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ABSTRACT
With the prevalence of the geo-position enabled devices and
services, a rapidly growing amount of tweets are associated
with geo-tags. Consequently, the real time search on geo-
tagged Twitter streams has attracted great attentions. In
this paper, we advocate the significance of the co-occurrence
of keywords for the geo-tagged tweets data analytics, which
is overlooked by existing studies. Particularly, we formally
introduce the problem of identifying local frequent keyword
co-occurrence patterns over the geo-tagged Twitter streams,
namely LFP query. To accommodate the high volume and
the rapid updates of the Twitter stream, we develop an
inverted KMV sketch (IK sketch for short) structure to cap-
ture the co-occurrence of keywords in limited space. Then
efficient algorithms are developed based on IK sketch to
support LFP queries as well as its variant. The extensive
empirical study on real Twitter dataset confirms the effec-
tiveness and efficiency of our approaches.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services
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Keyword Co-occurrence Pattern; Geo-tagged; Twitter Stream

1. INTRODUCTION
Nowadays, Twitter is becoming one of the most impor-

tant online social media because it can convey information
to people much faster than traditional media. With the
proliferation of geo-position enabled device, a large amount
of tweets are geo-tagged. For instance, recently it is re-
ported 1 that there are about 30 millions people sending
out geo-tagged data into the Twitterverse, and 2.2 percent
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of tweets (about 4.4 million tweets a day) provide location
data together with the text of their posts. As a result, there
is an emerging call for effective and efficient data analytics
techniques to make sense of this geo-tagged Twitter stream.

Motivation. Due to its concise feature, tweets with geo-
tag are studied as the human sensor of social events that are
happening in the specific area. Therefore, geographic factor
is a big concern for users in the Twitter stream analytics.
Moreover, interesting/important events are usually associ-
ated with high frequent keywords. Consequently, the prob-
lem of identifying the local frequent keywords over Twit-
ter stream has received growing interests in the literature.
Nevertheless, the existing works (e.g., [3,5]) overlook the co-
occurrence of the keywords (i.e., the keywords appear in the
same tweet) which may fail to delivery interesting patterns
or even mislead users. Following is a motivating example.

Example 1. Many people send tweets about the local new
events to inform or share with friends. Suppose there are two
exciting events in the downtown on the same day: 1) there is
a new Apple store opened and 2) a popular restaurant named
“Sokyo” provides discount for customers. We may expect
that there are lots of tweets about these two local events,
where “Apple”, “Sokyo”, and “discount” will be frequent key-
words in this downtown area. Nevertheless, without the co-
occurrence knowledge of these keywords, customers may not
be able to capture the important information (e.g., discount
at Sokyo) or even be misled since customers may conclude
there is a promotion in Apple store. Therefore, besides the
individual frequent keywords in a particular region, it is crit-
ical to identify the frequent keywords co-occurrence (e.g.,
“Sokyo” and “discount” in this example) so that users can
obtain richer and more accurate information.

Motivated by the above facts, in this paper we investi-
gate the problem of identifying local frequent keyword co-
occurrence in geo-tagged Twitter stream. Specifically, given
a region R and a minimal support θ, we aim to efficiently
identify a set of local frequent keyword co-occurrence patterns

(LFP for short) whose number of occurrence in the tweets
within the region R exceeds θ. Moreover, since in practice
users are usually interested in the recent tweets, we apply
the sliding window model and the outdated tweets will not
be considered in the query processing. We further show that
the techniques developed in the paper can be extended to
identify dense regions (DR for short) regarding a particular
keyword co-occurrence pattern, which is useful for users to
track the hot areas regarding a particular topic.

Challenges and Contributions. To the best of our knowl-
edge, this is the first work to systematically investigate the
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problem of identifying local frequent keywords co-occurrence
patterns over geo-tagged Twitter stream. The main chal-
lenges of the problem lie on two aspects. Firstly, to ac-
commodate the rapid arrival and expiration of geo-tagged
tweets, it is essential to build a concise summary for stream-
ing data to support LFP queries with high accuracy and
low query latency. Moreover, the summary of tweets stream
should be rapidly updated and be able to capture the co-
occurrence of keywords. Secondly, we need to exploit both
spatial and frequency of the keywords for the query pro-
cessing. It is desirable to effectively incorporate the spatial
location and frequency of the keyword in the summary of
the Twitter stream.

To address the above challenges, we propose a hybrid
sketch structure as well as efficient query processing algo-
rithms. Our principle contributions are summarized as fol-
lows. 1) We formally define the problem of identifying lo-
cal frequent keyword co-occurrence patterns over geo-tagged
Twitter stream. 2) We propose an inverted KMV sketch (IK
sketch for short) strucutre, which is a summary of tweets
stream and can properly capture both spatial and frequency
information with limited space. 3) Efficient algorithms are
proposed to support LFP query and its variant based on IK
sketch structure. 4) Extensive empirical study demonstrates
the efficiency and effectiveness of our techniques proposed in
the paper.

Road Map. The problem studied in this paper is formally
presented in section 2. The preliminary work is introduced
in Section 3. Section 4 overviews the IK sketch structure and
its maintenance algorithm. The effectiveness and efficiency
of the techniques are demonstrated in Section 5. Section 6
concludes this paper.
Related Work. Recently, much efforts have been devoted
to identify spatial frequent or burst keywords in geo-temporal
Twitter stream, which has proven useful in various appli-
cations. Existing works consider the spatial and tempo-
ral dimensions, but the co-occurrence of keywords is ig-
nored. For instance, the frequency of each individual key-
word is counted regarding particular regions in [3,5,9]. In [1],
the correlation of the keywords is considered by the Even-
Tweet system where keywords with close spatial proximity
are grouped together. However, the co-occurrence of key-
words in the same tweet is not considered. On the other
hand, the approximate frequent pattern mining over data
streams has attracted significant attention in the literature
(See survey in [7]) where the co-occurrence of keywords in
each transaction is considered by some existing works. Nev-
ertheless, the spatial location is not considered and their
techniques cannot be trivially extended to support the prob-
lem studied in this paper. There are some existing work on
spatial co-location pattern mining (See survey in [4]). How-
ever, this problem is inherent different with ours because
they do not consider the co-occurrence of keywords in the
same tweet. Moreover, their techniques are not developed
in the context of data streams.

2. PROBLEM DEFINITION
In this section, we first introduce some important nota-

tions and definitions. Without loss of generality, we adopt
the count-based sliding window model in this paper; that is,
the Twitter stream is denoted as D = {d1, d2, ..., dn} where
n is the sliding window size and dn is the latest arrived
tweet. Each tweet d ∈ D consists of the tweet’s spatial
location (denoted by loc(d)) and a set of keywords (denoted
by key(d)) from a vocabulary V. Let P denote a keywords
co-occurrence pattern where P = {ki} with ki ∈ V. The fre-

quency of P regarding a region R, denoted by f(P,R), is the
number of occurrence of P within the region R. Formally, we
have f(P,R) = |{d ∈ D | P ⊆ key(d) and loc(d) ∈ R}|. For
presentation simplicity, local frequent pattern thereafter is
referred to the local frequent keyword co-occurrence pattern.
Following is a formal definition.

Definition 1. (Local Frequent Pattern, LFP) Given a
region R and a minimal support θ, we say a pattern P is local
frequent pattern over the Twitter stream D if f(P,R) ≥ θ.

A LFP is maximal, if there is no superset of the pattern
that is frequent.

Problem Statement. In this paper, we investigate the
problem of identifying the maximal LFP over the geo-tagged
Twitter stream. Particularly, we build a small summary of
the geo-tagged Twitter stream D which consists of the most
recent n tweets posted. We aim to approximately identify
all maximal local frequent patterns, denoted as LFP query,
with high accuracy and a small space.

3. PRELIMINARIES
In this section, we briefly introduce the KMV synopsis [2],

which is used in our IK sketch to capture the co-occurrence
of keywords. KMV synopsis is designed for estimating the
number of distinct value in a multiset. Assume N points
are uniformly distributed over [0,1], the expected distance
for two adjacent points is 1/(N + 1) ≈ 1/N . Consider that
h is a uniform random hash function. Each distinct value vi
in set is hashed to [0,1] and h(vi) �= h(vj) if i �= j. KMV
synopsis consists of k smallest hash values, so the number
of distinct value can be estimated with equation 1.

D̂k =
k − 1

Uk
(1)

Based on the analysis in [2], the expected relative error of

the estimator is
√

2
π(k−2)

.

Intersection Operation: Given two sets A and B, with
corresponding KMV synopses LA and LB of size kA and
kB , respectively. In this paper, we use ∪m ( ∩m ) to denote
the union (intersect) operation which removes the duplicate
values. In [2], LA ⊕ LB is used to denote the set compromis-
ing the k smallest distinct hash values in LA ∪m LB where
k = min(kA, kB). Then L = LA ⊕ LB is the KMV synopses
of A ∪ B. Let K∩ denote the number of common distinct
hash values in L regarding LA and LB, i.e., K∩ = |{v ∈ L :
v ∈ LA ∩m LB}|. We can estimate the number of distinct

values in A∩ B, denoted by D̂∩, as follows.

D̂∩ =
K∩
k

× k − 1

Uk
(2)

Note that the above intersection operation can be immedi-
ately extended to support intersection operation on multiple
sets following Equation 2.

4. IDENTIFY LFP
In this section, we first introduce the IK sketch, which is a

hybrid structure of KMV synopsis and Z-order technique [8]
as well as the sketch graph, followed by the corresponding
maintenance algorithms. Then we develop efficient algo-
rithms to support LFP query and its variant based on IK
sketch technique.

4.1 IK Sketch and Sketch Graph
IK Sketch Structure. An IK sketch L is an inverted index
structure for KMV synopsis of tweets objects. Specifically,
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we continuously maintain k objects with the k smallest hash
values over the Twitter stream D. For each keyword t in the
sampled tweet objects, we build a posting list, denoted by
L(t), where L(t) = {d|d ∈ L and t ∈ key(d)}. Let z(d)
represent the Z-order value [8] of the object d according to
loc(d). The objects in each posting list are sorted by their Z-
order values. This can significantly reduce the cost of spatial
range search (i.e., identify objects within the search region
R) since the spatial proximity of objects are preserved by
Z-order values.

Sketch Graph. To facilitate the LFP queries which need
to count the co-occurrence of keywords, we also maintain a
sketch graph (SG for short) for the keywords in IK sketch.
A node of the SG corresponds to a keyword in IK sketch
L, and there is an edge between two keywords (nodes) t1
and t2 if there is a co-occurrence of t1 and t2 in an object
d ∈ L. The weight of an edge is the number of co-occurrences
of two keywords in L. Figure 1 illustrates an example of
sketch graph where there are five keywords A ∼ E in L.
To facilitate the range search, for each edge in sketch graph
SG, we also maintain a minimal bounding box of the objects
which contribute to the weight of the edge.

Figure 1: Sketch Graph

IK sketch and sketch graph maintenance. Since the
Twitter stream D is continuously updated due to the arrival
and expiration of tweets data, we cannot guarantee the k
objects with smallest hash values are continuously main-
tained without retrieving objects in D\L. Therefore, besides
objects in L, we also maintain a set of candidate objects,
denoted by Lc, which may become objects of L in the future.
By taking advantage of the property of skyband [10], we can
efficiently maintain a candidate set with much smaller size
than n. Specifically, we say an object d1 dominates another
object d2 if d1 arrives later than d2 and h(d1) ≤ h(d2). It is
safe to exclude an object d if it is dominated by more than k
other objects in Lc since d will never join L. Consequently,
we only need to continuously maintain the skyband of D,
i.e., objects survived from the above dominance check, and
efficient skyband maintenance algorithm is developed in [10].

Algorithm 1 illustrates the details of the continuous main-
tenance of IK sketch and sketch graph SG. For each new
incoming object o, we will update the IK sketch L and the
sketch graph SG if h(o) is smaller than the current k-th
smallest hash value in L. Note that w(t1, t2) represents the
weight of an edge between two nodes t1 and t2 in SG. On
the other hand, the IK sketch and sketch graph are updated
when an object in L is expired or replaced by others. Note
that an edge of SG is removed if its weight becomes zero.
Meanwhile, the skyband Lc is continuously maintained to
provide candidate for L.

4.2 LFP Query Processing
We develop an efficient algorithm to support LFP query

based on the IK sketch and sketch graph structures, where
details are illustrated in Algorithm 2. Let Li represent a set
of local frequent patterns with size i and Ci keeps candidate
patterns for Li. Line 2 retrieves the relevant samples in L
falling in the region R. Then the local frequent patterns with
single keyword are identified based on Equation 1 (Lines 3-
5). Instead of directly applying the Apriori property, Line 8
takes advantage of the SG graph to generate a smaller num-
ber of candidate patterns. Specifically, a keyword t is con-
sidered for the growth of a local frequent pattern P iff the
node t has an edge with each keyword in P and the minimal
bounding box of each edge overlaps the region R. Lines 9-11

Algorithm 1: Continuous Maintenance Algorithm

Input : o : a new coming object.
Output: Updated IK sketch L and sketch graph SG.

1 v := h(o) ;
2 if o is inserted into L then
3 foreach keyword t ∈ key(o) do
4 L(t) := L(t) ∪ o ;

5 foreach pair of keywords (t1, t2) in o do
6 increase w(t1, t2) by one ;

7 if an object d ∈ L is expired or replaced then
8 remove d from L ; update L based on Lc ;
9 foreach pair of keywords (t1, t2) in d do

10 decrease w(t1, t2) by one ;

11 update Lc ;

Algorithm 2: LFP Query Algorithm

Input : R : query region, θ : minimum support.
Output: Maximal local frequent patterns regarding R.

1 P := ∅ ; L1 := ∅ ;
2 Lr := samples of L within the region R ;
3 foreach t ∈ Lr do
4 estimate f(t, R) based on the Equation 1 ;
5 L1 := L1 ∪ t if f(t, R) ≥ θ;

6 i := 1 ;
7 while Li �= ∅ do
8 Ci+1 ← generate candidate patterns from Li and SG;
9 foreach pattern P ∈ Ci+1 do

10 estimate f(P,R) based on Equation 2 ;
11 Li+1 := Li+1 ∪ P if f(P,R) ≥ θ ;

12 P := P ∪ Li+1; i := i+ 1 ;

13 return maximum patterns in P ;

verify candidate patterns based on Equation 2. Finally, we
return the maximal local frequent patterns.

4.3 Extension.
Besides LFP queries, sometimes users may be interested

in identifying dense regions (DR) for a given pattern, which
are useful for users to track the hot areas for a certain
topic. Suppose the space is partitioned into unit grid cells
(regions). For a given pattern P which users are interested
in (e.g., “iPhone” and “promotion”), we aim to identify the
dense regions regarding P ; that is, find the cells {C} with
f(P, C) ≥ θ where θ is a pre-given minimal support. The
computation of f(P, C) is similar to that of Algorithm 2 by
utilizing IK sketch techniques. Then we may further merge
the connected dense regions for a better understanding of
the distribution of the dense regions regarding a pattern P .

5. EXPERIMENTAL EVALUATION
In this section, we demonstrate an empirical performance

study to evaluate the effectiveness and efficiency of the IK
sketch and query processing algorithms (denoted by IK)
on Twitter data. Since there is no existing work for the
problems studied in this paper, we use a uniform sampling
based approach (denoted by UN) as the baseline method.
Specifically, a uniform sample of D is continuously main-

tained and we have f(P,R) = f̂(P,R)
s

where s is the sample

rate and f̂(P,R) is the local frequency of P derived from the
samples.
Dataset. One real Twitter dataset from [6] is employed in
the empirical study, which contains 13 million geo-tagged
tweets collected from May 2012 to August 2012.
Experiment Setting. All the algorithms in the experi-
ments are implemented in C++ and experiments are run on
a PC with Intel Xeon 2.40GHz dual CPU and 4G memory
with Debian system. The slide window size n is set as 0.5
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million and k is set to 0.05 × n as default. The minimal
support θ is set to 0.1×n×frac region, where frac region
is the fraction of query region size to the whole space size.
The search regions in LFP queries are randomly chosen,
and the region size varies from 0.01 to 0.07 of the space.
The space is partitioned into 40 × 40 grids for DR queries.
500 queries are issued for both LFP and DR queries, and
the average precision, recall and response time are used for
performance evaluation.
Experimental Results. We next present our findings.
1) Effectiveness. As expected, there are many interesting
local frequent keyword co-occurrence patterns detected by
issuing LFP queries. For instance, we find two frequent
patterns in Taipei: 1) mac and on sale in Taipei World
Trade Center. 2) Eslite, which is a popular bookstore close
to Taipei World Trade Center. Clearly, if we ignore the co-
occurrence of the keywords, one may think there is a on sale
at Eslite bookstore.
2) Precision and Recall. To evaluate the quality of our
approximate approaches, Figures 2 and 3 depict the pre-
cision and recall for LFP queries and dense region (DR)
queries. For LFP queries, we evaluate the performance of
the algorithms by varying the size of query in terms of the
percentage of space; for DR queries, we vary the size of the
query pattern. Through the experiments, we observe that:
1) IK sketch has similar recall with UN method, but signif-
icantly outperforms the UN in terms of precision for both
queries. This is because KMV synopsis is more suitable for
set intersection operation compared with uniform sampling
approach. Moreover, it is reported that the UN approach
often overestimates the frequency of the patterns which may
result in low precision compared with IK sketch. 2) it is
shown in Figure 2(a) that the precision of two methods
decreases when the search region becomes small in LFP
queries. This is because there are less sample objects within
the search region, and hence lead to a large relative error
according to the analysis in [2]. Similar trend is observed
in Figure 2(b) for DR queries when the size of the pattern
increases.

Figures 4(a) and 4(b) report the precision of two queries
when the sample rate grows. As expected, the performance
of both algorithms improves with the growth of sample rate.
Nevertheless, the performance of IK sketch significantly out-
performs UN method under all settings.
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Figure 2: Precision Evaluation
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Figure 3: Recall Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

0.01 0.02 0.05 0.1

P
re

ci
si

on
 

UN
IK

(a) LFP

 0

 0.2

 0.4

 0.6

 0.8

 1

0.01 0.02 0.05 0.1

P
re

ci
si

on
 

UN
IK

(b) DR

Figure 4: Sample Rate Evaluation
3) Efficiency. To evaluate the efficiency of IK sketch, we
examine the query response time and the sketch update
time. The query response time is reported in Figure 3. For
LFP query, we measure the running time by varying the size

of the query region. With the increase of the region size, the
query time of two algorithms increases. While IK sketch
significantly outperforms UN method because the former
approach can take advantage of SG and Z-order. Partic-
ularly, SG can significantly reduce the number of candidate
patterns, and Z-order technique can speed up the retrieval
of relevant objects. For DR query, we vary the size of the
query pattern, and similar trend is observed for DR query.
We also evaluate the update time of IK sketch by changing
the size of k. It takes 67.8ms and 89.3ms when k is set to
0.005 × n and 0.1 × n respectively. Recall that n is the size
of the Twitter stream. While it takes 66.1ms and 87.5ms
respectively for UN approach.

 0

 0.5

 1

 1.5

 2

 2.5

 3

0.01 0.03 0.05 0.07

R
es

po
ns

e 
T

im
e(

s)
 UN

IK

(a) LFP

 20
 40
 60
 80

 100
 120
 140
 160
 180

1 2 3 4

R
es

po
ns

e 
T

im
e(

m
s)

 

UN
IK

(b) DR

Figure 5: Efficiency Evaluation

6. CONCLUSIONS
In this paper, we investigate the problem of identifying lo-

cal frequent keyword co-occurrence patterns over geo-tagged
Twitter streams. A novel sketch technique is proposed to
summarize the recent geo-tagged Twitter streams. Then
efficient algorithms are developed to support local frequent
pattern query studied in the paper. The empirical study
has demonstrated the efficiency and effectiveness of our ap-
proaches.
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