
Efficient Re-construction of Document Versions

Based on Adaptive Forward and Backward

Change Deltas

Raymond K. Wong Nicole Lam

School of Computer Science & Engineering, University of New South Wales, Sydney
2052, Australia, wong@cse.unsw.edu.au

Abstract. This paper presents an efficient content-based version man-
agement system for managing XML documents. Our proposed system
uses complete deltas for the logical representation of document versions.
This logical representation is coupled with an efficient storage policy for
version retrieval and insertion. Our storage policy includes the condi-
tional storage of complete document versions (depending on the propor-
tion of the document that was changed). Based on the performance mea-
sure from experiments, adaptive scheme based on non-linear regression
is proposed. Furthermore, we define a mapping between forwards and
backwards deltas in order to improve the performance of the system, in
terms of both space and time.

1 Introduction

With the increasing popularity of storing content on the WWW and intranet in
XML form, there arises the need for the control and management of this data. As
this data is constantly evolving, users want to be able to query previous versions,
query changes in documents, as well as to retrieve a particular document version
efficiently. A possible solution to the version management of data would be to
store each complete version of data in the system. Although this would maintain
a history of the data stored on the system so far, the performance of such a
system would be poor. This leads to the use of change detection mechanisms to
identify the differences between data versions. The storage of these differences
may provide an increased performance of the system, especially in relation to its
space requirements.

Change detection algorithms have been proposed by [CAM02] and [WDC01].
In each case, the algorithm utilises the concept of persistent identifiers and
node signatures in order to find matchings between nodes of the 2 input doc-
uments. We adopt a similar approach. An alternative solution to the change
detection problem is via object referencing as suggested by [CTZ01a]. Marian
et. al. [MACM01] developed a change-centric method for version management,
which is similar to our approach. In [MACM01], the system stores the last ver-
sion of a document and the sequence of forward completed deltas. In contrast to
the approach by [MACM01], we also store intermediate complete versions of the

document. A disadvantage of [MACM01] is: if we have already stored 100 ver-
sions of a document, retrieving the 3rd version would involve applying 97 deltas
to the curent version - a very inefficient process. On the other hand, by storing
intermediate versions, our system is likely to result in a more efficient retrieval
of the 3rd version (for example, by working forward from the initial version).

In this paper, we present an adaptive selection scheme between forward and
backward deltas for an efficient content-based version management system that
have been previously proposed in [WL02]. The system is primarily designed
for managing and querying changes on XML documents based on update log-
ging. The proposed system uses complete deltas for the logical representation of
document versions. Our storage policy includes the conditional storage of com-
plete document versions (depending on the proportion of the document that
was changed). Furthermore, we define a mapping between forwards and back-
wards deltas in order to improve the performance of the system, in terms of
both space and time. We also adapt a set of basic edit operations, which provide
the necessary semantics to describe the changes between documents, from our
previous work regarding the extensions of XQL with a useful set of update op-
erations [WON01]. Although these operations are based on XQL, since they are
designed and implemented based on regular path expressions, they can easily
be extended as other query languages such as XPath or XQuery. The prototype
of our proposed Version Management System has been integrated with a native
XML database system called SODA3 that is available at [SODA3].

2 System Model

This section defines a system model for version management. The logical model
of the system consists of the representation of intermediate versions similar to the
notion of Complete Deltas in the style of [MACM01]. Different from [MACM01],
we here define an efficient storage policy for the document versions to reduce
the storage requirements of the system. The system also maintains the time at
which the document was loaded into the system in order to perform time related
queries on this data.

2.1 Complete Deltas

Our proposed system uses the concept of Complete Deltas to store the different
versions of a document in the database. That is, instead of storing the complete
versions of all documents in the system, we chose to represent only the differences
between versions to conserve storage space.

The Complete Deltas used here are representations of the differences between
versions. They are termed ’Complete’ as it is possible, given two versions, Vi and
Vj and their Complete Delta ∆i,j to reconstruct either document version. That
is, given Vi and ∆i,j , we can reconstruct Vj ; and given Vj and ∆i,j , we can
reconstruct Vi.

2.2 Storage Policy

We define an efficient storage policy for our proposed system. Suppose there are
many differences between two versions of a document, it may be more efficient
to store the complete version of the more recent document, rather than storing
the large complete delta. This is the intuition behind the storage policy defined.

Depending on the relative size of a complete delta, as compared to the com-
plete document version, we either store the complete delta or the complete ver-
sion. This reduces the storage requirements of the system significantly. However,
due to this unconventional storage policy, there arises the need to define new
query mechanisms in order to efficiently query these document versions.

2.3 Representing Time

We associate with each version of data (i.e. a complete delta or a complete
version) a time value, also called a timestamp. This timstamp represents the time
that the version was entered into the system. This facilitates the processing of
time related queries, detailed in the next section.

2.4 Edit operations

In addition to the two basic operations: Insert and Delete, there are three more
main operations supported by SODA3 [SODA3]: Update, Move and Copy. Al-
though the Insert and Delete operations are sufficient to describe the differences
between two versions, we find that the three additional operations provide a
more meaningful and intuitive approach to the description of differences. More-
over, for the insert, delete, move and copy operations, it is necessary to include
the element’s final index as this facilitates the inversion of the operations. The
operations also contain some redundant information (for example the oldvalue in
Update operation) so as to aid in the mapping between forward and backward
deltas. The detailed semantics of these operations [WL02] and the version index
can be found at [LW03].

3 Main Algorithms

In this section, we consider the major parts of the system and present their key
algorithms.

global:

currentVersion ← 1

// flag to indicate if the complete version of

// (currentVersion - 1) should be stored

storeComplete ← false

// stores the delta between

// (currentVersion - 2) and (currentVersion - 1)

prevDelta ← null

// list of version numbers that have

// their complete versions stored

fullVersion ← []

// hash table or stucture to store the number of

// operations associated with each delta stored

numOp ← φ

insertNewVersion(File version):
1 delta ← version;
2 operations ← countOperations(delta);
3 write ’version’ out to disk ;

4 if !storeComplete ∧ !prevDelta :

5 write prevDelta out to disk;

6 delete complete version of ’currentVersion’;
7 prevDelta ← null;

8 if operations > MAX RATIO * size(version) :

9 fullVersion.append(currentVersion++);
10 storeComplete ← true;

11 else :

12 numOp{currentVersion++} ← operations;
13 prevDelta ← delta;
14 storeComplete ← false;

getVersion(int ver):
1 i ← complete version closest and > ver
2 prev ← complete version closest and < ver
3 uBound ← fullVersion[i];
4 lBound ← fullVersion[prev];
5 for j ← lBound to ver do :

6 lowerOps ← lowerOps + numOp{j};
7 for k = uBound to ver do :

8 if upperOps > (lowerOps * FORWARD CONSTANT) :

9 break;

10 upperOps ← upperOps + numOp{k};
11 if upperOps < (lowerOps * FORWARD CONSTANT) :

12 cVersion ← complete file, ’uBound’;
13 constructBackwards(uBound, ver, cVersion);
14 else :

15 cVersion ← complete file, ’lBound’;
16 contructForwards(lBound, ver);

constructBackwards(int upper, int version, File f):
1 if upper != version :

2 delta ← retrieve delta file, ’version’;
3 applyDelta(delta,f);

4 constructBackwards(upper-1, version, f);
5 return;

constructForwards(int lower, int version, File f):
1 if lower != version :

2 applyForwardDelta(lower, f);
3 constructForwards(lower+1, version, f);
4 return;

applyForwardDelta(int version, File fileSoFar):
1 backwardDelta ← retrieve delta file, ’version’;
2 forwardDelta ← convertToForward(backwardDelta);
3 applyDelta(forwardDelta, fileSoFar);
4 return;

applyDelta(File deltaFile, File fileSoFar):
1 for each e ∈ fileSoFar do:

2 apply e to fileSoFar;

convertToForward(File backwardDeltaFile):
1 File forwardDeltaFile;
2 for each e ∈ backwardDeltaFile do :

3 apply rules in Section 2: Edit operations

4 to obtain the inverse of e;
5 store the inverse operation e1in

6 reverse order in forwardDeltaFile ;

7 return forwardDeltaFile;

To insert a new version of a document into the system, we firstly process the
new version - by storing it in its entirety into the system. Next, we process the
previous version of the document using Eq. (1). This determines whether the
backward delta of the previous version or the complete version of the document
is stored.

For the retrieval of a given version, we have to iterate through the complete
versions of the document stored in the system, in order to identify the version
that can be used to most efficiently reconstruct the required version. This can be
achieved by applying the backward deltas directly to a complete version of the
document, or inverting the backward deltas and then applying the operations to
the complete version.

We define a function applyDelta which applies the edit operations to its
argument file. convertToForward is a function that converts each operation to
its inverse.

4 Adaptive parameters

This section proposes an alternative to the adaptive parameters FOR-
WARD CONSTANT and MAX RATIO in an attempt to automate the process

of version management, without having the user specify the value of the respec-
tive parameters.

4.1 FORWARD CONSTANT

We first consider the parameter FORWARD CONSTANT. We propose another
equation which takes into account the extra computation cost associated with
inverting a forward complete delta to a backward complete delta.

Suppose the total number of operations that have to be performed on a
complete document version stored in the system (using forward deltas) is l, while
the total number of operations using backward deltas is u. The cost (costl) of
using forward deltas is:

costl = Tl (1)

where Tl represents the cost of performing all l operations on the complete
version. We estimate the cost of Tl using the formula:

Tl = l ∗
i + d

2
(2)

where i represents the cost of applying an insert operation to a document and
d represents the cost of applying a delete operation to a document. Here, we
assume that the time complexity for move (m), update (up) and copy (c) are
such that:

m < d + i (3)

c < i (4)

up < d + i (5)

This assumption is valid because, for example, if Eq. 3 was not true, we could
replace the move operation to a delete and insert operation to improve the time
complexity. Similarly for Eq. 4 and 5.

The cost (costu) of using backward deltas is:

costu = u + Tu (6)

where Tu represents the cost of performing all u operations on the complete
version. We estimate the cost of Tu using the formula:

Tu = u ∗
i + d

2
(7)

Note that in contrast to costl, costu includes an additional u to the cost of
retrieval. This is because the forward complete deltas that are stored explicitly in
the system have to be converted to their inverse (i.e. backward complete deltas).
It takes constant time to invert each operation in a complete delta, hence to
invert u operations, it costs u.

Hence, the final cost is

costu

costl
> 1 or

u(i+d
2

)

l + l(i+d
2

)
> 1 (8)

The intuition behind the above equation is: if the cost of using backward
deltas is higher than the cost of using forward deltas, it is more efficient to use
a forward delta to retrieve the document version.

4.2 MAX RATIO

By analysing the adaptive parameter MAX RATIO, we find that the main issue
involves the efficient retrieval of the version being inserted. The factors that
affect whether a complete delta or the complete version, Vx of a document is
stored in the system include:

1. cost of executing the edit operations, E = i+d
2

;
2. the size of the complete delta, | ∆x | ;
3. the size of the current version being inserted, | Vx | ;
4. the size of the previous complete version stored in the system, | Vx−1 | ;
5. number of operations in each complete delta stored in the system, Ops(∆i)

; and
6. total number of operations since the last complete version.

Hence, by analysing the costs associated with retrieving version, Vx, in the long
run, we are able to identify a meaningful relationship between the factors listed
above and whether a complete delta or document version of Vx is stored in the
system.

More precisely, we divide the problem into two sections: (i) the cost of retriev-
ing the current version using forward deltas (Cf); and (ii) the cost of retrieving
the current version using backward deltas (Cb).

Hence, the cost is:

min(Cf , Cb)

| Vx |
> K where K ∈ INT, K ≥ 1 (9)

This inequality represents the relationship between the cost of version retrieval
and the size of the current complete document version. It indicates that if the
cost of version retrieval using complete deltas is large relative to the size of the
actual document, the system should store the complete version of the document
rather than the complete delta. Here, K is a system-defined constant.

Cost to retrieve a version with forward deltas (Cf): The cost associ-
ated with retrieving a version using forward deltas (which are stored explic-
itly in the system) is mainly attributed to the total number of operations
since the last complete version. Hence,

Cf = Σx−1

i=mOps(∆i) ∗ E (10)

In the above equation, m represents the previous closest complete version
stored in the system.

Cost to retrieve a version with backward deltas (Cb): Given that we
are currently performing the version insertion of Vx, it would be impossible
to determine accurately the cost associated with retrieving Vx using back-
ward deltas. This is because it would involve having some knowledge of the
document versions that are yet to be stored in the system. Hence, the best
approach to determining a cost value would be to approximate the costs
associated with retrieval by predicting the the number of edit operations
contained in future complete deltas (Op(∆′

i)) to be stored in the system.
We use nonlinear regression to predict Op(∆′

i) on the basis that Vx is not
stored as a complete version. Hence we are able to identify whether a subse-
quent document version is stored as a complete version (using the threshold,
T, presented in next section). We consider all subsequent document versions
up to the version specified by the cost equation, such that using backward
complete deltas to retrieve the current version is more efficient than using
forward complete deltas.
Also, as backward deltas are not stored explicitly in the system, we have to
consider the extra computational cost associated with converting a forward
complete delta to a backward complete delta.

Cb = Σk
i=xOps(∆′

i) + Σk−1

i=x (Ops(∆′

i) ∗ E) (11)

In the equation above, k represents the predicted version number which is
the closest complete version of the document stored in the system, such that
x ≤ k. That is, Ops(∆′

i) < T , ∀i ∈ {x..(k−1)} and Ops(∆′

k) ≥ T . Hence, Cb

represents the predicted cost associated with retrieving Vx using backward
deltas in an efficient manner.

5 Adaptivity

The adaptivity of the system is defined by a nonlinear regression model detailed
in this section. This model enables the system to operate autonomously, without
any user input specifying the value of MAX RATIO. In addition, this model is
adaptive in terms of being able to modify its storage plan based on the version
history of the documents that are currently stored in the system. This results
in a highly efficient version management system, especially for the retrieval of a
given document version.

By comparing the estimated number of operations in the next delta: Op(∆′

x)
(using nonlinear regression) with a probability threshold: T, we can predict if
the complete version of x will be stored in the system. These concepts will be
presented in this section.

5.1 Nonlinear Regression

We use nonlinear regression to estimate the number of operations in each sub-
sequent delta to be entered into the system.

Op(∆′

y) = (A ∗ Op(∆x) + B | Vx |)C where A, B, C ≥ 1 (12)

This equation forms the model for the nonlinear regression. We observe that the
number of operations in a subsequent delta is largely dependant on the number
of operations in each previous delta stored in the system, together with the size
of each complete version of the document stored in the system. The equation
above contains variables A, B and C that vary independantly. In particular, C
represents the order of the equation. The value of C is adjusted accordingly,
based on the percentage error on a given prediction.

Error Each prediction of Op(∆′

y) is verified when version y of the document is
loaded into the system by the user. Hence, it is possible to verify the accuracy
of the regression, especially with regard to the order variable C . Initially, we
set the value of C to be 1. However, as the user loads more versions of the
document into the system, the value of C adapts accordingly. This enables
a more accurate equation for regression, and hence provides a more accurate
prediction on the number of operations contained in the subsequent deltas and
improves the efficiency of the system.

More specifically, the system allows a minimal error rate before adjusting
the value of C in order to improve performance. For example, if C = 2 and
regression has predicted the wrong size of subsequent deltas for the last 4 out of
5 document versions loaded into the system, we increase the value of C to 3 in
an attempt to obtain a more accurate estimate for the size of a delta. Once the
error rate converges to a specific range, we increment the value of C by smaller
amounts, as this range is the most appropriate for regression.

5.2 Threshold

We define a threshold, T, that specifies the maximum probability to store a
complete delta in the system (rather than a complete version) based on the
number of edit operations in the deltas currently stored in the system.

T =
Σx−1

i=1
Pri ∗ Op(∆i)

x − 1
(13)

Pri indicates the probability that the number of operations for a delta stored in
the system is equal to Op(∆i). It is based on the version history of the document
stored in the system.

From the equations in last section,

l < u ∗ (
i + d

2 + i + d
) (14)

We use this equation to limit the number of deltas the system attempts to predict
the size of, using nonlinear regression. Therefore, while the above equation is
true, the system estimates the number of operations in the next delta that is

to be stored in the system. This process continues until the estimated number
of edit operations in a subsequent delta exceeds the threshold, T, resulting in a
complete version of the document being stored in the system.

6 Conclusion

In this paper, we have addressed the problem of content-based version man-
agement of XML data. We presented a system which had an efficient logical
representation and storage policy for managing changes of such data, which in-
volved the storage of intermediate complete versions, together with complete
deltas. Automatic conversion between the forward and backward deltas was also
defined, which can be used to derive the complete deltas without storing both
types of deltas. Finally adaptive selection between forward and backward deltas
based on the justifications from the experimental performance data was pre-
sented.

References

[CAM02] G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in xml doc-
uments. In ICDE (San Jose), 2002.

[CAW98] S. Chawathe, S. Abiteboul, and J. Widom. Representing and querying
changes in semistructured data. In Proceedings of the International Con-
ference on Data Engineering, February 1998.

[CTZ01a] S-Y. Chien, V. Tsotras, and C. Zaniolo. Copy-based versus edit-based
version management schemes for structured documents. In RIDE-DM,
pages 95–102, 2001.

[CTZ01b] S-Y. Chien, V.J. Tsotras, and C. Zaniolo. Efficient management of multi-
version documents by object referencing. In Proceedings of VLDB, Septem-
ber 2001.

[LW03] N. Lam and R.K. Wong. A fast index for xml document version man-
agement. In Proceedings of the Asia Pacific Web Conference (APWEB),
September 2003.

[MACM01] A. Marian, S. Abiteboul, G. Cobna, and L. Mignet. Change-centric man-
agement of versions in an xml warehouse. In Proceedings of VLDB, Septem-
ber 2001.

[W3C99] W3C Recommendation. Xml path language (xpath) version 1.0.
http://www.w3.org/TR/xpath, November 1999.

[SODA3] Soda Technologies. Soda3 xml database management system version 3.0.
URL: http://www.sodatech.com.

[WDC01] Y. Wang, D. J. DeWitt, and J-Y. Cai. X-diff: An effective change detection
algorithm for xml documents. Technical report, University of Wisconsin,
2001.

[WL02] R.K. Wong and N. Lam. Managing and querying multi-version xml data
with update logging. In Proceedings of the ACM International Symposium
on on Document Engineering (DocEng), November 2002.

[WON01] R.K. Wong. The extended xql for querying and updating
large xml databases. In Proceedings of the ACM International Symposium
on on Document Engineering (DocEng), November 2001.

