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Abstract
Cross-correlation is a popular signal processing technique

used for obtaining reliable range information. Recently, a
practical and efficient implementation of cross-correlation
(via sparse approximation) was demonstrated on resource
constrained wireless sensor network platforms, where the
key idea was to compress the received signal samples, and
transfer them to central device where the range information
was retrieved by `1-minimization. Although, this mecha-
nism yields accurate ranging results, its applicability is lim-
ited due to its slow execution speed and inaccurate recov-
ery of the correlation peak magnitude, which implicitly pro-
vides the useful measure of signal-to-noise ratio. In this
work, we propose Fast Gradient Projection (F-GP), a new `1-
minimization algorithm, which overcomes the existing limi-
tations, and provides fast and accurate ranging.
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C.3 [Special-Purpose and Application-Based Sys-
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1 Introduction

Reliable and robust ranging is an important building block
of localization. For high-accuracy range information, acous-
tic location systems that use a broadband signal design and
measure the time-of-flight (TOF) of the acoustic waveform
by the mechanism of pulse compression have reported im-
pressive results. However, such systems have not been able
to fully optimize their sensing platform (in terms of size, cost
and power) to be virtually embedded in the physical world.
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Although, low-cost and low-power wireless sensor network
(WSN) platforms are capable of bridging this gap, they face
extreme resource constraints (with limited data sensing rates,
link bandwidth, computational speed, battery life and mem-
ory capacity) for executing complex algorithms. Recently,
a practical and efficient implementation of cross-correlation
(via sparse approximation) was demonstrated on resource
constrained wireless sensor network platforms [2].

Similar to the design of previous acoustic ranging sys-
tem, [2] also follows the architecture wherein the transmitter
initiates the measurement process by concurrently broadcast-
ing a radio packet to synchronize its local clock with that of
the receiver, and a broadband acoustic pulse. The receiver
activates its recording circuitry from the time-of-arrival of
the radio pulse, acquires the audio samples, and subsequently
measures its arrival time. However, its detection and post-
processing method differs significantly in the functionality
algorithm on the receiver. Its key idea was to compress the
signal samples of the acoustic pulse on the receiver by effi-
cient random projections and transfer them to a base-station
(BS), which estimates the range from the limited informa-
tion by solving the `1-minimization problem efficiently. The
`1-minimization process does its best to correctly recover the
range information by exploiting the signal sparsity in the rep-
resentation dictionary of the correlation domain.

Although, this mechanism yields accurate ranging results,
its applicability is limited for two reasons: (i) slow execution
speed, and (ii) inaccurate recovery of the correlation peak
magnitude that implicitly results in the loss of signal-to-noise
(SNR) information. In this work, we propose Fast Gradi-
ent Projection (F-GP), a new `1-minimization algorithm, that
preserves all informations and benefits of the standard cross-
correlation technique, i.e., fast and accurate ranging with im-
plicit measure of SNR.

2 Fast Gradient Projection (`1-Minimization)
Algorithm

For the mathematical formulation, we adopt the following
notation. Let p 2 Rn

p and x 2 Rn

a represent the transmitted
and the received signal vectors, where 0  n

p

,n
a

 • and
n

a

� n

p

. The detection and post-processing mechanism is
implemented in two-phases.

Compression: At the receiver, the dimensions of x 2Rn

a are
significantly reduced by multiplying it with a random sens-
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Figure 1. F-GP vs. GPSR-BB vs. Homotopy: comparison with respect to the (best-case) standard cross-correlation
algorithm on the basis of: (i) ranging accuracy, (ii) execution time, and (iii) correlation peak magnitude (SNR).

ing matrix F 2 Rm⇥n

a resulting in the measurement vector
y 2 Rm (m⌧ n

a

) as:
y = Fx (1)

m is related to n

a

by the compression factor a given as:
m = a n

a

where a 2 [0,1]. F is a binary sensing matrix
with its entries identically and independently (i.i.d.) sampled
from a symmetric Bernoulli distribution. The m samples of
y are transferred to the BS.
Reconstruction and Detection: The BS requires the a-
priori knowledge of the seed that generates F and the cor-
relation dictionary Y. Y 2 Rn

a

⇥(2n

a

�1) is the positive and
negative time shifted Hankel matrix of p. The importance
of Y arises from the fact that it provides the representation
basis where x can be sparsely depicted by s 2 R(2n

a

�1) as:

x = Ys (2)

The recovery mechanism at the BS reconstructs the sparse
correlation coefficient vector s by solving the following `1-
minimization problem for a given tolerance e:

(`1
r

) : ŝ1 = argminksk`1 s.t: |(FY)T y� s|
o

 e (3)

where |.|
o

denotes an order metric. The correlation domain
coefficients ŝ1 are related to the various propagation paths
between the transmitter and the receiver, where the index of
the first tallest correlation coefficient peak is the estimate of
the pulse arrival time of the direct path, and thus, provides
the range.

The formulation given by Eq. (3) differs from previous
work [1] where, instead of taking the ||FYs� y||2 as the
performance metric, we aim to make the order difference
between the result and the true solution as small as possi-
ble. The solution to Eq. (3) is obtained by formulating it as
a quadratic problem, and applying a standard gradient pro-
jection method to search in the direction of the feasible set.
A good choice of the stopping criteria along with other im-
portant enhancements make it a fast, practical and efficient
method.
2.1 Empirical Study and Preliminary Results

We validate the proposed detection method on a proof-of-
concept (POC) acoustic ranging system [2], where the syn-
chronization and ranging signals were generated, captured

and analyzed using a laptop. The study was conducted in an
outdoor (i.e., very low multipath) environment. The sepa-
ration distance between the transmitter and the receiver was
fixed at 5 m. The transmit power was configured to a level
such that 100 observations of the received signal could be
recorded within 0 to 5 dB SNR.

The performance of the F-GP algorithm is compared
against two other popular `1-Minimization algorithms: Gra-
dient Projection for Sparse Reconstruction (GPSR-BB) and
Homotopy. Fig. 1 shows the relative mean errors and their
deviations with respect to the (best-case) standard cross-
correlation for ranging accuracy, execution time and cor-
relation peak magnitude (indicative of the SNR) accuracy.
The results suggest that the proposed F-GP algorithm has
the fastest execution speed and the best representation of
the correlation peak magnitude among the other two algo-
rithms, which closely approximates the result obtained by
the standard cross-correlation technique. However, this im-
provement comes at the cost of a small (2 cm) reduction in
ranging accuracy compared to the best performing GPSR-
BB algorithm.
3 Conclusion and Future Work

In this work, we have presented some preliminary results
from our project, which has taken an innovative approach to
acoustic ranging. Although the results are encouraging, there
remains a vast scope for future work and improvement.

• Theoretical analysis and mathematical validation for
the fast convergence of the F-GP algorithm.

• Empirical characterization of F-GP in indoor (low and
high multipath) environments, where the decrease in
signal sparsity could affect its performance.

• Implementation of the acoustic ranging mechanism on
commercial-off-the-shelf WSN platforms along with its
performance evaluation.
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