1)) �
(h + 1)) + (1 � h), computation of F(D.Code, h) only
incurs little additional CPU cost because its implementation
only involves integer addition and shifting operations.

Multiple height containment join (MHCJ) We now
present our algorithm for the general case, where nodes
in A are distributed at multiple heights. The MHCJ algo-
rithm (shown in Algorithm 3) horizontally partitions the
ancestor set A into several partitions (based on height):
A1, A2, · · · , Ak. Each partition Ai can be processed us-
ing SHCJ with D. This is based on the observation that
A C D =

⋃

1≤i≤k(Ai C D). Because (Ai C D) ∩ (Aj C

D) = ∅ if Ai 6= Aj , the union operation can be simply
evaluated as appending the result of Ai C D into the final
result set.
Algorithm 3 MHCJ(A, D)
Input:

A is the ancestor node set of multiple heights and D is the
descendant node set.

Description:
1: if A is of a single height then
2: return SHCJ(A,D) {Route to the single height contain-

ment join algorithm}
3: end if
4: Partition A into Ai (1 ≤ i ≤ k) according to node’s height.

Let hi be the height of Ai.
5: for all Partition Ai do
6: output SHCJ(Ai, D);
7: end for

The I/O cost of the MHCJ algorithm is simply the sum of
the partitioning cost and sum of the costs of SHCJ algorithm
for all partitions. Thus the total cost can be estimated as
5||A|| + 3k ∗ ||D||. Therefore the cost of MHCJ tends to
be high if there are many (horizontal) partitions and when
D cannot be accommodated in memory. In the following,
we will present a technique to reduce the cost of MHCJ
algorithm.

Multiple height containment join with rollup
(MHCJ+Rollup) In order to reduce the cost of MHCJ
algorithm, we propose a roll-up technique by adaptively
reducing the number of horizontal partitions of the ancestor
set. Consider two partitions of A, namely, Ai at height
hi and Aj at height hj . The Ai partition can be rolled-up
into partition Aj if hj > hi. The new Aj , denoted A′

j ,
consists of nodes originally in Aj and ancestors of nodes
in Ai. In other words, here, we reduce the number of
partitions by one. It can be done efficiently with the help
of F(n, h) function — a node in Ai can quickly determine
its ancestor at height hj . The new merged A′

j set is passed
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to the algorithm MHCJ followed by a post-processing
to remove false hits that are introduced by roll-up. The
MHCJ+Rollup algorithm is shown in Algorithm 4 and an
example is shown in Figure 4. In this example, a false
hit (12, 9) is introduced by rollup and can be filtered by
F(n, h) function.

Algorithm 4 MHCJ+Rollup(A, D)
Input:

A is the ancestor node set and D is the descendant node set.
Description:

1: Choose h such that it is within the height range of nodes in A.
2: Let A′ be the result of rolling up all the nodes in A below h to

their ancestor node at level h.
3: Call MHCJ(A′, D) and check if every result tuple is really

a result tuple for the original containment join in a pipeline
fashion.
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(b) After Rollup

Figure 4. A rollup technique example
The I/O cost for MHCJ+Rollup algorithm will be the

MHCJ cost of a height-reduced ancestor set and the orig-
inal descendant set. Specifically, if we roll-up all the ances-
tor to the highest level, we can call the I/O efficient SHCJ
algorithm with the cost of 3(||A|| + ||D||). In practice, we
found that even this simple strategy works reasonably well
for many datasets.

3.3. Vertical-partitioning Algorithms

The vertical partitioning algorithms employ the divide-
and-conquer strategy by partitioning the tree vertically into
subtrees (with node replication) and processing the contain-
ment joins within each subtree.

Vertical-partitioning join (VPJ) The vertical partition-
ing join algorithm takes the input data size and memory size
into consideration and actively optimizes for disk I/O by a
heuristic partitioning strategy. We identified the following
two cases as optimal in terms of I/O cost for containment
join between A and D: a) when A can be accommodated in
memory, and b) when D can be accommodated in memory.
The I/O cost of both cases is ||A||+ ||D|| and efficient algo-
rithms exist so that they are also efficient in terms of CPU
cost. The VPJ algorithm always tries to reduce the original
problem into smaller sub-problems belonging to one of the
above cases. A heuristic is used which chooses the number
of partitions as min(||A||,||D||)

b
, so that it is highly likely that

all the partitions of the smaller set can be accommodated in
memory.

The partitioning starts at level l, such that 2l is greater
than or equal to the number of desired partitions. Each node
ni at level l defines a partition pi. A node e belongs to a
partition pi if and only if e is an ancestor of ni or e is a
descendant of ni. Note that e will be replicated to multi-
ple partitions, if e is an ancestor of ni. This replication is
necessary to ensure the correctness of the algorithm. The
number of replicated nodes to each partition is at most l and
thus the replication is unlikely to affect the execution of the
algorithm.

It can be easily proved that A C D =
⋃

i(Ai C Di) by
the above partitioning method (with node replication), and
the union operation can be reduced to union all operation as
there will be no overlapping results among sub containment
joins.

Algorithm 5 V-Partition-Join(b, A, D)
Input:

b is the number of buffer pages. A is the ancestor node set. d

is the descendant node set.
Description:

1: k0 =
⌈

min(||A||,||D||)
b

⌉

;

2: Let l = dlog2 k0e. Let k = 2l.
3: Partition A and D into k partitions based on the nodes at level

l. Refine the partitioning via merging and purging.
4: for all partition Ai and its corresponding partition Di do
5: if ||Ai|| > b ∧ ||Di|| > b then
6: V-Partition-Join(b, Ai, Di) {Recursive partition.}
7: else
8: Memory-Containment-Join(b, Ai, Di)
9: end if

10: end for

Algorithm 6 Memory-Containment-Join(b, A, D)
Input:

b is the number of buffer pages. A is the ancestor node set. D

is the descendant node set. One of the input relation is smaller
than the memory.

Description:
1: if ||D|| < b then
2: Sort D and probe D using binary search for each a ∈ A

scanned.
3: else
4: Use MHCJ+Rollup.
5: end if

The algorithm is shown in Algorithm 5. After deciding
the number of partitions, A and D are partitioned into {Ai},
{Di}, where 1 ≤ i ≤ k. For each pair of Ai and Di, if ei-
ther Ai or Di can be accommodated in memory, an I/O op-
timal algorithm Memory-Containment-Join is called; other-
wise, we recursively partition them by calling V-Partition-
Join() on Ai and Di.

The VPJ algorithm can adapt to data skew via the follow-
ing two methods: merging/purging partitions and recursive
partitioning. Merging of partitions can be done if both parti-
tions are small and can reduce the number of total partitions.
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Purging of a partition is based on the observation that if ei-
ther Ai or Di is empty, both partitions can be discarded. Re-
cursive partitioning by invoking V-Partition-Join will again
choose a good partitioning method for those “dense” parti-
tions.
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(b) Contents of each partition

Figure 5. An example of the VPJ algorithm

Figure 5 illustrates an example for the algorithm. In this
example, the memory can hold three nodes. There are 8 an-
cestor nodes (shaded with lines) and 13 descendant nodes
(grayed). The partitioning is done on level 2, resulting in
four partitions. Note that the third partition is purged be-
cause there is no ancestor node in it and the first partition
has to be further partitioned due to the effect of node repli-
cation (node 8). The final 4 partitions are shown in Fig-
ure 5(b), and each of them can be processed without further
I/O.

The Memory-Containment-Join algorithm is shown in
Algorithm 6. Depending on whether D or A can be ac-
commodated in memory, an in-memory version of Index
Nested Loop Join or a Multiple Height Containment Join
with Rollup (MHCJ+Rollup) will be invoked.

The upper bound of the number of nodes replicated into
each partition can be shown to be l and estimation of the
number of replicated nodes can be obtained under certain
assumptions. The formula to choose partitioning level l is
also obtained by taking node replication into account. How-
ever, both analytical and experimental results suggest that
the effect of node replication is usually negligible.

In the absence of recursive partitioning, the I/O cost with
the VPJ algorithm can be estimated as 3(||A|| + ||D||).

3.4. Discussion of Containment Join Algorithms

3.4.1 Comparison of Algorithms

All the existing containment join algorithms require either
indexed or sorted data. There is no previous known result
of the best algorithm for the case when neither condition is
satisfied. The naı̈ve solution would be to build the index
or sort the data on the fly before applying appropriate algo-
rithms. Notice that sorting two datasets will cause at least

||A|| · 2 logb ||A|| + ||D|| · 2 logb ||D|| I/O even before the
join is performed (which we estimate as ||A|| + ||D||). In
many cases, our MHCJ+Rollup or VPJ algorithm can per-
form the join at the cost of 3(||A|| + ||D||). Analytically,
if b < min(||A||, ||D||), that is, neither relation can be held
in memory, our new algorithms have lower cost. Similar
conclusion can be obtained for naı̈ve algorithms that build
indexes on the fly, as even the bulk loading procedure needs
sorting the data. The efficiency of our new algorithms are
further verified by our experimental results.

3.5. PBiTree Based Containment Query Processing
Framework

Our containment query processing framework processes
data encoded in PBiTree code by choosing an appropriate
algorithm. The choice of algorithms is shown in Table 1.
For example, if the data is sorted, we will use PBiTree based
stack tree algorithms; if the data is neither sorted or indexed,
we will use MHCJ+Rollup or VPJ algorithm.

It is obvious that when the newly proposed algorithms
are taken into consideration by a query system, the space
of possible plans will be greatly expanded and it is likely
that we can find a better plan than that we can find in a sys-
tem without those new algorithms. Therefore we believe
our new algorithms and the framework are beneficial and
stimulating for a highly efficient query processing and opti-
mization system.

4. Performance and analysis

In this section, we present some results of our compre-
hensive experiments conducted to study the effectiveness
of PBiTree encoding scheme for processing containment
joins.

We implemented the following seven algorithms on
Minibase7, namely, the single height containment join
(SHCJ), the multiple height containment join (MHCJ),
MHCJ with rollup (MHCJ+Rollup), vertical-partitioning
join (VPJ), the improved index nested loop join algorithm
(INLJN), the stack-tree join algorithm (STACKTREE) and
the Anc Des B+ join algorithm (ADB+). The last three
algorithms were proposed in [20, 1, 4], respectively. Re-
sults with the MHCJ algorithm are not reported here, since
MHCJ+Rollup algorithm outperforms MHCJ in all experi-
ments. All algorithms take as input an ancestor set A and a
descendant set D encoded in PBiTree code. We focus on the
case when neither A nor D is sorted or indexed and com-
pare our partitioning based algorithms with the naı̈ve algo-
rithms that sort data or build index on the fly. Therefore, the
sorting time or index building time is included for INLJN,
STACKTREE and ADB+ algorithms. The comparison of
region based algorithm and their adapted version working
for PBiTree encoded data was also performed. However,

7http://www.cs.wisc.edu/coral/minibase/minibase.html
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as can be expected from the analysis, the two classes of al-
gorithms have almost the same performance and thus their
results are not reported here.

Minibase is a C++ implementation of a DBMS devel-
oped at University of Wisconsin-Madison. We built our
system using its storage manager, buffer manager and B+-
tree module. The storage manager was modified to operate
on the raw disk directly, and thus there is no buffering ef-
fect from the operating system. All the experiments were
performed on a Pentium III 450MHz PC with 256M RAM,
30G hard disk, running Windows 2000. In order to exam-
ine our algorithms for large scale applications, we used a
relatively small buffer pool (500 pages for all experiments,
except for the experiments on varying buffer sizes).

4.1. Experiments using synthetic datasets

In this subsection, we report our experiment results con-
ducted on synthetic datasets. First, we will describe how to
generate synthetic datasets. Then, we will discuss several
experimental results.

4.1.1 Synthetic data generation

Synthetic datasets were generated to investigate three fac-
tors that have major impacts on containment join process-
ing: the dataset size, the node distribution in a dataset (ei-
ther an ancestor set or a descendant set), and the selectivity
between an ancestor set and a descendant set. Here, the se-
lectivity is the average number of descendants matched per
ancestor node. We use a four-character shorthand to iden-
tify a dataset: a dataset could be single or multiple-height
(S, M), size of A or D could be large or small (L, S) and the
selectivity of the dataset could be high or low (H, L).

We generated 16 datasets that cover all possible com-
binations. The statistics of the datasets are shown in Ta-
ble 2(a) and Table 2(b). Each large (ancestor or descen-
dant) set (L) contains one million elements, and each small
(ancestor or descendant) set contains 10 thousand elements.
The HA and HD columns list the number of heights in A
and D respectively.

4.1.2 Overall performance

The first experiment was conducted to study the perfor-
mance of the algorithms when elements in the ancestor set
and descendant set are located in the same levels, respec-
tively. The statistics of the eight datasets are listed in Ta-
ble 2(a).

The total elapsed times are listed in Table 2(e). The col-
umn “MIN RGN” shows the minimum elapsed time among
INLJN, STACKTREE and ADB+ algorithms. In other
words, MIN RGN reports the best performance of region-
based algorithms. Figure 6(a) shows the improvement ratio
of the SHCJ, VPJ algorithms over MIN RGN. It is defined
as (TMIN RGN −TSHCJ )/TMIN RGN , where TMIN RGN

and TSHCJ are the elapsed times for MIN RGN and SHCJ
algorithms respectively.

Some observations can be made from Figure 6(a):

• SHCJ and VPJ algorithms perform similarly.
• SHCJ and VPJ outperform MIN RGN over 20% in

general. Particularly, when one set is large and the
other set is small such as SLSH, SSLH, SLSL and
SSLL, SHCJ and VPJ are significantly better than
MIN RGN, by an improvement ratio over 95% (in
other words, up to 30 times faster).

We also conducted the same experiment with multiple-
height datasets as shown in Table 2(b). In this experi-
ment, MHCJ+Rollup algorithm is used instead of SHCJ. In
the interest of space, we only show the improvement ratio
in Figure 6(b). The results suggest that the performance
of MHCJ+Rollup and VPJ algorithms for multiple-height
datasets is still much better than MIN RGN, although for
MHCJ+Rollup algorithm, there are false matches intro-
duced by the rollup technique. For example, the improve-
ment ratio is up to 96% and speedup ratio up to 30. Ta-
ble 2(f) lists the number of false hits for the MHCJ+Rollup
algorithm. This shows that for large datasets, all algorithms
are disk I/O bound and the additional CPU cost for false hits
is negligible.

4.1.3 Impact of varying buffer sizes

Experiments were also carried out to investigate how the
execution times are affected by buffer sizes for different al-
gorithms. The parameter of relative buffer size (denoted by
P ) is introduced. It is defined as the number of buffer pages
divided by the size of the smaller set in a dataset, or, for-
mally, P = NumBufferPages/min(|A|, |D|) ∗ 100%.

Two large datasets were chosen, specifically, SLLL and
MLLL. Figure 6(e) and 6(f) show the elapsed times for
SLLL and MLLL with varying buffer sizes.

When the buffer sizes are very small, such as 0.5% of
the smaller data set, the performance of all algorithms will
degrade greatly as shown in Figure 6. When the buffer
sizes are around 1% of the size of the smaller set (still
quite small), the MHCJ+Rollup and VPJ algorithms start
to perform reasonably well. Beyond the point where P =
2%, MIN RGN remains almost constant regardless of the
number of buffer pages. In contrast, MHCJ+Rollup and
VPJ algorithms can gracefully utilize additional memory to
speedup join processing.

4.1.4 Scalability

We carried out scalability tests of the proposed algorithms
with two classes of datasets, i.e. single-height and multiple-
height datasets. Each group contains datasets with size k ·B
nodes, where 1 ≤ k ≤ 8 and B = 5 × 104. Figure 6(g)
and 6(h) show the total elapsed times of different algorithms
on the two classes of datasets respectively.
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Table 2. Statistics of datasets and some experiment results
(a) Statistics of
synthetic datasets:
single-height

Dataset #results
SLLH 906192
SLSH 8842
SSLH 18596
SSSH 9088
SLLL 94426
SLSL 363
SSLL 385
SSSL 801

(b) Statistics of synthetic data-
sets: multiple-height

Dataset HA HD #results
MLLH 2 6 941056
MLSH 9 9 18758
MSLH 2 7 12263
MSSH 7 9 8692
MLLL 3 7 45315
MLSL 7 5 338
MSLL 7 4 326
MSSL 3 2 784

(c) Statistics of BENCHMARK datasets

|A| HA |D| HD #results
B1 25500 1 1 1 1
B2 10830 4 59486 4 10830
B3 1 1 21750 5 21750
B4 25500 1 12823 7 12823
B5 2200 1 2200 2 2200
B6 9750 1 35 2 35
B7 9750 1 9750 1 9750
B8 21750 5 21750 6 21750
B9 21750 5 21750 6 21750
B10 12823 3 120391 8 120391

(d) Statistics of DBLP datasets

|A| HA |D| HD #results
D1 116176 1 9951 5 9951
D2 116176 1 208 4 208
D3 116176 1 100 4 100
D4 116176 1 116176 6 116176
D5 200271 1 49141 8 49029
D6 200271 1 434 6 416
D7 84095 1 13660 6 13660
D8 84095 1 3 2 3
D9 84095 1 82980 7 82980
D10 120176 5 69177 6 55517

(e) Elapsed time (second) for single-
height synthetic datasets

MIN RGN SHCJ VPJ
SLLH 402.7 286.5 268.3
SLSH 142.8 7.07 5.62
SSLH 223.1 7.27 7.35
SSSH 0.88 0.16 0.16
SLLL 404.1 285.2 264.4
SLSL 143.2 7.16 5.70
SSLL 223.8 7.27 7.33
SSSL 0.86 0.15 0.17

(f) False hits for
MHCJ+Rollup

#false hits
MLLH 318542
MLSH 67428
MSLH 6202
MSSH 5475
MLLL 137615
MLSL 3904
MSLL 3810
MSSL 1

As can be observed from Figure 6(g) and 6(h), all the
proposed algorithms scale linearly with the data sizes and
our newly proposed algorithms perform consistently better.

4.2. Experiments with real-world datasets

In this subsection, we study the performance of the pro-
posed algorithms for real world XML data, i.e. BENCH-
MARK and DBLP.

DBLP is a set of bibliography files.8 The size of the raw
text files is around 50MB. BENCHMARK data is from the
XML benchmark project [18]. We generated the benchmark
data with SF(scale factor) = 1. The raw text file is 113MB.

We selected 10 containment joins for the DBLP data,
namely D1, D2, . . ., D10. These containment joins are parts
of real-world XML queries that can be found in [19]. Sim-
ilarly, 10 containment joins, namely B1, B2, . . ., B10, are
selected from benchmark queries presented in [18]. We fol-
low the query decomposition framework reported in [12]
and treat EE-joins as containment joins. The statistics of the
real-world XML datasets are shown in Table 2(c) and 2(d).

The results are shown in Figure 6(c) and 6(d). The exper-
iments on real-world datasets show that the MHCJ+Rollup
and VPJ algorithms are consistently better than MIN RGN.
The improvement ratio is up to 96% and the speedup up

8It is available at ftp://ftp.informatik.uni-trier.de/
pub/users/Ley/bib/records.tar.gz

to 25. This conclusion is nearly identical to what we have
observed from the experiments on synthetic datasets.

To conclude, our proposed algorithms (based on PBi-
Tree coding) perform consistently better than the best of
existing algorithms (based on region-based coding) on both
synthetic and real-world datasets when neither datasets is
sorted or indexed. Our algorithms also have salient features,
such as small memory requirement, good scalability with
buffer size and data size, etc.

5. Related Work

Numbering schemes Numbering schemes are the en-
abling technique for “set-at-a-time” processing of contain-
ment joins. A basic requirement of the number schemes is
to be able to verify the ancestor-descendant relationship lo-
cally and efficiently. The most popular numbering scheme
is the class named region code. In essence, each XML el-
ement is tagged with a range and ancestor-descendant re-
lationship is equivalent to the inclusion relationship of re-
gions. [20] proposed (Start, End), which is the absolute
offset of the start and the end of the element in the docu-
ment. [12] proposed a variant in the form of 〈order, size〉.
It is also referred to as a durable numbering scheme be-
cause it reserves additional code space for elements, which
helps to reduce the high update cost due to overflow com-
pared to [20]’s scheme. A relative region coding scheme
was proposed in [9]. Each element is coded in using the
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Figure 6. Experiment results
relative offset to its parent element. The main drawback of
this approach is that the query cost is increased because all
the ancestors along the path to the node in question have
to be read to determine the absolute code of the node. An-
other coding scheme is the prefix code (conceptually in a
string format), in which each element is coded by its path
from the root [10]. The ancestor-descendant relationship is
equivalent to the substring relationship of the prefix codes.

Containment join algorithms Most proposed contain-
ment join algorithms are based on the region codes. There-
fore, their join criteria are the containment relationships of
the region codes, which usually result in inequality joins. In
addition, all the algorithms proposed so far have some re-
quirement (either appropriate indexes on the element set or
the element sets are sorted). [20] studied index nested loop
and MPMGJN, a variant of sort-merge join. Both analyti-
cal and experimental results showed that MPMGJN usually
outperforms index nested loop join unless one of the ele-
ment set is of extremely low cardinality. [5] proposed to
use R-Trees by viewing (Start, End) as the coordinate of
a point in two dimensional space and use spatial join algo-

rithms to process the query. [1] studied the class of tree
merge algorithms (MPMGJN) and the class of newly pro-
posed stack tree algorithms. Their stack tree algorithms use
an in-memory stack to avoid rescanning the inner element
set and are also capable of outputting the result either by an-
cestor sorted order or by descendant sorted order. Their al-
gorithms have been shown to have optimal worst case CPU
and I/O complexities and outperform MPMGJN algorithms.
[4] proposed to utilize available indexes to skip part of the
elements that will not participate in the stack tree join algo-
rithms.

Spatial join algorithms It is natural to interpret the con-
tainment join from spatial point of view. In [5], each region
code is modelled as a point in two dimensional space and
containment join is modelled as spatial join with contain
predicate. Specifically, region r1 contains region r2 if and
only if r1 is in the II quadrant with r2 as the origin (and this
join can be easily converted to spatial join with intersect
predicate)[5]. There have been many studies in the area of
spatial join. Existing algorithms can be classified into three
categories.
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1. Both relations have indexes. [3, 6, 15] used the syn-
chronous traversal technique to process (multiway)
spatial join efficiently. The Anc Des B+ algorithm is
analogous to those algorithms.

2. Only one relation has index. [13] proposed seeded tree
join which actually converts the problem into the first
case by creating an R-tree like index on the fly on the
dataset that does not have an index.

3. None of the relations has index. [14] used a hash
join based on sampling technique. [17] used a parti-
tion based method (with replication) to process spatial
joins. Our VPJ algorithm differs from their methods in
that we do not need to merge the final result as there
is no multiple counting problem. [11] proposed an-
other efficient join algorithm named size separation
spatial join (S3J), which introduced the concept of
layer to avoid replication of objects during the parti-
tioning phase. [2] proposed an external memory based
spatial join algorithm. It is based on the technique of
distributed line sweeping and achieves asymptotically
optimal I/O efficiency.

6. Conclusions

There has been increasing interest in containment query
processing for tree structured data such as XML and text
documents recently. In this paper, we focused on efficient
processing of a primitive operation, called containment join,
as the building block for complex queries. To facilitate the
efficient processing of such joins, we propose a PBiTree
coding scheme, which has been demonstrated to be more
versatile than the commonly used region coding scheme.
Based on the new coding scheme, a unified containment
join processing framework is proposed. Within this new
framework, previous state-of-the-art algorithms are seam-
lessly integrated with necessary modification and new al-
gorithms that address containment join without index or
sorting conditions are proposed. The new algorithms are
based on the notion of horizontal and vertical partitioning.
A unique feature is that the newly proposed algorithms use
equijoins instead of θ-joins and are highly optimized for
disk I/O. Comprehensive experiments were conducted to
evaluate the effectiveness of partitioning-based algorithms
for containment join processing. Our experimental studies
show that the proposed algorithms outperform the naı̈ve al-
gorithms based on the region coding scheme.

The PBiTree coding introduces several interesting is-
sues. First, the regular structure of the PBiTree brings
about new possibilities to maintain the statistics of the cor-
responding data tree, which can be in turn exploited in query
processing. Second, we are working on a cost-based query
optimizer that is aware of all the above-mentioned algo-
rithms. An issue is to analyze the cost of all algorithms
using a more precise disk access model.
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