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ABSTRACT

The range search on trajectories is fundamental in a wide
spectrum of applications such as environment monitoring
and location based services. In practice, a large portion of
spatio-temporal data in the above applications is generated
with low sampling rate and the uncertainty arises between
two subsequent observations of a moving object. To make
sense of the uncertain trajectory data, it is critical to prop-
erly model the uncertainty of the trajectories and develop
efficient range search algorithms on the new model. As-
suming uncertain trajectories are modeled by the popular
Markov Chains, in this paper we investigate the problem
of range search on uncertain trajectories. In particular, we
propose a general framework for range search on uncertain
trajectories following the filtering-and-refinement paradigm
where summaries of uncertain trajectories are constructed
to facilitate the filtering process. Moreover, statistics based
and partition based filtering techniques are developed to en-
hance the filtering capabilities. Comprehensive experiments
demonstrate the effectiveness and efficiency of our new tech-
niques.

Categories and Subject Descriptors

H.2.4 [DATABASEMANAGEMENT]: Systems—Query
processing
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1. INTRODUCTION
With the rapid development of positioning technologies

such as radio frequency identification (RFID), wireless sen-
sor networks, smart-phone, radar, satellite and global po-
sitioning system (GPS), massive spatio-temporal data has
been mounting up. Due to physical and resource limita-
tions of the data collection devices, it is infeasible to con-
tinuously capture the location of a moving object (e.g., ve-
hicle, people, animal and iceberg) for each point of time,
and hence the uncertainty arises between two subsequent
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Figure 1: Motivation Example

discrete observations. For instance, to save the energy and
the communication cost, a taxi may report its location at a
low frequency [23]. The time period between two check-in
positions might be long in Geo-social applications such as
bike routes1 and tourist routes2 [13]. Consequently, a large
volume of spatio-temporal data with low sampling rate is
described by uncertain trajectories where the possible lo-
cations of a moving object between two subsequent obser-
vations are captured by a time-dependent random variable
(i.e., a stochastic process).

In this paper, we investigate the problem of range search
on uncertain trajectories, which is critical to make sense of
uncertain trajectories in many key applications such as envi-
ronment monitoring, location based service, traffic manage-
ment, and national security. Informally, we aim to retrieve
a set of moving objects (trajectories) which consistently ap-
pear within a given area with high probabilities during a
particular time period. Below are two motivation examples
for range search on uncertain trajectories.

Motivation Examples. In Figure 1, an iceberg is observed
at times t1 and t10 by satellite or radar systems, while its
precise location is unknown at a time t ∈ (t1, t10) due to the
resource limitation. Fortunately, according to the knowledge
of nearby ocean currents as well as the historical iceberg tra-
jectory data, an expert can derive possible locations of this
iceberg based on Markov Chain model [5]. To choose a par-
ticular region for setting up an oil platform or deploying a
major military exercises, we may need to evaluate to what
degree a region (e.g, R in Figure 1) is affected by icebergs
during a certain period in history. Since the location of an
iceberg might be uncertain, we can ignore an iceberg at time
t if the likelihood of this iceberg falling in the region R is
smaller than a given threshold θ (0 < θ ≤ 1). Moreover,
we may only be interested in the icebergs which consistently
(say, at least η times) appear within the region with prob-

1http://www.bikely.com/
2http://www.everytrail.com/
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ability at least θ. This corresponds to the range search on
uncertain trajectories investigated in this paper. Similarly,
in the study of wild animal migration, the range search on
uncertain trajectories can help scientists to evaluate the im-
portance of a region during a period of time, where locations
of a tagged animal can be observed by wireless RFID sensors
from time to time.

Challenges. Same as [5, 4, 13, 18], in this paper we as-
sume the uncertain trajectories are described by Markov
Chain model because it has solid theoretical foundation and
rich applications. A straightforward approach for the prob-
lem of range search on uncertain trajectories is to calculate
the appearance probability of each moving object o at each
time within the query time interval, and count the number
of times in which o appears within the search region with
probability at least θ. Then an object is qualified if the
number of accumulated times exceeds a duration threshold
η. However, as reported in [4], the computation is still very
expensive although efficient algorithm is developed in [5].

Consequently, it is desirable to follow the filtering-and-
refinement paradigm to significantly reduce the number of
candidate trajectories (i.e., moving objects) by exploiting
effective filtering techniques. In particular, for any two sub-
sequent observations of a moving object o at times ti and
tj , denoted by o(ti) and o(tj) respectively, we aim to build a
summary of the uncertain location distribution of the object.
Thus, lower and upper bounds of its appearance probability
can be easily derived for any time t ∈ (ti, tj) when a range
query is issued. Novel sub-diamonds based filtering tech-
nique is proposed in [4] to effectively support range search
on uncertain trajectories. However, we observe that its per-
formance is unsatisfactory in our empirical study, because
each sub-diamond aims at bounding the appearance prob-
ability of the moving object o regarding all times between
two subsequent observation times ti and tj . This motivates
us to develop new filtering techniques so that the summary
is constructed for a set of time intervals instead of the whole
time interval (ti, tj) (i.e., partition along the temporal di-
mension). Specifically, we first introduce a simple filtering
technique based on some pre-computed statistics informa-
tion. Then we further enhance the filtering power by devel-
oping partition based approach to approximate the location
distribution of a moving object using a set of buckets, which
are generated by spatial and temporal partitions. We dis-
cuss how to effectively build the partition based summaries
following some important observations.

Contributions. Our main contributions can be summa-
rized as follows.

• We formally define the problem of range search on uncer-
tain trajectories.

• We present a general framework for the range search on
uncertain trajectories following the filtering-and-refinement
paradigm, where summaries of the objects are constructed
to facilitate the filtering process.

• A simple and effective filtering technique is proposed based
on statistics information of the uncertain trajectories.

• A partition based filtering technique is developed to fur-
ther enhance the filtering capabilities. Effective summary
construction algorithm is proposed based on some impor-
tant observations.

• Comprehensive experiments on real-life and synthetic datasets
demonstrate the effectiveness and efficiency of our tech-
niques.

Roadmap. The rest of the paper is organized as follows.
Section 2 presents the related work in the paper. Then we

formally define the problem of range search on uncertain tra-
jectories in Section 3. Section 4 introduces a general frame-
work for range search following the filtering and refinement
paradigm. Section 5 and Section 6 propose the statistics
based and partition based filtering techniques respectively.
Experimental results are reported in Section 7, and Section 8
concludes the paper.

2. RELATED WORK
Recent years have witnessed the increasing amount of re-

search on uncertain data modeling and query processing due
to their importance in many applications. In this section,
we briefly introduce the existing work closely related to the
problem studied in this paper.

Uncertain Trajectories Modeling. A variety of models
have been proposed to capture the uncertainty of the tra-
jectory data. Early studies on uncertain trajectories employ
simple geometric shapes (e.g., cylinders [16] and beads [14])
to approximate the possible locations of a moving object.
Despite of its simplicity, this model suffers from an inherent
drawback: the probability distribution of an object is not
considered and hence cannot appropriately support proba-
bilistic queries. In some recent work (e.g., [22]), the network-
constraint model is used where the raw location of a moving
object is mapped to a linear range on the road networks.
In [2, 11, 17], the uncertain location of an object is captured
by an independent probability density function (e.g., Gaus-
sian distribution) at each point of time. As shown in [5, 13],
the temporal dependence between two subsequent locations
of an object is lost in this model. Recently, a novel evolving
density model is proposed in [9] to capture the time-varying
uncertainty of the moving objects where the probability den-
sity function may change over time. Markov Chain model
has been widely used in the literature to capture the tempo-
ral dependency of a moving object, and hence is naturally
adapted to describe the uncertainty of the trajectory data
with low sampling rate in [5, 4, 13, 18]. Moreover, [5, 4]
show that the Markov Chain model correctly complies with
the classical possible world semantics [3]. In this paper, we
employ Markov Chain model to describe the uncertain tra-
jectories.

Range Search on Uncertain Data. Range search on un-
certain data has been intensively studied in recent years. A
large body of work (e.g., [15, 21]) focus on the range search
on a snapshot of uncertain trajectories; that is, each ob-
ject is described by a probabilistic density function, and ob-
jects with appearance probability exceeding a given thresh-
old are retrieved. The problem of range search on uncertain
trajectories has been investigated against differerent uncer-
tain models such as cylinder model (e.g., [16]), beads model
(e.g., [14]), network-constraint model (e.g., [22]), indepen-
dent probabilistic density function model (e.g., [2]), evolving
density model [9], segments based model [1], as well as the
Markov Chain model [5, 4].

As to the best of our knowledge, [5, 4] are only two exist-
ing work which study the problem of range search on uncer-
tain trajectories modeled by Markov Chains. Particularly,
Emrich et al. propose efficient computation algorithm for
range search in [5] without the support of indexing tech-
nique. In [4], they further improve the performance by uti-
lizing pre-computed sub-diamonds based summaries which
can significantly reduce the number of candidate objects for
refinement.

Sub-diamonds based Filtering. As shown in [4], all pos-
sible valid trajectories within a segment g(o, ti, tj) can be
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bounded by a diamond for each individual dimension if the
maximal speed is given. Figure 2 depicts the diamond 31

(31 = 〈o(ti), a, o(tj), b〉) where the horizontal axis represents
the time and the vertical axis is the dimension D1. Given
a range search query, we may easily prune the segment g
based on 31. For instance, we have P (o(t), Q1) = 0 for
time t ∈ [ti, tx] since the query region Q1 does not overlap
31 regarding the dimension D1. Thus, g can be excluded
from further computation. Similarly, we can claim o(t) is en-
closed by Q2 for any t ∈ [ti, tj ] if Q2 contains the diamond
regarding both D1 and D2.

Intuitively, the filtering performance can be further en-
hanced by maintaining a set of sub-diamonds. For instance,
32 in Figure 2 is a sub-diamond of g where 32 = 〈o(ti), a,
o(tj), c〉, and we know that its associated probability, de-
noted by P (32), is 0.5; that is, with probability at least 0.5,
o(t) is bounded by 32 for any t ∈ [ti, tj ]. Consequently, the
segment g can be pruned for search region Q3 if probability
threshold θ ≥ 0.5 because Q3 does not overlap 32. The val-
idation of the segment can be conducted in a similar way.
Together with the diamonds and their minimal bounding
rectangles, the sub-diamonds of the segments are organized
by an R-tree in [4], namely UST-Tree.

The sub-diamonds based filtering technique developed in [4]
can significantly reduce the computational cost compared
with the diamond based technique. However, as we need to
enforce that the object o appears within the sub-diamond 3

with probability at least P (3) w.r.t all t ∈ (ti, tj), this may
lead to poor filtering performance. In our empirical study,
we observe that the corresponding probability (i.e.,P (3))
of the sub-diamonds {3} might be rather small, especially
when the timespan between ti and tj is long. Moreover,
sub-diamonds are calculated based on the projected val-
ues for each individual dimension separately. As reported
in [20], this may lose the spatial correlation of the object lo-
cation distribution, and hence deteriorates the filtering per-
formance. These problems cannot be addressed by simply
increasing the number of sub-diamonds.

t
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»2 P(»2)=0.5 

ti tj

a

b

c

Q1

tx

Q2
Q3

o(ti)

o(tj)

Figure 2: Sub-diamonds based Filtering

3. BACKGROUND
In this section, we formally define the problem of range

search on uncertain trajectories. Table 1 summarizes the
notations frequently used throughout the paper.

3.1 Capture Uncertainty by Markov Chains
In [5, 4], an uncertain trajectory is modeled as a realiza-

tion of a stochastic process [10]. Markov Chains can model
a discrete spatio-temporal (state-time) space with the as-
sumption that o(t+ 1) only depends on o(t).

Definition 1 (Markov Chain model). Given a stochas-
tic process o(t) with t ∈ T and a state s ∈ S, the stochastic
process is called Markov Chain iff P (o(t + 1) = sj |o(0) =
s0, o(1) = s1, . . . , o(t) = si) = P (o(t+ 1) = sj |o(t) = si).

Notation Definition

o (O) a moving object (a set of moving objects)
S (T ) discrete space (time) domain
o(t) location (state) of an object o at time t
q spatio-temporal search region
R a spatial search region

[q.s, q.e] query time interval
θ probabilistic threshold
η duration threshold

P (o(t), s) probability that o(t) is located at sate s
g(o, ti, tj), g a segment of an object o with two

subsequent observations o(ti) and o(tj)
T (g) time interval [q.s, q.e] ∩ [ti, tj)

∆t(q)(∆t(g)) duration of a query (segment)
P (o(t),R) probability that o(t) falling in the region R

d(o, q, θ), d(o) duration (i.e., number of times) that
object o satisfies the search region q.R

d−(o) (d+(o)) lower (upper) bound of d(o)
d(g) number of satisfied times of the object

o in segment g
d−(g) (d+(g)) lower (upper) bound of d(g)

S(g) partition based summary of segment g
g.mbr minimal bounding rectangle of segment g

Table 1: The summary of notations.

For an object o moving on the space S , we set Pi,j(o) =
P (o(t + 1) = sj |o(t) = si), where Pi,j(o) represents the
probability of object o moving from state si to sj when the
time changes from anytime time t ∈ T to its successive time
t + 1. We can store all Pi,j(o) in a n × n matrix M(o) to
represent the transition probability of object o from state
si to sj at any time t, where n is the number of possible
states (locations) and the matrix M(o) is called transition
matrix. Then we have o(t + 1) = o(t) ×M(o). Recall that
o(t) is the distribution vector of an object o at time t where
∑

s∈S
P (o(t), s) = 1. Similarly, if M(o)T is defined as a

transposed Markov Chain matrix, we have o(t) = o(t+1)×
M(o)T .

Given two subsequent observations o(ti) and o(tj), effi-
cient algorithm is proposed in [5] to derive the location dis-
tribution o(t) for t ∈ (ti, tj) based on M(o) and M(o)T .
Same as [5, 4], we assume objects share the same Markov
Chain matrix which can be learned by domain experts in
various applications.

3.2 Problem Definition
Following the common assumptions of the existing works

(e.g., [5, 4, 13, 18]) which capture the uncertainty of tra-
jectories with Markov Chain model, we assume the space
and time are in discrete domain. The space S consists of
n possible states (locations) {s1, . . . , sn} in 2-dimensional
space. For a state s, s.Di denotes the coordinate value
of s on i-th dimension. We use T to denote time domain
{t1, . . . , tm}. Consequently, in this paper, the trajectory of
a moving object o is represented by a set of m′ (m′ ≤ m) tu-
ples {tk, o(tk)}, where o(t) represents the state of o at time t.
For a certain trajectory, o(t) is a unique state s ∈ S . How-
ever, it corresponds to a probability distribution when the
location of the object is derived from probabilistic models.
Following is a formal definition of the uncertain location for
an object o at time t.

Definition 2 (Uncertain Location). Let P (o(t), s) de-
note the probability that an object o appears on state (loca-
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tion) s at time t. The uncertain location of an object o at
time t, denoted by o(t), consists of n′ tuples {si, P (o(t), si)}

with P (o(t), si) > 0, where
∑n′

i=1 P (o(t), si) = 1.

Consequently, an uncertain trajectory is a trajectory
whose location might be uncertain at each point of time. In
particular, we assume the location (state) of an object is cer-
tain when it is observed (reported), while locations (states)
of an object between two subsequent observation times are
derived based on the Markov Chain model [4] which is intro-
duced in Section 3.1. Therefore, the uncertain trajectory of
an object o consists of a set of segments {g(o, ti, tj)} where
ti and tj corresponds to two subsequent observations. Each
segment g records the location distribution of the object o
from time ti (inclusive) to tj (exclusive). We use ∆t(g) to
denote the duration of the segment (a.k.a. observation in-
terval size) where ∆t(g) = tj − ti.

Given a region R, we use s ∈ R to denote that the loca-
tion (state) s is within the region R. Then we define the
appearance probability of o regarding R at time t, de-
noted by P (o(t), R), to measure the likelihood of the object
o falling in the region R at time t.

P (o(t),R) =
∑

s∈R and s∈S

P (o(t), s) (1)

Note that we may also interpret the concept of appearance
probability in terms of possible world semantics. In particu-
lar, P (o(t),R) denotes the probability mass of the possible
worlds at time t in which the object o falls in the region R.
This also results in Equation 1.

Definition 3 (Spatio-temporal search region (q)).
A spatio-temporal search region q consists of three compo-
nents 〈R, s, e〉 , where q.R represents the spatial search re-
gion, and q.s(q.e) denotes the start (end) time of the query
time interval. We use ∆t(q) denote the duration of the
search region (i.e., ∆t(q) = q.e − q.s + 1).

We say an object satisfies the spatio search region q.R with
probability at least θ at time t if P (o(t), q.R) ≥ θ for t ∈
[q.s, q.e]. We use d(o, q, θ) to denote the duration (i.e., the
number of times) that a moving object o satisfies q.R with
probability at least θ. For presentation simplicity, we use
d(o) to represent d(o, q, θ) whenever there is no ambiguity.

Finally we have the formal definition of the spatio-temporal
range search on uncertain trajectories.

Problem Statement. In this paper, we investigate the
problem of spatio-temporal range search over uncertain tra-
jectories. Particularly, given a spatio-temporal search region
q, a probabilistic threshold θ (0 < θ ≤ 1), a duration thresh-
old η (1 ≤ η ≤ ∆t(q)), and uncertain trajectories of a set O
of moving objects, we aim to identify objects {o| d(o, q, θ)
≥ η} with o ∈ O; that is, find objects which consistently (at
least η times) appear within the spatial search region with
probability at least θ.

Range queries on uncertain trajectories with EXISTS and
ALL semantics in [4, 5] are special cases of the problem
studied in this paper, which correspond to the range search
with η = 1 and η = ∆t(q), respectively.

Example 1. In Fig 3(a), o(t10) and o(t14) are two sub-
sequent observations of object o; a spatio-temporal search
region q is given as 〈R, t11, t13〉 with probabilistic threshold
θ and duration threshold η. The snap shots of o are de-
picted in Fig 3(b) for t11, t12 and t13, where the appearance

S0

q.R

(a) Markov Chains (b) Snap Shots

S7(0.1)
o(t11)

S3(0.2)

S2(0.2) S1(0.6)

S6(0.1)
S5(0.2)

S4(0.5)

S8(0.3)
S9(0.7)

S2

S1
S3

S5S6

S7

S8

S4

S9

S2(0.1)

o(t10)

o(t14) S10

o(t12)

o(t13)

Figure 3: Range Search over Uncertain Trajectories

probability for each state is marked. Note that shaded states
are contained by q.R. Then we have P (o(t11), q.R) = 0.4,
P (o(t12), q.R) = 0.5 and P (o(t13), q.R) = 0.3. Given η = 2,
if θ ≤ 0.4, o meets the query constraints, otherwise o is not
an answer.

Thereafter of this paper, the“spatio-temporal range search”
is abbreviated to“range search”, and“spatio-temporal search
region” are abbreviated to “search region” for presentation
simplicity. We might use “location” and “state” interchange-
ably for better understanding of the paper.

4. FRAMEWORK
A straightforward implementation of range search on un-

certain trajectories is to calculate d(o, q, θ) for each individ-
ual object o ∈ O through Markov Chains based computa-
tion technique [5]. However, as shown in [4], this is cost-
prohibitive since the refinement cost is rather expensive.
Therefore, it is desirable to develop effective and efficient
filtering techniques to prune or validate objects such that
the number of objects involving refinement can be signifi-
cantly reduced. In particular, suppose we can derive the up-
per and lower bounds for the duration of an object o regard-
ing the range search, denoted by d+(o) and d−(o) respec-
tively. Then an object can be safely pruned if d+(o) < η or
validated if d−(o) ≥ η. Moreover, for each individual time t,
we can also derive lower and upper bounds of the appearance
probability, denoted by P−(o(t), q.R) and P+(o(t), q.R), so
we can avoid the computation of P (o(t), q.R) if P−(o(t), q.R)
≥ θ (validate) or P+(o(t), q.R) < θ (prune).

In this paper, we develop efficient algorithms to support
range search on uncertain trajectories following filtering and
refinement paradigm. In the sequel, we first introduce a
simple minimal bounding box based filtering technique, then
present a general framework for range search on uncertain
trajectories.

4.1 Minimal Bounding Box Based Filtering
Given two subsequent observations o(ti) and o(tj), we may

easily come up with a minimal bounding rectangle (MBR)
for each segment g, denoted by g.mbr, which encloses all
possible locations of o during time ti and tj if the maxi-
mal speed is pre-given. Together with the time dimension,
each segment g can be enclosed by a 3-dimensional minimal
bounding box (MBB), denoted by g.mbb. Clearly, a spatio-
temporal search region q is a cube in 3-dimensional space.
In this paper, we define three relations between q and g.mbb.
We say a query q does not overlap a segment g if q and
g.mbb does not overlap w.r.t spatial or temporal aspects;
that is, q.R ∩ g.mbr = ∅, q.s ≥ tj or q.e < ti. Otherwise,
we say q overlaps g. Particularly, we say q contains g if g
is contained by q on both spatial and temporal aspects, i.e.,
g.mbr ⊂ q.R, q.s ≤ ti, and q.e ≥ tj . Let d(g) denote the con-
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tribution of the segment g to d(o) where 0 ≤ d(g) ≤ ∆t(g).
It is immediate that we have d(g) = ∆t(g) if q contains g,
and d(g) = 0 if q does not overlap g.

Root

Intermediate 

Entry

Intermediate 

Entry

Intermediate 

Entry

......
MBB of 

Segment
ri

rj

rk
o(t3)

o(t6)

... Summary

Figure 4: Segments Summaries Tree

4.2 Segments Summaries Tree (STA-tree)
MBB based filtering technique is simple and intuitive, and

its filtering capability is rather limited. In Section 5 and
Section 6, we introdue advanced filtering techniques based
on statistics information and spatio-temporal partitions of
the segment respectively where summaries of the segments
are pre-computed to facilitate the filtering process.

In this paper, we assume a summary of the segment is
constructed for each individual segment w.r.t the filtering
technique used (e.g., sub-diamonds based filtering, statistics
based filtering and partition based filtering). As shown in
Figure 4, MBBs of the segments are organized by a hier-
archical spatial index structure (e.g., R-tree [6]). For each
segment entry, its corresponding summary is maintained to
enhance the filtering performance.

With the same rationale to MBB based filtering in Sec-
tion 4.1, we can easily come up with three relations between
q and an intermediate entry E (i.e., segments enclosed by
E). Then an intermediate entry E can be pruned or vali-
dated without further exploring its child entries.

4.3 A General Framework
Assuming the summaries of the segments are organized

by an STA-tree, we present a general framework for the
range search on uncertain trajectories following the filter-
ing and refinement paradigm, and details are illustrated in
Algorithm 1.

In particular, we traverse the entries in a branch and
bound fashion. A FIFO queue, denoted by Q, is used to
maintain the entries to be visited. In Line 5-13, entries are
processed according to their relationships with search region
q. Clearly, we do not need to further explore an entry E if
it does not overlap q (Line 5), because none of the segments
enclosed by E contribute to the final results. On the other
hand, if E is contained by q, we can immediately validate
the segments {g} enclosed by E; that is, we increase d−(o)
by ∆t(g) (Line 8) where g is a segment of the object o.
Line 9 validates o if we have d−(o) ≥ η where R is used
to keep query results. Otherwise, i.e., E overlaps q but is
not contained by q, Line 10-13 further explore an entry by
expanding its child entries or put its corresponding segment
into the set F which will be further processed by advanced
filtering technique at Line 20.

We update d+(o) by accumulating the durations of its
validated segments (Line 14) and unexplored segments, i.e.,
segments in F (Line 16). Line 17 retrieves candidate objects
which are not validated but have a promising upper bound
(i.e., d−(o) < η and d+(o) ≥ η). Then Line 18-27 further
refine the candidate set by exploiting the advanced filtering
techniques, in which the summary of segment may derive
tighter lower and upper bounds for d(g). Note that Line 21

Algorithm 1: Range Search(OT , q, θ, η )

Input : OT : Uncertain trajectories of a set O of
objects organized by STA-tree T ,
q : range search, θ probabilistic threshold,
η : duration threshold

Output: objects {o} with d(o, q, θ) ≥ η
C := ∅; F := ∅; R := ∅;1

Q ← push root of OT ;2

while Q 6= ∅ do3

E := element popped from Q;4

if E overlaps q then5

if E is contained by q then6

for each segment g ∈ E of object o do7

d−(o) := d−(o) + ∆t(g);8

R := R∪ o If d−(o) ≥ η; // validate9

else if E is an intermediate entry then10

Push child entries of E into Q;11

else12

F := F ∪ corresponding segment g;13

d+(o) = d−(o) for all objects with segments in F ;14

for each segment g of object o in F do15

d+(o) := d+(o) + ∆t(g);16

C ← objects {o} if d+(o) ≥ η and o 6∈ R; // prune17

for each candidate object o ∈ C do18

for each candidate segment g of o in F do19

Derive d−(g) and d+(g) from summary20

associated with g;
F := F \ g If d−(g) = ∆t(g) or d

+(g) = 0;21

d−(o) := d−(o) +d−(g) ;22

d+(o) := d+(o) −∆t(g) +d+(g) ;23

if d−(o) ≥ η then // validate24

R := R∪ o; C := C \ o;25

else if d+(o) < η then // prune26

C := C \ o;27

for each object o in C do // refinement28

R := R ∪ o If o is verified;29

return R30

removes a segment g from candidate segments F if we have
d−(g) = ∆t(g) (i.e., o is qualified at all times t ∈ [ti, tj)) or
d+(g) = 0 (i.e., o is not qualified at any time t ∈ [ti, tj)).

Finally, Line 28-29 refine the remaining candidate objects
by exactly computing d(o, q, θ) for each candidate object o.
Note that we only need to compute d(g) for candidate seg-
ments {g} in F .

As shown in our empirical study, the dominant cost of Al-
gorithm 1 is the refinement cost at Line 29, since it is time
consuming to calculate appearance probabilities of objects
at different times. This motivates us to develop effective
and efficient filtering techniques to significantly reduce the
number of survived candidates with reasonable space over-
head. In Section 5 and Section 6, we present advanced fil-
tering techniques based on statistics information and spatio-
temporal partitions respectively.

5. STATISTICS BASED APPROACH
In this section, we present the statistics based filtering

technique. Section 5.1 introduces the motivation of the tech-
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nique. Section 5.2 proposes the detailed pruning and valida-
tion rules. Performance analysis is conducted in Section 5.3.

5.1 Motivation
In this section, we develop the statistics information based

filtering technique. In a nutshell, for each segment g(o, ti, tj)
we use some simple statistics to capture the uncertain lo-
cation distribution of the object for each time t ∈ (ti, tj).
Then we can derive lower and upper bounds of the appear-
ance probability of o at time t, denoted by P−(o(t), q.R) and
P+(o(t), q.R) respectively, to prune or validate the time t.
We say a time t is pruned (validated) if P+(o(t), q.R) < θ
(P−(o(t), q.R) ≥ θ). Furthermore, we can merge the statis-
tics of a set of consecutive times to reduce the summary
size.

o ( t ) 

o ( t ) . m b r 

A1

A2

A1

B1

B2

B1

( a ) ( b ) 

( c ) ( d ) 

o ( t ) 

q . R q . R 

q . R 

D1

o ( t ) 

o ( t ) 

q . R 

D1

D2

D1 D1

D2

D2 D2

E ( o ( t ) ) 

d1

E ( o ( t ) ) 

d1

Figure 5: Motivation of Statistics based Filtering

As shown in Figure 5, suppose o(t) is bounded by a mini-
mal bounding rectangle, denoted by o(t).mbr. We use P (Ai)
(i = 1, 2) to denote the probability mass of the states (loca-
tions) which are contained by q.R along the i-th dimension
Di, and P (Bi) records the probability mass of the states
which are not contained by q.R along the i-th dimension. In
consequence, we have P (o(t), q.R) = P (A1) in Figure 5(a),
since q.R contains o(t) along the dimension D2. Suppose we
can derive an upper bound of P (A1), denoted by P+(A1).
Then we can safely prune the time t, if P+(A1) < θ. Simi-
larly, t is validated in Figure 5(b) if 1− P+(B1) ≥ θ, where
P+(B1) is the upper bound of P (B1). This observation
can be easily extended to the case where the search re-
gion overlaps o(t).mbr on both dimensions, e.g., Figure 5(c)
and Figure 5(d). In Figure 5(c), we have P (o(t), q.R) ≤
min(P (A1), P (A2)) ≤ min(P+(A1), P

+(A2)), and we can
prune t if min(P+(A1), P

+(A2)) < θ. With the similar ra-
tionale, t is validated if 1− (P+(B1) + P+(B2)) ≥ θ.

Example 2. Suppose we have P+(A1) = 0.1, P+(B1) =
0.1, P+(A2) = 0.2, and P+(B2) = 0.2 in Figure 5. Then
we have P (o(t), q.R) ≤ 0.1 in Figure 5(a), P (o(t), q.R) ≥
0.9 in Figure 5(b), P (o(t), q.R) ≤ min(0.1, 0.2) = 0.1 in
Figure 5(c), and P (o(t), q.R) ≥ 1 − (0.1 + 0.2) = 0.7 in
Figure 5(d).

In the next subsection, we exploit Cantelli’s inequality [12]
to derive P+(A1), P

+(A2), P
+(B1), and P+(B2) based on

the statistics information of o(t).

5.2 Statistics Based Filtering Technique
For presentation simplicity, we use a random variableX to

denote the location distribution o(t). Following are formal
definitions of the expectation and the variance of X.

Definition 4. Expectation, E(X). We use E(X) to
denote the expectation of X, where E(X).Di =

∑

s∈S
s.Di×

P (X = s).

Note that P (X = s) denotes the probability that X resides
on the state s, and s.Di is the i-th coordinate value of the
state (location) s.

Definition 5. Variance, σ2(X). We use σ2
i (X) to de-

note the variance of X on each dimensions; that is, σ2
i (X) =

∑

s∈S
(s.Di − E(X).Di)

2 × P (X = s).

Given two values x and y where x > 0 and y > 0, we
use δ(x, y) to denote a function where δ(x, y) = 1

1+ x2

y2

. Fol-

lowing is Cantelli’s inequality introduced in [12], which is
demonstrated in Figure 6(a).

E ( Y ) 

(   a   ) 

  a 

P ( Y   >   a ) 

E ( Y ) 

P ( Y   <   b ) 

(   b   ) 

  b 

P ( Y ) P ( Y ) 

Figure 6: Example for Cantelli’s Inequality

Lemma 1 (Cantelli’s Inequality [12]). Suppose that
Y is a random variable in one dimensional space with ex-
pectation E(Y ) and variance σ2(Y ), P (Y ≥ a) ≤ δ(a −
E(Y ), σ(Y )) for any a > E(Y ), where P (Y ≥ a) denotes
the probability of Y ≥ a.

By replacing Y with 2E(Y ) − Y , we have a variant of
Lemma 1 which is illustrated in Figure 6(b).

Lemma 2. Suppose that Y is a random variable in one di-
mensional space with expectation E(Y ) and variance σ2(Y ),
P (Y ≤ b) ≤ δ(E(Y ) − b, σ(Y )) for any b < E(Y ), where
P (Y ≤ b) denotes the probability of Y ≤ b.

We can come up with P+(B1) in Figure 5(b) based on
Lemma 1. And Lemma 2 can be used to derive P+(A1)
in Figure 5(a).

Suppose the expectation and the variance of X (i.e., lo-
cation distribution o(t)) are readily available, we can derive
the upper bound of P (X, q.R) for pruning.

Theorem 1. Suppose that the search region q.R overlaps
X.mbr but does not contain E(X). We have P+(Ai) = 1
if X.mbr is contained by q.R on i-th dimension, otherwise
P+(Ai) = δ(di, σi(X)) where di denotes the distance be-
tween q.R and E(X) on the i-th dimension (e.g., d1 in Fig-
ure 5(a)). Then we have P+(X, q.R) = min(P+(A1), P

+(A2)).

Proof. It is immediate that P+(Ai) = P (Ai) = 1 if
X.mbr is contained by q.R on i-th dimension according to
the definition of P (Ai). Otherwise, suppose q.R is on the
left side or bottom of E(X) on i-th dimension (e.g., A1 in
Figure 5(a) and Figure 5(c), and A2 in Figure 5(c)), then we
have P+(Ai) = δ(di, σi(X)) according to Lemma 2. Simi-
larly, we have P+(Ai) = δ(di, σi(X)) according to Lemma 1
when q.R is on the right side or top of E(X) on i-th di-
mension. Then we have P (X, q.R)) ≤ min(P (A1), P (A2))
≤ min(P+(A1), P

+(A2)). Thus, the theorem holds.

With similar rationale, we have the following theorem
which can obtain the lower bound of P (X, q.R) for the val-
idation of time t.

Theorem 2. Suppose that the search region q.R over-
laps X.mbr and contains E(X). We have P+(Bi) = 0
if X.mbr is contained by q.R on i-th dimension, otherwise
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P+(Bi) = δ(di, σi(X)) where di denote the distance between
E(X) and the uncovered area on i-th dimension (e.g., d1 in
Figure 5(b)). Then we have P−(X, q.R) = 1 − (P+(B1) +
P+(B2)).

Statistics Based Filtering. For a given segment g(o, ti, tj),
the expectation and variance information are maintained for
each time t ∈ (ti, tj). For a given query q, we can obtain
P−(o(t), q.R) and P+(o(t), q.R) according to Theorem 1 and
Theorem 2. Let T (g) denote the timestamps within g which
satisfy query time constraints, i.e., T (g) = [ti, tj)∩ [q.s, q.e].
For each timestamp t ∈ T (g), we increase d−(g) and d+(g)
by one if P−(o(t), q.R) ≥ θ. Otherwise, we increase d+(g)
by one if P+(o(t), q.R) ≥ θ.

Reduce Summary Size. To reduce the space consump-
tion, we may keep the statistics information for a set of
consecutive times {tk, tk+1, . . . , tl} within a segment. Then
instead of keeping the expectation and the variance infor-
mation for each individual time, we maintain the minimal
bounding rectangle of their expectations as well as the max-
imal variance value on each dimension. Then Theorem 1
and Theorem 2 can be adopted in a conservative way such
that any time t ∈ {tk, tk+1, . . . , tl} can be pruned or val-
idated at the same time. We omit the details due to the
space limitation.

5.3 Performance Analysis
Given a segment g(o, ti, tj), we assume the location distri-

butions of the objects for time t ∈ [ti, tj) are readily available
by applying Markov Chains based techniques in Section 3.1.
The construction of the statistics based summary can be fin-
ished in O(ns×∆t(g)) time where ns is the average number
of tuples in o(t). Regarding the filtering cost, it takes O(1)
time for each time and hence the total cost is O(∆t(g)).

6. PARTITION BASED APPROACH
In this section, we introduce a new filtering approach to

build summary for a segment based on both spatial and
temporal partitions. Specifically, Section 6.1 introduces the
motivation of the partition based filtering approach. De-
tails of the technique are presented in Section 6.2. We dis-
cuss how to effectively construct partition based summary
in Section 6.3.

g . m b r 

ti
T i m e 

tj

ti tj

P ( o ( t ) , c ) 

ti + 2 ti + 3 

P ( o ( t ) , c ) 

c e l l     c 

B u c k e t   b 1 B u c k e t     b 2

( a ) ( b ) 

Figure 7: Motivation of Partition based Filtering

6.1 Motivation
Although statistics based filtering technique is simple and

effective, a considerable number of segments will still sur-
vive from the filtering phase in our empirical study because
it is difficult to precisely capture a distribution with a few
statistics. This motivates us to develop more sophisticated
summary technique by partitioning along both spatial and
temporal dimensions, so that the filtering performance can
be significantly enhanced with a reasonable space overhead.

As shown in Figure 7(a), we first partition the minimal
bounding rectangle of the segment (g.mbr) into a set S(g)
of cells. Then for each cell c, Figure 7(b) shows that there

is a function P (o(t), c) which presents the appearance prob-
ability of the object o within the cell c for times t ∈ (ti, tj).
We can immediately derive P+(o(t), q.R) and P−(o(t), q.R)
as follows.

P−(o(t), q.R) =
∑

c∈S(g) ∧ q.R contains c

P (o(t), c) (2)

P+(o(t), q.R) =
∑

c∈S(g) ∧ q.R overlaps c

P (o(t), c) (3)

It is infeasible to explicitly keep P (o(t), c) values for all t ∈
(ti, tj). Consequently, we employ a set of buckets to approx-
imate the appearance probability distribution for each cell
c. For instance, in Figure 7(b) we use two buckets {b1, b2}
to represent P (o(t), c) where the time interval size, maximal
and minimal appearance probabilities of a bucket b are de-
noted by ∆t(b), b.p

+ and b.p− respectively. In particular,
we have P−(o(t), c) = b(t, c).p− and P+(o(t), c) = b(t, c).p+

where b(t, c) is the corresponding bucket of c at time t. Then,
we have

P−(o(t), q) =
∑

c∈S(g) ∧ q.R contains c

b(t, c).p− (4)

P+(o(t), q) =
∑

c∈S(g) ∧ q.R overlaps c

b(t, c).p+ (5)

6.2 Partition Based Filtering
Given a partition based summary of a segment g(o, ti, tj),

denoted by S(g), we can come up with an effective compu-
tation algorithm to derive lower and upper bounds for d(g)
according to Equations 4 and 5. Algorithm 2 illustrates
the details. Specifically, we first retrieve cells in S(g) which
are contained by q.R or overlap q.R, denoted by C∩ and
C∪, respectively. Then we attempt to validate (Line 6-9)
or prune (Line 11-14) a time t ∈ T (g). Line 7 calculates
the lower bound of P (o(t), q.R) based on Equation 4, while
Line 12 derives the upper bound according to Equation 5.
For the given probability threshold θ, we can validate a time
t if P−(o(t), q.R) ≥ θ (Line 8). Similarly, t is pruned if
P+(o(t), q.R) < θ (Line 13).

Algorithm 2: Partition based Filter(S(g), q, θ)

Input : S(g) : partition based summary of g,
q : range search, θ probabilistic threshold

Output: d−(g) and d+(g)
d−(g) := 0; d+(g) := 0;1

C∩ ← cells in S(g) which are contained by q.R ;2

C∪ ← cells in S(g) which overlap q.R ;3

for each time t ∈ T (g) do4

P−(o(t), q.R) := 0; P+(o(t), q.R) := 0;5

for each cell c in C∩ do6

P−(o(t), q.R) := P−(o(t), q.R) + b(t, c).p−;7

if P−(o(t), q.R) ≥ θ then /* validate */8

d−(g) := d−(g) + 1; d+(g) := d+(g) + 1 ;9

else10

for each cell c in C∪ do11

P+(o(t), q.R) := P+(o(t), q.R) + b(t, c).p+;12

if P+(o(t), q.R) ≥ θ then /* prune */13

d+(g) := d+(g) + 1;14

return d−(g) and d+(g)15

Time Complexity. Let Cr denote the cost to retrieve
the cells which are contained by q.R or overlaps q.R, and
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there are nc cells in C∪. Then the total filtering cost is
O(Cr + nc ×∆t(g)).

6.3 Summary Construction
To effective construct S(g), we aim to address following

three issues in this subsection: i) how to generate buckets
for a given cell; ii) the number of cells assigned for each
segment; iii) how to generate the cells.

(i) Bucket generation. As discussed in Section 6.1, we
cannot afford to keep P (o(t), c) values for all times in [ti, tj).
Thus, we use B buckets to approximate the probability dis-
tribution. Suppose each time t have the same chance to be
involved in the filtering phase, the uncertainty introduced
by a bucket partition B, denoted by C(B), is as follows.

C(B) =
∑

t∈(ti,tj)

(b(t, c).p+ − b(t, c).p−) (6)

Recall that b(t, c) is the bucket used for the time t. Similar
to V -optimal histogram [8], we come up with the optimal
bucket partition B∗ with cost O(∆t(g)

2 × B) by applying
dynamic programming technique.

( a ) 

c
q . R 

c1 c2

( b ) 

g1 g2

Figure 8: Motivation of Resource Allocation

In our implementation, the number of buckets for each cell
is linear to the duration of the segment; that is, B = ∆t(g)/l
where l is a pre-given constant.

(ii) Number of cells assigned for each segment. Given
two segments g1 and g2, we use Area(g1) (Area(g2)) to de-
note the area of g1.mbr (g2.mbr), and n1 (n2) denote the
number of cells assigned to g1 (g2). At the first glance, we
may assign a fixed number of cells to each segment (i.e.,

n1 = n2) or fix the area of each cell (i.e., n1

n2

= Area(g1)
Area(g2)

).

However, both strategies are not cost-effective according to
our observation below.

With similar spirit to [21], we use P (c) ×W (c) to measure
the contribution of uncertainty for a cell c, where P (c) is the
probability that c overlaps q.R but q.R doesn’t contain c,
while W (c) denotes the probability mass within the cell (i.e.,
W (c) =

∑

t∈(ti,tj)
P (o(t), c) ). As shown in Figure 8(a), we

can reduce the uncertainty by evenly partitioning a cell c
into two parts c1 and c2. Assume the probability mass in c
is also evenly distributed, now the overall uncertainty cost

becomes 2 × (P (c)
2
× W (c)

2
) = P (c)×W (c)

2
. In Figure 8(b),

we assume W (g1) = W (g2) (i.e., two segments have the
same duration length), and two cells from the same segment
have the same area and probability mass. Intuitive, for a
cost-effective resource allocation strategy, each cell should

contribute the same amount of uncertainty; that is, P (g1)
n1

×
W (g1)

n1

= P (g2)
n2

× W (g2)
n2

. Consequently, we have

(
n1

n2
)2 =

Area(g1)

Area(g2)
(7)

since P (g1)
P (g2)

≈ Area(g1)
Area(g2)

. For instance, suppose we haveArea(g1)

= 10 and Area(g2) = 40 in Figure 8(b), if 4 cells are assigned
to g1, then 8 cells should goes to g2 because ( 4

8
)2 = 10

40
.

(iii) Cell generation. Now we investigate how to parti-
tion the minimal bounding rectangle of a segment g into
m1 × m2 cells. Following the above argument, the uncer-
tainty cost of a segment g is

∑

c∈S(g) P (c)×W (c). Because
∑

c∈S(g) Area(c) and
∑

c∈S(g) W (c) are two constants re-

gardless how the cells are generated. This implies that we
should have the same Area(c)×W (c) value for each cell in
S(g) to minimize the uncertainty cost according to Cheby-
shev Sum Inequality [7]. Nevertheless, it is infeasible to
achieve this with a regular grid partition, and hence we re-
sort to a simple heuristic. In particular, for a segment with
m1 × m2 cells we partition g.mbr into mi parts with the
same probability mass along each dimension i, which can be
finished in time O(ns ×∆t(g) +ns log(ns)) where ns is the
average number of tuples in o(t) for t ∈ (ti, tj).

7. EXPERIMENT
In this section, we present results of a comprehensive per-

formance study to evaluate the efficiency and scalability of
the proposed techniques in the paper. Following algorithms
are evaluated.
• UST: The range search techniques proposed in [4] where

sub-diamonds based filtering technique is employed3.
• STA: Algorithm 1 in Section 4 where statistics based fil-

tering technique (Section 5) is employed.
• GRID: Algorithm 1 in Section 4 where partition based

filtering technique (Section 6) is employed.
In this work, we use techniques proposed in [5] to perform
candidate refinement for the above three algorithms.
Datasets. We evaluate our techniques on both synthetic
and real datasets using data generator from [4, 13] with fol-
lowing steps. We construct a two dimensions state space,
consisting of n states, which are uniformly distributed in
the domain [0, 1]2. For each state, we randomly choose
several neighbors, and then assign random probability to
each connection such that the total probability equals to 1.
This builds a directed graph where the vertices represent
the states and the edges represent the transition probabil-
ities from one state to another. The graph is stored in a
matrix as the transition matrix. To create an uncertain tra-
jectory, we randomly choose one state as the start point,
and then apply a directed random walk through the non-
zero edges of the graph to get a moving sequence with 100
time steps. The size of time domain is set to 1, 000, and the
start time of an uncertain trajectory is randomly chosen be-
tween [1, 900]. The observations of an object are randomly
chosen from the moving sequence. In the experiment, we
generate 10, 000 states with a transition matrix. The num-
ber of trajectories N varies from 2, 500 to 10, 000 with de-
fault value 5, 000. Two subsequent observations’ interval
size (i.e., segment duration) is randomly chosen from 10
to 15 by default. The probabilistic threshold θ varies from
0.1 to 1.0 with default value 0.5, and the duration threshold
η varies from 1 to 10 with default value 6. The real datasets
are generated from a set of trajectories of taxis in the city of
Beijing [19]. We apply techniques in [13] to get the state set,
transition matrix, and trajectories set, and then randomly
choose 10, 000 state with 583 corresponding trajectories to
perform the experiment.
Workload. A workload for the range query consists of 1000
queries in our experiments. The center of a query is uni-
formly chosen from the domain [0, 1]2, its start time is ran-
domly generated from [1, 990]. The query extent, i.e, search
3The range search with exists semantics (i.e., η = 1) is in-
vestigated in [4]. Nevertheless, their technique can be easily
extended to support range search with η > 1.
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region of a query in each dimension varies from 0.05 to 0.25
with default value 0.1, and the duration of a query (∆t(q))
varies from 10 to 25 with default value 10.

Same as [4], the catalog size of the UST-Tree is set to 10
in the experiments. In STA Algorithm, we compress the
statistics information for every 3 consecutive times. Re-
garding GRID Algorithm, suppose one cell is assigned to
a unit area with size 0.03 × 0.03. Then for each segment
g with area Area(g.mbr), cn cells are assigned where cn =

⌈
√

Area(g.mbr)
0.03×0.03

⌉ according to Equation 7. Moreover, ⌈∆t(g)
5
⌉

buckets are generated for each cell where ∆t(g) is the dura-
tion of the segment (i.e., observation interval size).

All algorithms proposed in this paper are implemented
in standard C++ with STL library and compiled with GNU
GCC. Experiments are run on a PC with Intel Xeon 2.40GHz
dual CPU and 4G memory running Debian Linux. The disk
page size is fixed to 4, 096 bytes. As the refinement phase
contributes the dominant cost in three algorithms, we eval-
uate their performance by measuring the average number
of candidate segments refined. The average query response
time is also recorded to evaluate the efficiency of the algo-
rithms.

Table 2 lists all parameters which may have impacts on
our performance study, where default values are in bold
font. In our experiments, all parameters use default values
unless otherwise specified.

Notation Definition
number of trajectories (N) 2500, 5000, 7500, 10000
segment duration ∆t(g) [10,15], [15, 20], [20, 25], [25, 30]

probabilistic threshold (θ) 0.1, 0.3, 0.5, 0.7, 0.9, 1.0
duration threshold (η) 1, 4, 6, 8, 10

query extent (area of q.R) 0.05, 0.1, 0.15, 0.20, 0.25
query duration ∆t(q) 10, 15, 20, 25

Table 2: Parameter Settings

7.1 Performance Tuning
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Figure 9: Performance Tuning

To evaluate effectiveness of the adaptive resource allo-
cation strategy in Section 6.3, we also construct partition
based summaries following other two alternative strategies,
namely GRIDC and GRIDL respectively. Particularly, GRIDC

always allocates 3×3 cells for each segment (i.e., fix the num-
ber of cells for each segment), while each cell in GRIDL has
the area 0.03× 0.03 (i.e., fixed the area of each cell).

Note that summaries constructed in three algorithms have
similar summary size under default settings. Nevertheless,
Figure 9 shows that GRID always outperforms the other
two competitors by varying the number of trajectories and
query extent. This confirms the effectiveness of our adaptive
resource allocation strategy.

7.2 Performance Evaluation
Impact of the number of trajectories. Figure 10 evalu-
ates the performance of three algorithms on synthetic dataset
where the number of trajectories N grows from 2, 500 to
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Figure 10: Impact of # Trajectories

10, 000. With a larger number of trajectories, more trajec-
tories are involved in the computation, thus incurring higher
computation cost and more candidate segments. The re-
sponse time and the number of candidate segments of STA
and GRID grow slowly, yet the performance of UST drops
more quickly with the growth of the number of trajectories.
It is shown that GRID has the best scalability among three
algorithms.
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Figure 11: Impact of Segment Duration

Impact of segment duration. Figure 11 evaluates the
impact of the segment duration ∆t(g) on three algorithms
where ∆t(g) is randomly chosen from each bounded interval.
The response time and the number of candidate segments
are reported for three algorithms. As expected, the perfor-
mance of UST degrades quickly because it is difficult to find
a proper sub-diamond when the segment duration grows.
Recall that a sub-diamond 3 on a segment g(o, ti, tj) need
to enforce that the appearance probability of o(t) is bounded
by P (3) regarding all times t ∈ [ti, tj). On the contrary,
STA and GRID are much less sensitive to the growth of the
segment duration because of the temporal partition; that is,
we build summaries for a set of time intervals in g, instead
of the whole time interval.
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Figure 12: Impact of Query Extent and Duration

Impact of query extent and duration. We evaluate the
impact of the query extent of q.R as well as the query dura-
tion ∆t(q) against three algorithms, where the query extent
grows from 0.05 to 0.25, and the query duration varies from
10 to 25. With the grow of query extent and query duration,
more trajectories are involved in the range search, thus the
number of candidate segments increases as expected. Fig-
ure 12 shows that GRID has the best filtering capability
among three algorithms.

Impact of probabilistic threshold. Figure 13 investi-
gates the performance of three algorithms as a function of
the probabilistic threshold θ which varies from 0.1 to 1. The
performance of three algorithms is not sensitive to θ. It is
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Figure 13: Diff. θ
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Figure 14: Diff. η

shown that GRID always has the best performance among
three algorithms.

Impact of duration threshold. Figure 14 reports the
number of candidate segments of the algorithms as a func-
tion of the duration threshold η which varies from 1 to 10.
It is shown that the growth of η does not noticeablely af-
fect performance of three algorithms, while GRID always
achieves the best performance under all settings. Recall
that, when η equal 1, the range search exactly corresponds
to the range search with exists semantics studied in [4].
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Figure 15: Experiments on Real Data

Real data. We also perform experiments on the real-life
dataset. Figure 15 reports the number of candidate seg-
ments against the growth of the query extent and proba-
bilistic threshold θ. Similar trends are observed in Figure 15
compared with the experiments on the synthetic data.
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Figure 16: Index Construction

Index construction. Figure 16 reports the index construc-
tion time and the index size of three algorithms on synthetic
data and real-life data. It is interesting that STA outper-
forms UST in term of query response time, while STA also
consumes less index size and index construction time. On
the other hand, although GRID has the largest index size
and construction time, it is cost effective considering its su-
perior performance compared with other two algorithms.

8. CONCLUSION
To tame the uncertainty of trajectory data collected in

a wide spectrum of applications, we have developed effec-
tive filtering and query processing techniques to support
range search on uncertain trajectories which are modeled by
Markov Chains. Particularly, we formally define the prob-
lem of range search on uncertain trajectories. Then we in-
troduce an indexing structure where the summaries of the
segments are organized by an STA-tree, as well as a general
framework to support range search on uncertain trajectories
following the filtering and refinement paradigm. To enhance
the filtering capabilities, we develop effective statistics based
and partition based filtering techniques. Our comprehensive
experiments demonstrate the superior performance of our
new techniques compared with existing work.
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