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Abstract. We introduce a new region-based SELective Flow-Sensitive
(Selfs) approach to inter-procedural pointer analysis for C that operates
on the regions partitioned from a program. Flow-sensitivity is maintained
between the regions but not inside, making traditional flow-insensitive
and flow-sensitive as well as recent sparse flow-sensitive analyses all spe-
cial instances of our Selfs framework. By separating region partitioning
as an independent concern from the rest of the pointer analysis, Selfs
facilitates the development of flow-sensitive variations with desired effi-
ciency and precision tradeoffs by reusing existing pointer resolution al-
gorithms. We also introduce a new unification-based approach for region
partitioning to demonstrate the generality and flexibility of our Selfs
framework, as evaluated using SPEC2000/2006 benchmarks in LLVM.

1 Introduction

Finding a right balance between efficiency and precision lies at the core of pointer
analysis. A flow-insensitive analysis (FI), as formulated for C using Andersen’s
algorithm [2] in Figure 1(a), is fast but imprecise, because it ignores control flow
and thus computes a single solution pt to the entire program. Here, ptpvq gives the
points-to set of a variable v. In contrast, a flow-sensitive analysis (FS), as formu-
lated by solving a data-flow problem in Figure 1(b), makes the opposite tradeoff.
By respecting control flow ([S-OUTIN], [S-INOUT1] and [S-INOUT2]), separate so-
lutions ptr`s and ptr`s at distinct program points ` and ` (the ones immediately
before and after each `-labeled statement) are computed and maintained. Pre-
serving flow-sensitivity this way has two precision benefits. One is to track the
values read at a location through the control flow. The other is to enable strong
updates: if a location is definitely updated by an assignment, then the previous
values at the location can be killed. In [S-ADDROF], [S-COPY] and [S-LOAD], p at
` is strongly updated since ptr`sppq is killed. For any q ‰ p, its points-to infor-
mation is preserved ([S-INOUT1]). In [S-STORE], o at ` is strongly updated if o
is a singleton, i.e., a concrete location uniquely pointed by p ([S-STORESU]) and
weakly updated otherwise ([S-STOREWU]). For a target o1 not pointed by p, its
points-to information remains unchanged ([S-INOUT2]).

‹ the first and second author contributed equally



[I-ADDROF]
p “ &o

tou Ď ptppq [I-COPY]
p “ q

ptpqq Ď ptppq

[I-STORE]
˚p “ q o P ptppq

ptpqq Ď ptpoq [I-LOAD]
p “ ˚q o P ptpqq

ptpoq Ď ptppq

(a) FI: constraints for Andersen’s algorithm (flow-insensitive)

[S-ADDROF]
`: p “ &o

tou Ď ptr`sppq
[S-COPY]

`: p “ q

ptr`spqq Ď ptr`sppq

[S-STORESU{WU ]
`: ˚p “ q o P ptr`sppq

ptr`spqq Ď ptr`spoq ptr`spoq Ď ptr`spoq

[S-LOAD]
`: p “ ˚q o P ptr`spqq

ptr`spoq Ď ptr`sppq
[S-OUTIN]

v P V `1 P succp`q

ptr`spvq Ď ptr`1spvq

[S-INOUT1]
`: p “ _ q ‰ p

ptr`spqq Ď ptr`spqq
[S-INOUT2]

`: ˚p “ _ o1 R ptr`sppq
ptr`spo1q Ď ptr`spo1q

V: set of variables succ: mapping statements to control flow successors

(b) FS: constraints for data-flow (flow-sensitive)

Fig. 1. Two traditional pointer analyses, FI and FS, for C programs.

Flow-sensitivity is beneficial for a wide range of clients such as bug detec-
tion [22, 30, 31, 34], program verification [10, 11] and change impact analysis [1, 4].
As the size and complexity of software increases, how to achieve flow-sensitivity
exactly or approximately with desired efficiency and precision tradeoffs becomes
attractive. The “sparse” approach [14, 23, 35] aims to achieve the same precision
as FS but more scalably. The basic idea is to first over-approximate the points-to
information in a program with a fast but imprecise pre-analysis and then refine
it by propagating the points-to facts sparsely only along the pre-computed def-
use chains instead of across all program points as FS does. Alternatively, the
“strong-update” approach [21] sacrifices the precision of FS in order to gain bet-
ter efficiency. The basic idea is to proceed flow-sensitively to perform the same
strong updates as in FS but falls back to FI otherwise. Despite these recent
advances on flow-sensitive analysis, balancing efficiency and precision remains
challenging, partly due to the difficulty in orchestrating various algorithms used
during the analysis and partly due to the desire to meet different clients’ needs.

A program usually exhibits diverse characteristics in its different code re-
gions, which should be handled with different efficiency and precision tradeoffs
(to avoid under- or over-analysing). In this paper, we propose a new region-based
SELective Flow-Sensitive (Selfs) approach to pointer analysis for C that oper-
ates on the regions partitioned from a program rather than individual statements
as in [14, 35]. Top-level pointers can be put in SSA form [8] without requiring
pointer analysis. To track the value-flows of address-taken variables effectively,
we will perform a pre-analysis to enable their sparse analysis as in [14, 23, 35],



Points-to relations resolved before `1: init “ tpÑm, pÑn, qÑm, rÑx, sÑy, tÑzu

*p=r

v=*p

*q=s

*p=t

ptr`1s“init

ptr`1s“ptr`1s Y tmÑx, nÑxu

ptr`2s“ptr`1s

ptr`2s“ptr`2s Y tvÑxu

ptr`3s“ptr`2s

ptr`3s“pptr`3s{tmÑxuq Y tmÑyu

ptr`4s“ptr`2s Y ptr`3s

ptr`4s“ptr`4s Y tmÑz, nÑzu

`1:

`2:

`3:

`4:

*p=r

v=*p

*q=s

*p=t

ptrγ1s“ptrγ1s

ptrγ1s“ptrγ1s Y tmÑx, nÑxu

ptrγ2s“ptrγ1s Y ptrγ2s

ptrγ2s“ptrγ2s Y tmÑy,mÑz, nÑzu

Top-level Variable(s): ptpvq “ txu

Address-taken Variables:

`1:

`2:

`3:

`4:

γ1

γ2

(a) Flow-sensitive analysis (b) The Selfs analysis

Fig. 2. An illustration of Selfs performed on regions γ1 and γ2 by preserving the
precision of FS with respect to the reads from variables (with further details given in
Figure 3 and Examples 1 – 3). The focus is on analysing the points-to relations for
the top-level variable v and the two address-taken variables m (a singleton) and n, by
assuming that the points-to relations in init are given. Here, ptrγs (ptrγs), where γ is
a region, is an analogue of ptr`s (ptr`s), where ` is a statement.

but on a region graph with its regions containing loads and stores. Each region is
analysed flow-insensitively but flow-sensitivity is maintained across the regions.

Consider Figure 2, where the points-to relations in init are known before
the code is analysed. Figure 2(a) depicts the points-to relations obtained by
applying FS to the code. Note that a strong update on m (assumed to be a
singleton) is performed at `3. Figure 2(b) gives the solution obtained by Selfs on
a region graph (with two regions γ1 and γ2) to achieve more efficiently the same
precision for reads from (but not necessarily for writes into) each variable. As p
points to m and n, no strong update is possible at `1. Instead of flow-sensitively
propagating the points-to relations from `1 to `2, both can be analysed flow-
insensitively in region γ1 without any precision loss for the reads from m and n
at `2. Interestingly, even if a strong update is performed for m at `3, the points-to
relations from `2 and `3 are merged on entry of `4, making any read from m at
`4 (if any) as precise as if `3 and `4 are analysed together in γ2 flow-insensitively.
Note that Selfs has over-approximated the potential target of m at `3: mÑy
found by FS in Figure 2(a) with mÑx, mÑy and mÑz given in Figure 2(b). As
argued in Section 3, preserving the precision for reads from all variables always
preserves the alias information (among others). By operating at the granularity
of regions rather than statements while maintaining flow-sensitivity across their
edges (illustrated further in Figure 3), Selfs is expected to run faster.



Our Selfs analysis is also advantageous in that region partitioning is sepa-
rated as an independent concern from the rest of the analysis. Different region
partitions may lead to different degrees of flow-sensitivity, resulting in differ-
ent efficiency and precision tradeoffs being made. As discussed in Section 3, the
two traditional analyses, FI and FS, given in Figure 1 and some recent sparse
flow-sensitive analyses [14, 23, 35] are all special instances of Selfs. As a result,
Selfs provides a general framework for designers to develop and evaluate dif-
ferent flow-sensitive variations by reusing existing pointer resolution algorithms.

This paper makes the following contributions:

– We present Selfs that performs inter-procedural flow-sensitive pointer anal-
ysis across but not inside the regions partitioned from a C program, allowing
different efficiency and precision tradeoffs to be made subject to different re-
gion partitioning strategies used (Section 2).

– We introduce a new unification-based region partitioning approach that en-
ables Selfs to achieve nearly the same precision as FS for almost all prac-
tical purposes (Section 3) and discuss some heuristics for trading precision
for efficiency in future work (Section 6).

– We have implemented Selfs in LLVM (version 3.3) and evaluated it using a
total of 14 benchmarks selected from SPEC2000 and SPEC2006 (Section 4).
Selfs can accelerate a state-of-the-art sparse yet precision-preserving ver-
sion [14] of FS by 2.13X on average while maintaining the same precision for
reads from variables, i.e., for all alias queries. In addition, the best speedups
are observed at h264ref (7.45X) and mesa (6.08X).

2 The Selfs Analysis Framework

In this section, we present our Selfs analysis on a given region graph created
from a program. In the next section, we describe some region partitioning strate-
gies. Section 2.1 makes precise the canonical representation used for analysing
C programs. Section 2.2 defines the region graphs operated on by Selfs. Sec-
tion 2.3 formalises our region-based flow-sensitive pointer analysis.

2.1 Canonical Representation

In the pointer analysis literature, a C program is represented by a CFG (Control-
Flow Graph) containing the four types of pointer-manipulating statements shown
in Figure 1: p“&o (AddrOf), p“q (Copy), p“˚q (Load) and ˚p“q (Store).
More complex statements are decomposed into these basic ones. Passing argu-
ments into and returning results from functions are modeled by copies. For a
given AddrOf statement p“&o, o is either a stack variable with its address
taken or an abstract object dynamically created at an allocation site.

For simplicity, we adopt the convention of LLVM by separating the set V of
all variables into two subsets, (1) A containing all possible targets, i.e., address-
taken variables of a pointer and (2) T containing all top-level variables, where
V “ T YA. For the four types of statements given, we have p, q P T and o P A.



2.2 Region Graph

Our Selfs analysis operates on a region graph created from a program being
analysed. Leveraging recent progress on sparse flow-sensitive analysis [14, 23,
35], we will perform a pre-analysis to both guide region partitioning and enable
sparse analysis at the granularity of regions rather than individual statements.

To obtain a region graph from a program, top-level and address-taken vari-
ables are treated differently. In our Selfs framework, top-level variables are
always analysed sparsely since they can be put in SSA without requiring pointer
analysis. A top-level pointer that is defined multiple times is split into distinct
versions after SSA conversion. All versions of a variable, say qi1 , . . . , qin , that
reach a joint point at the CFG are combined by introducing a new Phi state-
ment, qj “ φpqi1 , . . . , qinq, where qj , qi1 , . . . , , qin P T , so that every version is
defined once (statically). After SSA conversion, the (direct) def-use chains for
all top-level variables are readily available. As a result, their points-to sets can
be simply obtained flow-sensitively by performing a flow-insensitive analysis.

Unlike top-level variables, address-taken variables are read/written indirectly
via top-level pointers at loads/stores and thus harder to analyse sparsely. Spar-
sity requires points-to information to be propagated along def-use chains but the
(indirect) def-use chains for address-taken variables can only be computed using
points-to information. To break the cycle, we perform a pre-analysis as in [7, 14,
23, 30] to first over-approximate indirect def-use chains and then refine them by
performing a data-flow analysis sparsely along such pre-computed def-use chains.

Note that an address-taken variable o accessed at a store represents a poten-
tial use of o if a weak update is performed ([S-STOREWU] in Figure 1(b)). Due
to space limitation, we refer to [14] on how to over-approximate indirect def-use
chains (via a pre-analysis named Aux). The basic idea is to annotate a load
p “ ˚q with a potential use of o for every o pointed by q and a store ˚p “ q
with a potential use and def of o for every o pointed by p. Then indirect def-use
chains can be built by putting all address-taken variables in SSA.

Therefore, Selfs keeps track of value flows for top-level variables in SSA
explicitly along their (direct) def-use chains and refines value flows for address-
taken variables along their pre-computed (indirect) def-chains in a region graph.

Definition 1 (Region Graph). A region graph Grg “ pNrg, Ergq for a program
is a multi-edged directed graph. Nrg is a partition of the set of its loads and
stores into regions. Erg contains an edge γ1

o
ÝÑ γ2 labeled by an address-taken

variable o P A from γ1 to γ2, where γ1 and γ2 may be identical, if there is an
indirect def-use chain for o from γ1 to γ2 computed by the pre-analysis.

Example 1. Consider our example again in Figure 3. Figure 3(b) duplicates the
region graph from Figure 2(b) except that its edges are now annotated explicitly
with address-taken variables indicating their value flows. By Definition 1, these
edges are added based on the statement-level indirect def-use chains obtained by
pre-analysis, given in Figure 3(a). The presence of self-loop edge(s) in a region
allows naturally the loads/stores inside to be analysed flow-insensitively. l



*p=r

v=*p

*q=s

*p=t

`1:

`2:

`3:

`4:

rnsrms

rms rns
rms

rms

paq Indirect def-use chains

region partitioning:

ÝÑ
γ1 “ t`1, `2u
γ2 “ t`3, `4u

*p=r

v=*p

*q=s

*p=t

`1:

`2:

`3:

`4:

rms rns

pbq Region graph

γ1

γ2

[m]

[n]

[m]

Fig. 3. The region graph in Figure 2(b) redrawn with all indirect def-use edges made
explicit. The pre-analysis yields pÑm, pÑn and qÑm (included in init in Figure 2).

2.3 Region-Based Flow-Sensitivity

Figure 4 gives the inference rules used in our Selfs framework. Top-level vari-
ables are analysed as before except that they are now in SSA ([R-PHI]). There-
fore, analysing the top-level variables in SSA flow-insensitively ([R-ALLOC] and
[R-COPY]) as in FI gives rise to the flow-sensitive precision obtained as in FS.
As a result, the points-to sets ptppq and ptpqq of top-level pointers p and q are
directly read off at a load ([R-LOAD]), a store ([R-STORE]), and in [R-INOUT].

Selfs computes and maintains the points-to relations for address-taken vari-
ables sparsely in a region graph. Flow-sensitivity is maintained across the regions
(along their indirect region-level def-use edges) but not inside. This implies that
all statements in a region γ are handled flow-insensitively if |γ| ą 1 and flow-
sensitively otherwise (i.e., if |γ| “ 1). As Selfs operates at the granularity of
regions, the notation ptrγs (ptrγs) for a region γ is an analogue of ptr`s (ptr`s)
for a statement `, as already illustrated in Figure 2(b). For a region γ containing
multiple statements, ptrγs is the solution for all program points inside the region.

Below we explain the four rules, [R-DU], [R-INOUT], [R-LOAD] and [R-STORE],
used to compute the points-to relations for address-taken variables.

Together with [R-INOUT], [R-DU] represents the sparse propagation of points-
to relations for address-taken variables o P A across their pre-computed def-use
chains at the granularity of regions. In contrast, FS propagates such points-to
relations blindly across the control flow ([S-OUTIN], [S-INOUT1] and [S-INOUT2]).

In [R-LOAD], γ “ selRp`q is the region where the load at ` resides. No strong
update is possible even if γ contains a store since |γ| ą 1 will then hold. Regard-
less of how many statements that γ contains, the points-to set of o at the entry
of γ is propagated into the points-to set of p: ptrγspoq Ď ptppq, where ptrγspoq
contains the points-to relations that are (1) either received from its predecessors
([R-DU]) or (2) generated inside γ (due to a self-loop edge labeled by o when
|γ| ą 1), in which case, all statements inside γ are analysed flow-insensitively.



[R-ADDROF]
`: p “ &o

tou Ď ptppq [R-COPY]
`: p “ q

ptpqq Ď ptppq [R-PHI]
`: p “ φp_, q,_q

ptpqq Ď ptppq

[R-STORESU{WU ]
`: ˚p “ q o P ptppq γ “ selRp`q

ptpqq Ď ptrγspoq ptrγspoq Ď ptrγspoq

[R-LOAD]
`: p “ ˚q o P ptpqq γ “ selRp`q

ptrγspoq Ď ptppq [R-DU]
o P A γ

o
ÝÑ γ1

ptrγspoq Ď ptrγ1spoq

[R-INOUT]
γ P Nrg o1 R to P ptppq | p˚p “ qq P γu

ptrγspo1q Ď ptrγspo1q

Fig. 4. Inference rules for Selfs (with top-level variables in SSA).

[R-STORE] is similar except that the points-to set of o indirectly accessed at a
store is updated at the end of the region γ that contains the store. [R-STORESU],
which is explained earlier in Section 1, comes into play only when |γ| “ 1. Recall
that Selfs only analyses single-statement regions flow-sensitively.

Example 2. Let us apply our inference rules to the region graph in Figure 3(b)
to obtain the points-to relations given in Figure 2(b). As |γ1| “ |γ2| “ 2,
[R-STORESU] cannot be applied. When γ1 is processed, applying [R-STOREWU] to
`1 adds mÑx and nÑx to ptrγ1s and applying [R-LOAD] to `2 yields ptpvq “ x.
Applying [R-DU] to the two self-loop edges rms and rns around γ1 gives rise to
ptrγ1s “ ptrγ1s. Applying [R-DU] to the two edges rms and rns from γ1 to γ2, we
obtain ptrγ2s “ tmÑx, nÑxu.

When γ2 is analysed, [R-STOREWU] is applied to each store. So the points-to
relations in ptrγ2s are preserved in ptrγ2s. Then we add mÑy generated at `3
and mÑ z and nÑ z at `4 to ptrγ2s. Next, applying [R-DU] to the self-loop
rms on γ2 causes mÑ y and mÑ z to be added to ptrγ2s. Finally, we obtain
ptrγ2s“tmÑx,mÑy,mÑz, nÑxu and ptrγ2s“ptrγ2sYtnÑzu. l

Theorem 1 (Soundness). Selfs is sound if the pre-analysis used is.

Proof Sketch. A sound pre-analysis over-approximates the indirect def-use chains
used for constructing the edges in a region graph Grg. Essentially, Selfs combines
FI and FS to refine such pre-computed def-use chains flow-sensitively ([R-DU]
and [R-INOUT]) by performing strong updates ([R-STORESU]).

Theorem 2 (Precision). Suppose FI is used as the pre-analysis, Then Selfs
lies between FI and FS in terms of precision.

Proof Sketch. We can show that Selfs is no more precise than FS (with respect
to each variable’s points-to set) by observing the following facts: (1) performing
the pre-analysis with FI gives rise to over-approximated indirect def-use chains
(Theorem 1), (2) both analyses handle top-level pointers in exactly the same way



except that Selfs does it sparsely in SSA ([R-ADDROF], [R-COPY] and [R-PHI])
and FS takes a data-flow approach ([S-ADDROF] and [S-COPY]), and (3) Selfs
applies FS only to a region that contains one load or one store and FI to handle
the remaining regions flow-insensitively. Thus, for every variable, the points-to
set obtained by Selfs is no smaller than that obtained by FS.

To see that Selfs is no less precise than FI, we note that Selfs works by re-
fining the points-to sets produced by FI (as the pre-analysis) through performing
strong updates and maintaining inter-region flow-sensitivity.

Finally, some prior representative analyses are special instances of Selfs,
with the following changes made to Selfs (mainly to region partitioning):

FI in Figure 1(a): All loads and stores are in one region (and top-level vari-
ables are not in SSA if they are to be analysed also flow-insensitively).

[14]: Each region contains one load or one store (same precision as FS).
FS in Figure 1(b): Each region contains one statement and each inter-region

edge represents control flow, labeled by all variables.
[21]: Each store is in its own region if it can be strongly updated and all the

other stores and all the loads are in another region (less precise than FS).

3 Instantiating the Selfs Analysis

Selfs is sound (Theorem 1) and can easily achieve a precision between FI and
FS on an arbitrary region graph Grg (Theorem 2). Ideally, we should use a region
graph Grg that allows Selfs to attach the precision of FS at the efficiency of FI.

In this section, we introduce a new unification-based approach that allows
Selfs to preserve the precision of FS with respect to the reads from all variables,
thus making it nearly as precise as FS in practice. We also discuss how to relax
this so-called strict load-precision-preserving approach to tolerate some precision
loss in future work in Section 6. Our focus is on demonstrating the generality
and flexibility of Selfs in allowing efficiency and precision tradeoffs to be made
subject to region partitioning strategies used.

3.1 Load-Precision-Preserving Partitioning

As discussed in Section 2, Selfs degenerates into the sparse analysis [14] if Selfs
operates on a region graph, denoted Gone, such that each of its regions contains
one load or one store. In this important special case, Selfs is significantly faster
than FS while achieving the same precision as FS, but can still be costly for
large programs, especially when field-sensitivity is considered. By merging small
regions into larger ones, Selfs can run faster at some possible precision loss.

We introduce a partitioning strategy that works by unifying two regions into
a larger one successively, starting from any given region graph, say Gone. Some
unification steps are applied online if they require the knowledge about whether
a strong or weak update is performed at a store and some can otherwise be
applied offline. Our rules are load-precision-preserving in the sense that every



load behaves identically before and after each unification. Thus, for every load
¨ ¨ ¨ “ ˚q, the points-to set of every target o pointed by q remains unchanged.

For almost all practical purposes, making all the loads precise is as good as
making Selfs as precise as FS. First of all, the points-to set of every top-level
pointer remains unchanged (since it is overwritten from either an AddrOf, a
Load statement, or possibly via a sequence of Copy or Phi assignments). Thus,
the precision for reads of q in ¨ ¨ ¨ “ q and ¨ ¨ ¨ “ ˚q is preserved. In addition, the
alias information remains unchanged. This is because in our LLVM-like canonical
representation, all aliases must be tested between top-level pointers. Similarly,
all function pointers are reserved in the same way as they are all top-level.

However, some stores can be imprecise, but only when they are not read from
later, as is the case of ˚q “ s illustrated in Figure 2(b) and revisited later in
Example 3. Such stores are dead code and can thus be eliminated.

3.2 Unification

The following lemma gives a sufficient condition to make Selfs load-precision-
preserving and motivates the development of our unification approach.

Lemma 1. Let Grg be a region graph with its two regions identified by γi and γj.
Let G1rg the resulting graph after γi and γj are unified (i.e., merged) into a new
region γi,j. Let L be the set of all regions in Grg such that each contains at least
one load. Let L1 be similarly defined for G1rg. Let π : L ÞÑ L1 be defined such that
πpγq “ γ if γ R tγi, γju and πpγq “ γi,j otherwise. If @γ P L : ptrγs “ ptrπpγqs
before and after the unification, then Selfs is load-precision-preserving.

Proof. No strong update can be performed in a region γ that contains a load
since that would imply |γ| ą 1. For every region γ P L, if ptrγs “ ptrπpγqs, then
ptrγsros “ ptrπpγqsros for every load p “ ˚q that appears in both γ and πpγq,
where o P ptpqq ([R-LOAD]). So Selfs is load-precision-preserving.

This lemma is expensive to apply during the analysis. Guided by the basic
idea behind, we have developed a conservative but simple unification approach.
Each unification step operates on a small neighbourhood of the two regions
being unified. Our approach is promising as it can be relaxed to allow different
efficiency and precision tradeoffs to be made, as discussed in Section 6.

Definition 2 (Region Types). Given a region γ, τpγq “ S if a strong update
can be performed inside (implying that γ contains a single store), τpγq “W if a
weak update can be performed inside, and τpγq“L if γ contains loads only.

When unifying a region γ with another region in a region graph Grg “

pNrg, Ergq, we can identify the potential points-to relations generated by γ and
the potential uses for the points-to relations generated by the two regions being
unified directly from Grg. Below we write rsucc (rpred) to relate a region to its
set of successors (predecessors) in a region graph.



– GENpγq “ to | γ
o
ÝÑ γ1, γ1 P Nrgu contains the address-taken variables

potentially defined in γ ([R-DU]), which implies GENpγq “ ∅ if τpγq “ L.
– USEpγq “ tγ1 | γ1 P rsuccpγqu Y tγ | γ contains a loadu gives the set of

potential uses for the points-to relations generated by γ and the region to be
unified together. Note that rsuccpγqĚtγu if γ contains a store that produces
values used by some other stores or some loads also contained in γ (Figure 3).

– PRDpγq “ rpredpγq gives the set of all potential defs for the points-to rela-
tions used in γ.

When merging two regions, we need to reason about the value flows for the
address-taken variables potentially defined inside these two regions.

Definition 3 (Value-Flow Reachability). Let γi and γj be two regions in
Grg “ pNrg, Ergq. We say that γj is o-reachable from γi, where o P A, and write
γi

o
ãÑ γj if there is either (1) an edge γi

o
ÝÑ γj P Erg (directly reachable) or (2) a

path γi
o
ÝÑ γ1, . . . , γn

o
ÝÑ γj in Grg (indirectly reachable) via one or more regions,

γ1, . . . , γn, where τpγkq “W , for weakly updating o.

When two regions γi and γj are unified, all loads and stores in the resulting
region are resolved flow-insensitively (since |γi Y γj | ą 1), even though a strong
update is possible in either region before. The points-to relations flowing into
both γi and γj from PRDpγiq and PRDpγjq are merged, preserved and propa-
gated together with the points-to relations generated inside γi and γj to their
uses in USEpγiq and USEpγjq. In order to preserve the precision for loads, we
can ensure conservatively that the same propagation happens before and after
each unification (for loads). The presence of a strong update in γi or γj can
be unification-preventing only when the killed values in γi or γj cannot already
reach their uses in USEpγiq and USEpγjq before the unification.

Let us introduce some notational shorthand, where R,R1 Ď Nrg and O Ď A:

R
O
ãÑ R1 “def @o P O : @γ ˆ γ1 P RˆR1 : γ

o
ãÑ γ1

Theorem 3 (Load-Precision-Preserving Unification). Unifying γi and γj
will make Selfs load-precision-preserving if all the following conditions hold:

C1 tγiu
GENpγiq
ãÝÝÝÑ USEpγjq;

C2 PRDpγiq
GENpγiq
ãÝÝÝÑ USEpγiq YUSEpγjq;

C3 tγju
GENpγjq
ãÝÝÝÑ USEpγiq; and

C4 PRDpγjq
GENpγjq
ãÝÝÝÑ USEpγiq YUSEpγjq.

Proof Sketch. By unifying γi and γj , only the points-to relations reaching the
regions in USEpγiq YUSEpγjq are affected. As is standard, Selfs is monotonic,
implying that no strong update at a store is possible after the store has been
weakly updated. Therefore, any indirect reachable path (Definition 3), once es-
tablished, will remain unchanged. For reasons of symmetry, let us consider C1
and C2 only. C1 says that whatever γi generates (along its def-use edges) must



be used not only by USEpγiq (by construction) but also by USEpγjq. C2 says
that even if some values are killed in γi due to a strong update, the killed values
will still reach both USEpγiq and USEpγjq via a different path (without going
through γi), rendering the values non-killable (effectively).

Let π be defined in Lemma 1. If C1 – C4 hold, then @γ P USEpγiqYUSEpγjq :
ptrγs “ ptrπpγqs. By Lemma 1, Selfs is load-precision-preserving.

Example 3. Let us apply Theorem 3 to the example given in Figure 3, assuming
initially that each statement is in its own region: γ1 “ t`1u, γ2 “ t`2u, γ3 “ t`3u
and γ4 “ t`4u. Let us try to unify γ1 and γ2. According to the region graph
given in Figure 3(a), we have GENpγ1q “ tm,nu, GENpγ2q “ ∅. USEpγ1q “
tγ2, γ3, γ4u, USEpγ2q “ tγ2u, PRDpγ1q “ ∅ and PRDpγ2q “ tγ1u. By Theorem 3,
C1 – C4 are satisfied. So γ1 and γ2 are unifiable. We can also choose to unify
γ3 and γ4 instead. Then GENpγ3q “ tmu, GENpγ4q “ ∅. USEpγ3q “ tγ4u,
USEpγ4q “ ∅, PRDpγ3q “ tγ1u and PRDpγ4q “ tγ1, γ3u. Note that GENpγ4q “
∅ because there are no outgoing def-use chains from `4. Again, C1 – C4 are
satisfied, making γ3 and γ4 unifiable. By proceeding in either order, we will
obtain the region graph shown in Figure 3(b).

Note that unifying γ3 and γ4 makes Selfs lose the precision at `3 as explained
earlier. However, in this example, both `3 and `4 are dead code. If we add a load
`5 : w “ ˚q immediately after `3, which is in a new region γ5 “ t`5u, there will
be a new indirect def-use `3

m
ÝÑ `5 in Figure 3(a). In this case, γ3 and γ4 are no

longer unifiable since USEpγ3q “ tγ4, γ5u. By treating γ3 as γi in Theorem 3,
C2 is violated since there is only one path from γ1 to γ5: γ1

m
ÝÑ γ3

m
ÝÑ γ5, where

a strong update is performed on m in γ3. So γ5 is not m-reachable from γ1. In
fact, merging γ3 and γ4 will cause the load `5 : w “ ˚q to lose precision since
the store at `3 will only be weakly updated afterwards. l

Figure 5 illustrates our unification approach further, by assuming that all in-
direct def-use chains are related to one address-taken variable, o. In Figure 5(d),
if W3 is S3 (with a strong update to o inside), then the unification cannot be
performed as L45 is not o-reachable from S1 (the predecessor of S2 and S3).
Otherwise, L45 may receive spurious points-to relations propagated from S1. In
Figure 5(h), S1 and W2345 cannot be unified further because the predecessors of
S1 reach W2345 via only S1 (where a strong update to o is performed).

4 Evaluation

We demonstrate the effectiveness of Selfs under our unification-based region
partitioning strategy. The baseline is a state-of-the-art sparse yet precision-
preserving version [14], denoted SFS, of FS given in Figure 1(b). We have se-
lected 14 large C programs (totalling 672 KLOC) from SPEC CPU2000/CPU2006,
with their characteristics given in Figure A.1. Our platform is a 2.00GHz Intel
Xeon 32-core CPU running Ubuntu Linux with 64GB memory.
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Fig. 5. Some possible unification sequences illustrated for a part of a region graph, by
assuming that all indirect-use edges are related to one single address-taken variable, o.
The type of a region is identified by S, W or L (Definition 2).

4.1 Methodology

As discussed in Section 2, SFS works on a region graph such that each region
contains one single load or store. To apply our load-precision-preserving parti-
tioning in Selfs, we start with a region graph such that each load or store is
in its own region. We then apply our unification-based approach to form larger
regions. As a result, Selfs is load-precision-preserving (Theorem 3), resulting in
the same precision for alias queries as SFS (among others). We repeat a process
of picking a region randomly and trying to unify it with one of its predecessors,
successors, and siblings in that order until no more unification is possible.

For efficiency reasons, we verify the four conditions in Theorem 3 during the
Selfs analysis by restricting ourselves to the o-reachable paths (Definition 3)
such that each of its intermediate nodes is one of the two regions to be unified. As
a result, starting with Figure 5(a), we will accept Figures 5(c) and (d) but reject
Figure 5(b). Finally, some unification steps are performed offline rather than
online during the analysis if they do not require the knowledge about whether a
store in a region (containing that store only) can be strongly updated or not.

4.2 Implementation

We have implemented Selfs in LLVM (version 3.3). The source files of each
benchmark are compiled into bit-code files using clang and then linked together
using llvm-link, with mem2reg being applied to promote memory into registers.
We use FI, i.e., Andersen’s analysis (using the constraint resolution techniques
from [25, 27]) as pre-analysis for building indirect def-use chains [14, 30, 31].



Program
Size Analysis Times (Secs) Selfs’ Regions

KLOC SFS Selfs Speedup (of L, S and W Types)
#L #S #W #Avg #Max

ammp 13.4 0.31 0.31 1.00 538 0 187 1.53 16
crafty 21.2 0.30 0.31 0.97 377 0 328 1.95 276
gcc 230.4 826.34 408.93 2.02 10690 294 6867 2.23 401
h264ref 51.6 40.84 5.48 7.45 3523 159 1460 1.94 128
hmmer 36.0 0.42 0.52 0.81 1170 59 487 1.59 56
mesa 61.3 1096.63 180.37 6.08 3801 0 2211 1.40 50
milc 15.0 0.28 0.26 1.08 566 8 253 1.69 66
parser 11.4 3.80 2.31 1.65 820 11 931 1.47 110
perlbmk 87.1 407.86 143.25 2.85 7514 513 4451 1.78 189
sjeng 13.9 0.07 0.19 0.37 463 0 524 1.50 14
sphinx3 25.1 1.16 1.23 0.94 953 14 598 1.98 42
twolf 20.5 1.07 1.02 1.05 1798 1 494 3.51 184
vortex 67.3 86.01 37.92 2.27 2369 198 2061 2.11 830
vpr 17.8 0.30 0.27 1.11 768 0 305 2.36 39

Fig. 6. Comparing SFS and Selfs.

Selfs is field-sensitive. Each field of a struct is treated as a separate object,
but arrays are considered monolithic. Positive weight cycles (PWC s) that arise
from processing fields of struct objects are detected and collapsed [24]. Distinct
allocation sites are modeled by distinct abstract objects as in [14, 30, 31].

We have implemented SFS differently from that in [14]. In this paper, a
program’s call graph is built on the fly and points-to sets are represented using
sparse bit vectors, for both SFS and Selfs, which are implemented in LLVM 3.3.
In [14], implemented in LLVM 2.5, a program’s call graph is pre-computed and
points-to sets are represented using binary decision diagrams (BDDs).

4.3 Results and Analysis

As shown in Figure 6, Selfs is 2.13X faster than SFS on average under our load-
precision-preserving partitioning strategy while maintaining the same precision
for reads, i.e., for all alias queries in all the functions from a benchmark. The
best speedups are achieved at h264ref (7.45X) and mesa (6.08X). Note that
Selfs can go faster, approaching eventually the efficiency of FI, if increasingly
larger regions are used. The analysis time of a benchmark, which excludes the
time spent on pre-analysis, is the average of three runs.

Let us look at the results of the two analyses in more detail. SFS spends
2465.39 seconds to analyse all the benchmarks but Selfs finishes in 782.37 sec-
onds. In Columns 6 – 10, we see the number of regions of each type as well as
the average and maximum region sizes. The average region sizes range from 1.40
(mesa) to 3.51 (twolf). In gcc, perlbmk and vortex, each largest region ends
up with 150+ loads or stores being resolved flow-insensitively, with the precision
for all reads being preserved. This shows the great potential promised by Selfs
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Fig. 7. Percentage distributions of Selfs’ analysis time in a benchmark over “FSAnal”
(the time for its flow-sensitive analysis), “FIAnal” (the time for its flow-insensitive
analysis), “Partitioning” (the time on region partitioning), and “Propagation” (the time
for propagating points-to facts across the indirect def-use chains in the region graph).

in achieving load-precision-preserving flow-sensitive analysis in a region-based
manner. With better tuned unification rules, better speedups are expected.

For relatively small program, such as ammp, hmmer, milc and sjeng, Selfs
yields little or no performance benefits due to the overhead on region partition-
ing, as illustrated in Figure 7. However, for relatively larger ones, which contain
more objects and more dense def-use chains to be dealt with flow-sensitively
(Figure A.1), such as gcc, mesa, perlbmk and vortex, Selfs is beneficial. The
best speedups are observed at h264ref (7.45X) and mesa (6.08X), because the
times for propagating points-to facts across indirect def-use chains have been
significantly reduced by 22.3X and 10.24X, respectively (Figure 8).

5 Related Work

Sparse Pointer Analysis Sparse analysis, a recent improvement over the
classic iterative data-flow approach, can achieve flow-sensitivity more efficiently
by propagating points-to facts sparsely across pre-computed def-use chains [14,
15, 23, 32, 35]. Initially, sparsity was experimented with in [16, 17] on a Sparse
Evaluation Graph [5, 26], a refined CFG with irrelevant nodes being removed. On
various SSA form representations (e.g., factored SSA [6], HSSA [7] and partial
SSA [20]), further progress was made later. The def-use chains for top-level
pointers, once put in SSA, can be explicitly and precisely identified, giving rise
to a so-called semi-sparse flow-sensitive analysis [15]. Recently, the idea of staged
analysis [11, 14] that uses pre-computed points-to information to bootstrap a
later more precise analysis has been leveraged to make pointer analysis full-
sparse for both top-level and address-taken variables [14, 23, 35].

Hybrid Analysis The aim of hybrid-sensitive pointer analysis is to find a
right balance between efficiency and precision. As a well-known example for
mixing different flow-insensitive analyses, one-level approach [9] lies between
Steensgaard’s and Andersen’s analyses (in terms of precision) by not applying its



Program Propagation Times (Secs) SpeedupSFS Selfs
ammp 0.13 0.05 2.60
crafty 0.02 0.01 2.00
gcc 741.42 270.32 2.74
h264ref 25.20 1.13 22.30
hmmer 0.11 0.09 1.22
mesa 719.97 70.31 10.24
milc 0.02 0.01 2.00
parser 2.65 0.43 6.16
perlbmk 285.90 68.96 4.15
sjeng 0.02 0.01 2.00
sphinx3 0.53 0.08 6.63
twolf 0.42 0.23 1.83
vortex 77.33 18.47 4.19
vpr 0.05 0.02 2.50

Fig. 8. Propagation times of SFS and Selfs for analysing the address-taken variables
across their indirect def-use chains.

unification process to top-level pointers. For context-sensitivity, hybrid analysis
has been used in Java to pick up the benefits of both call-site sensitivity and
object sensitivity [19]. In [21], strong updates are performed for only singleton
objects on top of a flow- and field-insensitive Andersen’s analysis. Earlier [12,
29], how to adjust the analysis precision according to clients’ needs is discussed.

Region-based Analysis Region-based analysis, which partitions a program
into different compilation units, was commonly used to explore locality and gain
more opportunities for compiler optimisations, such as inlining [13, 33], partial
dead code elimination [3], and just-in-time optimisation [28]. In [36, 37], programs
are decomposed into different regions according to the alias relations and each
region is solved independently. Same partition strategy was also adopted by [18]
to speed up a flow- and context-sensitive pointer analysis.

6 Conclusion
We introduce a new region-based flow-sensitive pointer analysis, called Selfs,
that allows efficiency and precision tradeoffs to be made subject to region parti-
tioning strategies used. We have implemented Selfs in LLVM and demonstrated
its effectiveness with a unification-based region partitioning strategy, by compar-
ing it with a state-of-the-art flow-sensitive analysis. In addition, our unification-
based approach is interesting in its own right as it leads to a particular analysis
that is as precise as FS for almost all practical purposes.

In future work, we will develop a range of partitioning strategies to relax our
unification-based approach. There is a lot of freedom in performing a precision-
loss partitioning (Theorems 1 and 2). In order to be tunable and client-specific,
a relaxed strategy can be designed along the following directions (among oth-
ers). First, the user can identify parts of a program that require flow-sensitive



analysis based on client analyses’ needs (e.g., hot functions and major changes
made during software development). Second, the user may request customised
flow-sensitivity for some selected variables. Third, some stores can always be
weakly updated (to enable more offline unification steps, for example). Finally,
our unification approach can be relaxed to enable more regions to be merged
without having to preserve the precision for all the loads.
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A Appendix

Program
Size #Statement

#Ptrs
#Object

KLOC AddrOf Copy Load Store Total Glob. Heap Stk Func Total
ammp 13.4 702 6875 925 187 8689 29499 49 42 76 209 376
crafty 21.2 1632 9603 1011 367 12613 44744 457 33 70 147 707
gcc 230.4 8934 135332 32498 7832 184596 399377 1400 154 1018 2273 4845
h264ref 51.6 1829 27845 8324 1635 39633 114221 374 209 284 287 1154
hmmer 36 1195 7635 2083 581 11494 32415 42 376 89 155 662
mesa 61.3 2691 45447 6112 2298 56548 136415 35 322 465 1130 1952
milc 15 1104 8591 1138 263 11096 26437 92 63 203 270 628
parser 11.4 1417 6045 1626 964 10052 23417 174 114 42 353 683
perlbmk 87.1 4366 39602 17096 5154 66218 148231 415 28 458 1168 2069
sjeng 13.9 926 5579 848 632 7985 29624 214 14 119 173 520
sphinx3 25.1 1898 10169 2482 622 15171 36588 69 59 122 421 671
twolf 20.5 1371 14390 7526 506 23793 62430 304 192 116 212 824
vortex 67.3 6636 20408 6577 3185 36806 104218 739 29 1864 961 3593
vpr 17.8 1195 5703 2222 310 9430 28405 101 6 101 303 511

Fig.A.1. Program characteristics.
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