
Keyword›aware Optimal Route Search

Xin Cao Lisi Chen Gao Cong Xiaokui Xiao

School of Computer Engineering, Nanyang Technological University, Singapore
fxcao1,lchen012g@e.ntu.edu.sg,fgaocong,xkxiaog@ntu.edu.sg

ABSTRACT

Identifying a preferable route is an important problem that �nds ap-

plications in map services. When a user plans a trip within a city,

the user may want to �nd �a most popular route such that it passes

by shopping mall, restaurant, and pub, and the travel time to and

from his hotel is within 4 hours.� However, none of the algorithms

in the existing work on route planning can be used to answer such

queries. Motivated by this, we de�ne the problem of keyword-

aware optimal route query, denoted by KOR, which is to �nd an

optimal route such that it covers a set of user-speci�ed keywords,

a speci�ed budget constraint is satis�ed, and an objective score of

the route is optimal. The problem of answering KOR queries is

NP-hard. We devise an approximation algorithm OSScaling with

provable approximation bounds. Based on this algorithm, another

more ef�cient approximation algorithm BucketBound is proposed.

We also design a greedy approximation algorithm. Results of em-

pirical studies show that all the proposed algorithms are capable of

answering KOR queries ef�ciently, while the BucketBound and

Greedy algorithms run faster. The empirical studies also offer in-

sight into the accuracy of the proposed algorithms.

1. INTRODUCTION
Identifying a preferable route in a road network is an important

problem that �nds applications in map services. For example, map

applications like Baidu Lvyou 1 and Yahoo Travel 2 offer tools for

trip planning. However, the routes that they provide are collected

from users and are thus pre-de�ned. This is a signi�cant de�ciency

since there may not exist any pre-de�ned route that meets the user

needs. The existing solutions (e.g., [16, 17, 22]) for trip planning

or route search are often insuf�cient in offering the �exibility for

users to specify their requirements on the route.

Consider a user who wants to spend a day exploring a city. She

is not familiar with the city and she might pose such a query: �Find

the most popular route to and from my hotel such that it passes by

shopping mall, restaurant, and pub, and the time spent on the road

in total is within 4 hours.�

1http://lvyou.baidu.com/
2http://travel.yahoo.com

The example query above has two hard constraints: 1) the points

of interests preferred by the user, as expressed by a set of key-

words that should be covered in the route (e.g., �shopping mall�,

�restaurant� and �pub�); 2) a budget constraint (e.g., travel time)

that should be satis�ed by the route. The query aims to identify the

optimal route under the two hard constraints, such that an objective

score is optimized (e.g., route popularity [4]). Note that route pop-

ularity can be estimated by the number of users traveling a route,

obtained from the user traveling histories recorded in sources such

as GPS trajectories or Flickr photos [4]. In general, the budget

constraint and the objective score can be of various different types,

such as travel duration, distance, popularity, travel budget, etc. We

consider two different attributes for budget constraint and objective

score because users often need to balance the trade-off of two as-

pects when planning their trips. For example, a popular route may

be quite expensive, or a route with the shortest length is of little in-

terests. In the example query, it is likely that the most popular route

requires traveling time more than 4 hours. Hence, a route search-

ing system should be able to balance such trade-offs according to

users’ different preferences.

We refer to the aforementioned type of queries as keyword-aware

optimal route query, denoted as KOR. Formally, a KOR query is

de�ned over a graph G, and the input to the query consists of �ve

parameters, vs, vt, , �, and f , where vs is the source location of

the route in G, vt is the target location, is a set of keywords, �
is a budget limit, and f is a function that calculates the objective

score of a route. The query returns a path R in G starting at vs

and ending at vt, such thatRminimizes f(R) under the constraints

thatR satis�es the budget limit � and passes through locations that

cover the query keywords in . To the best of our knowledge, none

of the existing work on trip planning or route search (e.g., [16, 17,

22]) is applicable for KOR queries. Furthermore, the problem of

solving KOR queries can be shown to be NP-hard by a reduction

from the weighted constrained shortest path problem [8]. It can

also be viewed as a generalized traveling salesman problem [11]

with constraints. This leads to an interesting question: is it possible

to derive ef�cient solutions to answering KOR queries?

Due to the hardness of answering KOR queries, in this paper, we

answer the aforementioned question af�rmatively with three ap-

proximation algorithms. The �rst approximation algorithm has a

performance bound and is denoted by OSScaling. In OSScaling,

we �rst scale the objective value of every edge to an integer by a

parameter � to obtain a scaled graph denoted by GS . Speci�cally, in

the scaled graph GS , each partial route is represented by a �label�,

which records the query keywords already covered by the partial

route, the scaled objective score, the original objective score, and

the budget score of the route. At each node, we maintain a list

of �useful� labels corresponding to the routes that go to that node.

1136

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 11
Copyright 2012 VLDB Endowment 2150-8097/12/07... $ 10.00.

Starting from the source node, we keep creating new partial routes

by extending the current �best� partial route to generate new la-

bels, until all the potentially useful labels on the target node are

generated. Finally, the route represented by the label with the best

objective score at the target node is returned.

We prove that the algorithm returns routes with objective scores

no worse than 1
1!�

times of that of the optimal route. The worst

case complexity of OSScaling is polynomial with 1
�
, the budget

constraint �, the number of edges and nodes in G, and it is expo-

nential in the number of query keywords, which is usually small

in our targeted applications, as it is well known that search engine

queries are short, and an analysis on a large Map query log [25]

shows that nearly all queries contain fewer than 5 words.

Our second algorithm improves on the algorithm OSScaling,

which is referred to as BucketBound. It also returns approximate

solutions to KOR queries with performance guarantees. However,

it is more ef�cient than OSScaling. The algorithm can always re-

turn a route whose objective score is at most � (� > 1 is a param-

eter) times of the one found by OSScaling. The algorithm divides

the traversed partial routes into different �buckets� according to the

best possible objective scores they can achieve. This enables us to

develop a novel way to detect if a feasible route (covering all query

keywords and satisfying the budget constraint) is in the same bucket

with the one found by OSScaling. When we �nd a feasible route

that falls in the same bucket as the route found by OSScaling, we

return it as the result.

Finally, we also present a greedy approach for the problem. From

the starting location, we keep selecting the next location greedily,

taking into account all the three constraints in the KOR query. This

is repeated until we reach the target location. This algorithm is

ef�cient, although it may generate a route that violates the two hard

constraints of KOR: covering all query keywords and satisfying the

budget constraint.

In summary, our contributions are threefold. First, we propose

the keyword-aware optimal route (KOR) query, and we show that

the problem of solving KOR queries is NP-hard. Second, we present

two novel approximation algorithms both with provable performance

bounds for the KOR problem. We also provide a greedy approach.

Third, we study the properties of the paper’s proposals empirically

on a graph extracted from a large collection of Flickr photos. The

results demonstrate that the proposed solutions offer scalability and

excellent performance.

The rest of the paper is organized as follows: Section 2 formally

de�nes the problem and establishes the computational complexities

of the problem. Section 3 presents the proposed algorithms. We

report on the empirical studies in Section 4. Finally, we cover the

related work in Section 5 and offer conclusions in Section 6.

2. PROBLEM STATEMENT
We de�ne the problem of the keyword-aware optimal route (KOR)

query, and show the hardness of the problem.

De�nition 1: Graph. A graph G = (V;E) consists of a set of

nodes V and a set of edges E � V � V . Each node v 2 V repre-

sents a location associated with a set of keywords denoted by v: ;

each edge in E represents a directed route between two locations

in V , and the edge from vi to vj is represented by (vi; vj). 2

We de�ne G as a general graph. It can be a road network graph,

or a graph extracted from users’ historical trajectories. Depending

on the source of G, each edge in G is associated with different types

of attributes. For example, if G is a traf�c network, the attributes

can be travel duration, travel distance, popularity, and travel cost.

To keep our discussion simple, we consider directed graphs only in

this paper. However, our discussion can be extended to undirected

graphs straightforwardly.

De�nition 2: Route. A route R = (v0; v1; :::; vn) is a path such

that R goes through v0 to vn sequentially, following the relevant

edges in G. 2

We de�ne the optimal route based on two attributes on each edge

(vi; vj): 1) one attribute is used as the objective value of this edge,

and it is denoted by o(vi; vj) (e.g., the popularity), and 2) the other

attribute is used as the budget value of this edge, which is denoted

by b(vi; vj) (e.g., the travel time). Note that we can pick up any

two attributes to de�ne the optimal route depending on different

applications.

De�nition 3: Objective Score and Budget Score. Given a route

R = hv0; v1; :::; vni, the objective score of R is de�ned as the sum

of the objective values of all the edges in R, i.e.,

OS(R) =

nX

i=1

o(vi!1; vi);

and the budget score is de�ned as the sum of the budget values of

all the edges in R, i.e.,

BS(R) =

nX

i=1

b(vi!1; vi): 2

Figure 1: Example of G

Figure 1 shows an example of the graph G. We consider only �ve

keywords (t1�t5), and each keyword is represented by a distinct

shape. For simplicity, each node contains a single keyword in the

example. On each edge, the score inside a bracket is the budget

value, and the other number is the objective value. For example,

given the route R = hv0; v3; v5; v7i, we have OS(R) = 2 + 3 + 4 =

9 and BS(R) = 2 + 2 + 1 = 5.

Intuitively, a keyword-aware optimal route (KOR) query is to

�nd an optimal route from a source to a target in a graph such that

the route covers all the query keywords, its budget score satis�es a

given constraint, and its objective score is optimized. Formally, we

de�ne the KOR query as follows:

De�nition 4: Keyword-aware Optimal Route (KOR) Query.

Given G, the keyword-aware optimal route query Q=hvs; vt; ;�i,
where vs is the source location, vt is the target location, is a set of

keywords, and � speci�es the budget limit, aims to �nd the route

R starting from vs and ending at vt (i.e.,hvs; � � � ; vti) such that

R = arg minR OS(R)

subject to �
S

v2R
(v:)

BS(R) � �

2

1137

In the example graph in Figure 1, given a query Q = hv0; v7; ft1;
t2; t3g; 8i, the optimal route is Ropt = hv0; v3; v4; v7i with objec-

tive score OS(Ropt) = 4 and budget score BS(Ropt) = 7. If we

set � to 6, the optimal route becomes Ropt = hv0; v3; v5; v7i with

OS(Ropt) = 9 and BS(Ropt) = 5.

Theorem 1: The problem of solving KOR queries is NP-hard.

Proof Sketch: This problem can be reduced from the NP-hard

weight-constrained shortest path problem (WCSPP) [10]. Given a

graph in which each edge has a length and a weight, WCSPP �nds

a path that has the shortest length with the total weight not exceed-

ing a speci�ed value. The problem of answering KOR queries is a

generalization of WCSPP. If each node already covers all the query

keywords, the problem of solving KOR becomes equivalent to the

WCSPP. 2

Obviously, if we disregard the query keyword constraint, the

problem of solving KOR becomes WCSPP. In addition, if we re-

move the budget constraint, the problem becomes similar to the

generalized traveling salesman problem (GTSP) [11], which is also

NP-hard. In GTSP, the nodes of a graph are clustered into groups,

and GTSP �nds a path starting and ending at two speci�ed nodes

such that it goes through each group exactly once and has the small-

est length. In the problem of solving KOR, we can extract the

locations whose keywords overlap with , and the locations that

cover the same keyword form a group. Thus, the problem of solv-

ing KOR without the budget constraint is equivalent to the GTSP.

Furthermore, if we disregard the objective score, the problem of

�nding a route that covers all the query keywords and satis�es the

budget constraint is still intractable. It is obvious that the simpli-

�ed problem is also equivalent to GTSP, and thus cannot be solved

by polynomial-time algorithms. Many approaches have been pro-

posed for solving GTSP and WCSPP (e.g., [5, 7, 8, 23]. However,

they cannot be applied to answer the KOR queries since one more

constraint or objective must be satis�ed in KOR compared with

GSTP and WCSPP.

In the KOR problem, we consider two hard constraints, namely,

the keyword coverage and the budget limit, and aim to minimize

the objective score. The simpli�ed versions that consider any two

aspects are also NP-hard as we analyzed. Hence, it is challenging

to �nd an ef�cient solution to answering KOR queries. If a route

satis�es the two hard constraints, the route is called a feasible solu-

tion or a feasible route.

Furthermore, we can extend the KOR query to the keyword-

aware top-k route (KkR) query. Instead of �nding the optimal route

de�ned in KOR, the KkR query is to return k routes starting and

ending at the given locations such that they have the smallest objec-

tive scores, cover the query keywords, and satisfy the given budget

constraint.

3. ALGORITHMS
We present the pre-processing method in Section 3.1, the pro-

posed approximation algorithm OSScaling with provable approx-

imation bound in Section 3.2, the more ef�cient approximation al-

gorithm BucketBound also with performance guarantee in Sec-

tion 3.3, and the greedy algorithm Greedy in Section 3.4.

3.1 Pre-processing
We introduce the pre-processing method. We utilize the pre-

processing results to accelerate the algorithms to be proposed.

We use the Floyd-Warshall algorithm [9], which is a well-known

algorithm for �nding all pairs shortest path, to �nd the following

two paths for each pair of nodes (vi; vj):

� �i;j : the path with the smallest objective score. The objective

score of this path is denoted by OS(�i;j) and the budget score

is denoted by BS(�i;j).
� �i;j : the path with the smallest budget score. The objective

score of �i;j is denoted by OS(�i;j) and the budget score is

denoted by BS(�i;j).

For example, after the pre-processing, for the pair of node (v0; v7)
in Figure 1, we have �0;7 = hv0; v3; v4; v7i with OS(�0;7) = 4 and

BS(�0;7) = 7 and �0;7 = hv0; v3; v5; v7i with OS(�0;7) = 9 and

BS(�0;7) = 5.

Only the objective and budget scores of �i;j and �i;j are used in

the proposed algorithms, while the two paths themselves are not.

The space cost is O(jV j2), where jV j represents the number of

nodes in the graph. In general, the number of points of interests

jV j within a city is not large [15, 19].

We use an inverted �le to organize the word information of nodes.

An inverted �le index has two main components: 1) A vocabulary

of all distinct words appearing in the descriptions of nodes (loca-

tions), and 2) A posting list for each word t that is a sequence of

identi�ers of the nodes whose descriptions contain t. We use B+-

tree for the inverted �le index, which is disk resident.

3.2 Approximation Algorithm OSScaling

A brute-force approach to solving KOR is to do an exhaustive

search: We enumerate all candidate paths from the source node.

We can use a queue to store the partial paths. In each step, we

select one partial path from the queue. Then it is extended to gen-

erate more candidate partial paths and those paths whose budget

scores are smaller than the speci�ed limit are enqueued. When a

path is extended to the target node, we check whether it covers all

the query keywords and satis�es the budget constraint. We record

all the feasible routes, and after all the candidate routes from the

source node to the target node have been checked, we select the

best one of all the feasible routes as the answer to the query.

However, the exhaustive search is computationally prohibitive.

Given a query with a speci�ed budget limit �, we know that the

number of edges in a route exploited in the search is at most b �
bmin

c,

where bmin is the smallest budget value of all edges in G. Thus, the

complexity of an exhaustive search is O(d
b �
bmin

c
), where d is the

maximum outdegree in G (notice that enumerating all the simple

paths is not enough for answering KOR queries). To avoid the ex-

pensive exhaustive search, we devise a novel approximation algo-

rithm OSScaling. It is challenging to develop such an algorithm.

The main problem of the brute-force approach is that too many

partial paths need to be stored on each node. In order to reduce

the cost of enumerating the partial paths, in OSScaling, we scale

the objective values of edges in G into integers utilizing a parame-

ter �. The scaling enables us to bound the number of partial paths

explored, and further to design a novel algorithm that runs poly-

nomially in the budget constraint �, 1
�
, the number of nodes and

edges in G, and is exponential in the number of query keywords

(which is typically small). Furthermore, the objective score scaling

guarantees that the algorithm always returns a route whose objec-

tive score is no more than 1
1!�

times of that of the optimal route, if

there exists one. This is inspired by the FPTAS (fully polynomial-

time approximation scheme) for solving the well-known knapsack

problem [24]. Note that the problem of answering KOR queries

is different from the NP-hard problem knapsack and its solutions

cannot be used.

We de�ne a scaling factor � = �ominbmin

�
, where omin and

bmin represent the smallest objective value and the smallest budget

value of all edges in G, respectively, and � is a parameter in the

range (0; 1). Next, for each edge (vi; vj), we scale its objective

1138

value o(vi; vj) to ô(vi; vj) = b
o(vi;vj)

�
c. We call the graph with

scaled objective values as the scaled graph, denoted by GS . Given

a route R = hv0; v1; :::; vni in GS , we denote its scaled objective

score by ÔS(R) =
Pn

i=1 ô(vi!1; vi).
On the scaled graph, we still extend from the source node to cre-

ate new partial paths until we reach the target node. However, if

a partial path has both smaller scaled objective score and budget

score than another one on the same node, the OSScaling algo-

rithm ignores it. Before detailing the algorithm, we introduce the

following important de�nitions.

De�nition 5: Node Label. For each node vi, we maintain a list

of labels, in which each label corresponds to a path P k
i from the

source node vs to node vi. The label is denoted by Lk
i and is in

format of (�; ÔS;OS;BS), where Lk
i :� is the keywords covered

by P k
i , Lk

i :ÔS, Lk
i :OS, and Lk

i :BS represent the scaled objec-

tive score, the original objective score, and the budget score of P k
i ,

respectively. 2

Example 1: In the example graph shown in Figure 1, assuming � =

10 and � = 0.5, we can compute the value for �: � = 0:5�bmin�omin

10

= 1
20

. Therefore, the objective value of each edge is scaled to 20

times of its original value. Given the two paths from v0 to v4, i.e.,

R1 = hv0; v2; v3; v4i and R2 = hv0; v2; v6; v5; v4i. The label of

R1 is L0
4 = (ht1; t2; t4i; 100; 5; 7) and the label of R2 is L1

4 =
(ht1; t2; t4i; 120; 6; 11). 2

Each partial route is represented by a node label. At each node,

we maintain a list of labels, each of which stores the information

of a corresponding partial route from the source node to this node,

including the query keywords already covered, the scaled objective

score, the original objective score, and the budget score of the par-

tial route. Many paths between two nodes may exist, and thus each

node may be associated with a large number of labels. However,

most of the labels are not necessary for answering KOR. Consider-

ing Example 1, at node v4, the label L1
4 could be ignored since L0

4

has both smaller objective and budget scores. This is because that

in the route extended from L1
4, we can always replace the partial

route corresponding to L1
4 with that corresponding to label L0

4. We

say that L0
4 dominates L1

4:

De�nition 6: Label Domination. Let Lk
i and Ll

i be two labels

corresponding to two different paths from the source node vs to

node vi. We say Lk
i dominates Ll

i iff Lk
i :� � Ll

i:�, Lk
i :ÔS �

Ll
i:ÔS, and Lk

i :BS � Ll
i:BS. 2

Notice that in OSScaling we determine if a label dominates an-

other one with regard to the scaled objective score instead of the

original objective score. Therefore, it is likely that the label domi-

nated has smaller original objective score, and hence the optimal

route may be missed in this algorithm. This is the reason that

OSScaling can only return approximate results. However, by do-

ing so, the maximum number of labels on a node is bounded, which

further bounds the complexity of OSScaling. We have the follow-

ing lemma:

Lemma 1: On a node there are at most 2mb �
bmin

cb omax�
�ominbmin

c
labels, where m is the number of query keywords, � is the scal-

ing parameter, bmin, omax, and omin represent the smallest budget

value, the largest objective value, and the smallest objective value

of all edges in G, respectively.

Proof Sketch: First, given m query keywords, there are at most

2m keywords subset. Second, given the budget limit �, the num-

ber of edges in a route checked by our algorithm does not exceed

b �
bmin

c. Hence, the objective score of a route in GS is bounded

by b �
bmin

cômax = b �
bmin

cb omax

�
c = b �

bmin
cb omax�

�ominbmin
c: In

conclusion, we only need to store at most 2mb �
bmin

cb omax�
�ominbmin

c
labels, because all the rest can be dominated by them. 2

Note that Lemma 1 gives an upper bound of the label number at

a node. In practice, the number of labels maintained at a node is

usually much smaller than this upper bound. We denote this upper

bound by Lmax.

Next, we introduce how to do the route extension using labels.

This step is called label treatment:

De�nition 7: Label Treatment. Given a label Lk
i at node vi, for

each outgoing neighbor vj of node vi in G, we create a new la-

bel for vj : Lt
j = (Lk

i :�
S
vj : ; L

k
i :ÔS + ô(vi; vj); Lk

i :OS +

o(vi; vj); Lk
i :BS + b(vi; vj)). 2

The label treatment step extends a partial route at node vi for-

ward to all the outgoing neighbor nodes of vi, and thus more longer

partial routes are generated. Note that the label treatment step is ap-

plied together with label domination checking.

Another important de�nition is how we compare the order of two

labels:

De�nition 8: Label Order. Let Lk
i and Lt

j be two labels cor-

responding to two paths from source node vs to node vi and vj

(vi and vj can be either the same or different nodes), respectively.

We say Lk
i has a lower order than Lt

j , denoted by Lk
i � Lt

j , iff

jLk
i :�j > jLt

j :�j or (jLk
i :�j = jLt

j :�j and Lk
i :ÔS < Lt

j :ÔS) or

(jLk
i :�j = jLt

j :�j, Lk
i :ÔS = Lt

j :ÔS, and Lk
i :BS < Lt

j :BS);

otherwise, breaking the tie by alphabetical order of vi and vj . 2

In Example 1, we say that L0
4 � L1

4, because they contain the

same number of query keywords, and L0
4 has smaller objective and

budget scores. This de�nition decides which partial route is se-

lected for extension in each step.

Now we are ready to present our algorithms. The basic idea is

to keep creating new partial routes from the best one among all ex-

isting partial routes. From the viewpoint of node labels, we �rst

create a label at the source node, and then we keep generating new

labels that cannot be dominated by existing ones. We always select

the one with the smallest order according to De�nition 8 to gener-

ate new labels. If newly generated labels cannot be dominated by

existing labels, they are used to detect and delete the labels domi-

nated by them. We repeat this procedure until all the labels on the

target node are generated, and �nally the label with the best objec-

tive score satisfying the budget limit at the target node is returned.

Note that this is not an exhaustive search algorithm and we will

analyze the complexity after presenting the algorithm.

The pseudocode is presented in Algorithm 1. We use a min-

priority queue Q to organize the labels, which are enqueued into Q

according to their orders de�ned in De�nition 8. We use variable

U to keep track of the upper bound of the objective score, and use

LL to store the last label of the current best route. We initialize U

as 1, and set LL as NULL. We create a label at the starting node

vs and enqueue it into Q (lines 2�4).

We keep dequeuing labels from Q untilQ becomes empty (lines

5�20). We terminate the algorithm whenQ is empty or when all the

labels in Q has objective scores larger than U . In each while-loop,

we �rst dequeue a label Lk
i with the minimum label order from Q

(line 6). If the objective score of Lk
i plus the best objective score

OS(�i;t) from vi to the target node vt is larger than the current up-

per bound U , then the label de�nitely cannot contribute to the �nal

result (line 7). Next, for each outgoing neighbor vj of vi, we create

a new label Ll
j for it according to De�nition 7 (line 9). If Ll

j can be

dominated by other labels on the node vj or if it cannot generate a

1139

Algorithm 1: OSScaling Algorithm

1 Initialize a min-priority queue Q;
2 U 1; LL NULL;

3 At node vs, create a label: L0
s (vs: ; 0; 0; 0);

4 Q.enqueue(L0
s);

5 while Q is not empty do

6 Lk
i Q.dequeue();

7 if Lk
i :OS + OS(�i;t) > U then continue;

8 for each edge (vi; vj) do

9 Create a label Ll
j for vj : Ll

j (Lk
i :�

S
vj : ; L

k
i :ÔS +

ô(vi; vj); Lk
i :OS + o(vi; vj); Lk

i :BS + b(vi; vj));

10 if Ll
j is not dominated by other labels on vj and

Ll
j :BS + BS(�j;t) < � and Ll

j :OS + OS(�j;t) < U

then

11 if Ll
j does not cover all the query keywords then

12 Q.enqueue(Ll
j);

13 for each label L on vj do

14 if L is dominated by Ll
j then

15 remove L from Q;

16 else

17 if Ll
j :BS + BS(�j;t) < � then

18 U Ll
j :OS + OS(�j;t);

19 LL Ll
j ;

20 else Q.enqueue(Ll
j);

21 if U is1 then return �No feasible route exits�;
22 else Obtain the route utilizing LL and return it;

feasible route (�rst, the budget score of Ll
j plus BS(�j;t), the best

budget score to vt, is larger than the budget constraint �; second,

the objective score of Ll
j plus OS(�j;t), the best objective score to

vt, is larger than the current upper bound U), we ignore the new la-

bel (line 10); Otherwise, if it does not cover all the query keywords,

we enqueue it into Q and use it to detect and delete the labels that

are dominated by it on vj (lines 11�15).

When we �nd that the current label Ll
j already covers all the

query keywords, a feasible solution is found and we update the

upper bound U (lines 16�20). First, if the budget score of Ll
j plus

the budget score of �j;t (the path with the best objective score from

vj to vt) is smaller than U , we update the upper bound U , and the

last label is also updated (lines 18�19); otherwise, we enqueue this

label into Q for later processing. Finally, if U is never updated,

we know that there exists no feasible route for the given query;

otherwise, we can construct the route using the label LL (lines 21�

22).

The following example illustrates how this algorithm works.

Figure 2: Steps of Example 2

Example 2: Consider the example graph in Figure 1, the query

Q = hv0; v7; ft1; t2g; 10i, and � is set as 0.5. The steps of the

algorithm are shown in Figure 2 and the contents of the labels gen-

erated are in Table 1.

Initially, we create a label L0
0=(;, 0, 0, 0) at node v0 and enqueue

it into Q. After we dequeue it from Q, as shown in step (a), we

generate the following three labels on all the outgoing neighbors of

v0: L0
1, L0

2, and L0
3. The three labels are also enqueued into Q.

In the next loop, L0
2 is selected because L0

2 � L0
3 � L0

1. As

shown in Step (b), we generate another two labels L1
3 and L0

6. Note

that the best budget score from v6 to v7 is 7 (BS(�6;7)=7), and thus

L0
6 can be ignored since L0

6:BS+BS(�6;7) (=11)> �. According

to the pre-processing results, OS(�3;7)=2 and BS(�3;7) =5. There-

fore, in step (c), we get a feasible route R1 = hv0; v2; v3; v4; v7i
with OS(R1) =6 and BS(R1)=10. The upper bound U is updated

as OS(R1), i.e., U=6.

Next, L0
3 on node v3 is selected. As shown in Step (d), we gen-

erate another three labels and enqueue them into Q: L1
1, L0

4, and

L0
5. Now label L0

5 already covers all the query keywords on v5.

According to the pre-processing results, from v5 to v7, the best ob-

jective score is 3 (OS(�5;7)=3) and the budget score of this path

is 4. Utilizing the pre-processing results, as shown in step (e), we

can obtain another feasible solution R2 = hv0; v3; v5; v4; v7i with

OS(R2)=8 and BS(R2)(=8) < � (Note that suppose �=7 in Q,

R2 will not be a feasible result. Instead, we enqueue the label L0
5

into Q, and in the next loop, we include the edge (v5; v7) and get a

feasible route hv0; v3; v5; v7i).
The rest labels are treated similarly, and the best route isR1. 2

L0
0 L0

1 L1
1 L0

2 L0
3 L1

3 L0
4 L0

5 L0
6

� ; ; t1 t2 t1 t1; t2 t1 t1; t2 t1; t2

ÔS 0 80 60 20 40 80 60 100 40

OS 0 4 3 1 2 4 3 5 2

BS 0 1 4 3 2 5 4 4 4

Table 1: Labels contents

Complexity: In each loop of OSScaling, we dequeue one label

fromQ. Thus, in the worst case we need jV jLmax loops according

to Lemma 1. Within one loop, 1) we generate new labels on a

node and check the domination on its outgoing neighbors, taking

O(jEjLmax) time by aggregate analysis; 2) we dequeue one label

and the complexity is O(lgLmax). Hence, we can conclude that

the worst time complexity is O(jV jLmaxlgLmax + jEjLmax)). In

practice, the number of loop is much smaller than the worst case

and the number of keywords of a query is quite small. Therefore,

the algorithm OSScaling is able to return the result ef�ciently.

By scaling the objective values of edges in G, the algorithm

OSScaling is able to guarantee an approximation bound.

Approximation Bound: We denote the route found by OSScaling
as ROS , and the feasible route with the smallest scaled objective

score in GS as RGS
. We have the following lemma:

Lemma 2: OS(RGS
) � OS(ROS).

Proof Sketch: In Algorithm 1, if we use the partial route with the

smallest scaled objective score to update the upper bound at node

vj (line 18), the algorithm returns RGS
. We denote the objective

score of a route from vp to vq as Op;q , and we know Os;j(RGS
) =

Os;j(ROS). According to the algorithm, Oj;t(RGS
) � �j;t =

Oj;t(ROS), and thus OS(RGS
) = Os;j(RGS

) + Oj;t(RGS
) �

�s;j(ROS) +Oj;t(ROS) = OS(ROS). 2

We denote the optimal route as Ropt. We have:

Theorem 2: OS(Ropt) � (1 ! �)OS(ROS).

1140

Proof Sketch: From ô = b o
�
c, we know that o ! � � �ô � o.

Therefore, OS(Ropt) =
P

e2Ropt
oe �

P
e2Ropt

�ôe. , then:

OS(Ropt) �
X

e2Ropt

�ôe �
X

e02RGS

�ôe0 �
X

e02RGS

(oe0 ! �)

�
X

e02RGS

oe0 ! b
�

bmin

c� �
X

e02RGS

oe0 ! �omin

Because
P

e02RGS

oe0 � omin, we can conclude that OS(Ropt) �

(1 ! �)
P

e02RGS

oe0 = (1 ! �)OS(RGS
) � (1 ! �)OS(ROS)

(according to Lemma 2). 2

We can see that the parameter � affects not only the running time

of this algorithm but also the accuracy. There is a tradeoff between

the ef�ciency and accuracy when selecting a value for �. With a

larger value of �, OSScaling runs faster but the accuracy would

drop; on the contrary, with a smaller value for � we can obtain

better routes but that needs longer query time.

Optimization: We design the following optimization strategies to

further improve Algorithm 1.

Optimization Strategy 1: When processing a label Lk
i at node

vi, in addition to the labels generated by following the outgoing

edges of vi in the graph, we also generate a label on a node vj such

that BS(�i;j) has the smallest value among all the nodes containing

a uncovered query keyword and Lk
i :BS +BS(�i;j) +BS(�j;t) �

�. The motivation of this strategy is to �nd a feasible solution as

early as possible, and then it is used to update the upper bound and

further to prune more labels.

Optimization Strategy 2: When the query contains some very

infrequent words, we can utilize the nodes that contain them to �nd

the result more ef�ciently. In Algorithm 1, when we decide if a

label Lk
i can be deleted, two speci�c conditions are checked: 1)

if Lk
i :OS + OS(�i;t) is smaller than U ; 2) if Lk

i :BS + BS(�i;t)
is smaller than �. We utilize the scores of the two pre-processed

routes from vi to the target node vt. But if the path from vi to the

nodes containing the infrequent words have large objective or bud-

get scores, we will waste a lot of time on extending the route from

vi. The reason is that, although the label Lk
i cannot be pruned by

the two conditions, it cannot generate useful labels, and this is not

known until we reach the nodes containing the infrequent words.

We �rst obtain all the nodes containing the least infrequent word

(which must be below a frequency threshold, such as appearing

in less than 1% nodes) utilizing the inverted �le; after we gener-

ate a label Lk
i , if it does not cover the least infrequent word, for

each node l, we check two conditions: 1) Lk
i :OS + OS(�i;l) +

OS(�l;t) > U ; 2) Lk
i :BS + BS(�i;l) + BS(�l;t) > �. If on each

node containing infrequent words at least one condition is satis�ed,

this label can be discarded.

3.3 Approximation Algorithm BucketBound

In the algorithm OSScaling, after we �nd a feasible solution,

we still have to keep searching for a better route until all the fea-

sible routes are checked. We propose a more ef�cient approximate

method denoted by BucketBound with provable approximation

bounds which is also based on scaling the objective scores into in-

tegers.

Before describing the proposed algorithm, we introduce the fol-

lowing lemma which lays a foundation of this algorithm.

Lemma 3: Given a label Lk
i at node vi, the best possible objective

score of the feasible routes that could be extended from the partial

path represented by Lk
i is Lk

i :OS +OS(�i;t). We denote the score

by LOW(Lk
i).

Proof Sketch: If �i;t and Lk
i cover all query keywords collectively,

they constitute the best route extending from Lk
i and its objective

score is equal to Lk
i :OS+OS(�i;t). Otherwise, another route from

vi to vt covering more keywords must be selected to construct a

feasible route. This route has larger objective score than that of

�i;t, which results in a larger objective score of the �nal route. 2

In this algorithm, we divide the traversed partial routes into dif-

ferent �buckets� according to their best possible objective scores.

We de�ne the buckets as follows:

De�nition 9: Label Buckets. The label buckets organize labels.

Each bucket is associated with an order number and corresponds to

an objective score interval�the rth bucket Br corresponds to the

following interval: [�r
OS(�s;t); �

r+1
OS(�s;t)); where OS(�s;t)

is the best objective score from vs to vt and � is a speci�ed param-

eter. A label Lk
i is in the bucket Br if:

�
r
OS(�s;t) � LOW(Lk

i) < �
r+1

OS(�s;t)

2
With this important de�nition, we proceed to present the approx-

imation algorithm BucketBound. We denote the route found by

OSScaling as ROS . The basic idea is as follows: We keep select-

ing labels (partial routes) from the buckets. When selecting a label,

we always choose the non-empty bucket with the smallest order

number, and then select a label with the lowest label order from it.

After a label Lk
i is generated, we compute the score LOW(Lk

i) and

we place this label to the corresponding bucket according to De�-

nition 9. Utilizing the label buckets enables us to �nd a novel way

to detect if a feasible route found is in the same bucket as ROS . If

we �nd such a route during the above procedure, we return it as the

result. We denote the route found by BucketBound as RBB .

We proceed to explain how to determine if the bucket where we

�nd a feasible route contains ROS .

This algorithm follows the basic label generation and selection

approach in OSScaling. However, the strategies of generating and

selecting labels are different. With such changed label generation

and selection strategies, we have the following lemma:

Lemma 4: If all the buckets Bi(i = 0; :::; r) are empty and no

feasible solution is found yet, the objective score of ROS satis�es:

OS(ROS) � �r+1
OS(�s;t).

Proof Sketch: Since any bucket Bi(i � r) is empty, we know the

label corresponding to ROS must be selected from the subsequent

buckets. Therefore, LOW(Ll
j) > �r+1

OS(�s;t). According to

Lemma 3, we know OS(ROS) � LOW(Ll
j) � �r+1

OS(�s;t).
2

Based on Lemma 4, we have Lemma 5. When the condition in

Lemma 5 is satis�ed, a feasible route and ROS fall into the same

bucket, and the algorithm terminates.

Lemma 5: When a feasible routeRBB is found in the bucketBr+1

and all the buckets B0, B1, ..., Br are empty, the route ROS found

by OSScaling is also contained in Br+1.

Proof Sketch: Because any bucket Bi(i � r) is empty, according

to Lemma 4, OS(ROS) � �r+1
OS(�s;t). Since OS(ROS) �

OS(RBB) (RBB is one feasible solution found in OSScaling), we

know �r+1
OS(�s;t) � OS(ROS) � OS(RBB) < �r+2

OS(�s;t).
According to De�nition 9, ROS also falls in Br+1. 2

Figure 3 illustrates the basic process of the proposed approxi-

mation algorithm BucketBound. As shown in the �gure, we �rst

select the labelLk
i from the bucketB0, and after the label treatment

the new label is put into the bucket B3. Since B0 becomes empty

now, we proceed to select labels from B1. If B0, B1, and B2 all

1141

Figure 3: Process of Algorithm 2

become empty, according to Lemma 4 we can know OS(ROS) �
�3

OS(�s;t). If now we �nd a feasible routeRBB in the bucketB3,

according to Lemma 5, it is assured that ROS also falls into B3,

and we return RBB as the result.

Unlike Algorithm 1, the approximation algorithm terminates im-

mediately when Lemma 5 is satis�ed, which means a feasible so-

lution is found. Note that the feasible solution may be different

from the �rst feasible solution found by Algorithm 1. This algo-

rithm is also capable of determining if a feasible route exists. If all

buckets are empty during the label selection step and no feasible

route found yet, there exists no result for KOR. This is because

that when all buckets are empty, all the labels generated do not sat-

isfy the budget constraint, which means that all the partial routes

generated from the source node exceed the budget limit �.

Algorithm 2: BucketBound Algorithm

1 Initialize a min-priority queue B0;
2 LL NULL; Found false;

3 At node vs, create label L0
s (vs: ; 0; 0; 0);

4 B0.enqueue(L0
s);

5 while Found is false do
6 Br the queue of the �rst non-empty bucket;
7 if All queues are empty then return �No feasible route exist�;

8 Lk
i Br .dequeue();

9 for each edge (vi; vj) do

10 Create a new label Ll
j for vj :

Ll
j (Lk

i :�
S
vj : ; L

k
i :ÔS + ô(vi; vj); Lk

i :OS +

o(vi; vj); Lk
i :BS + b(vi; vj));

11 if Ll
j is not dominated by other labels on vj and

Ll
j :BS + BS(�j;t) < � then

12 Find Bs that Ll
j falls into;

13 if Bs does not exist then
14 Initialize a priority queue Bs;

15 Bs.enqueue(Ll
j);

16 for each label L on vj do

17 if L is dominated by Ll
j then

18 remove L from the corresponding queue;

19 if Ll
j covers all the query keywords then

20 if Br and Bs are the same queue then

21 if Ll
j :BS + BS(�j;t) � � then

22 Found true;// Lemma 5

23 LL Ll
j ;

24 Obtain the route utilizing LL and return the route;

The algorithm is detailed in Algorithm 2. It uses a min-priority

queue for each bucket to organize the labels in the bucket. We ini-

tialize the �rst min-priority queue B0 (corresponding to the �rst

bucket with boundary [OS(�s;t), �OS(�s;t))); U and LL are ini-

tialized as in Algorithm 1. We initialize the �ag Found as false,

which records if a feasible route is found. We create a label at the

source node vs and enqueue it into B0 (lines 1�4). The algorithm

terminates when the �ag Found is true. We keep dequeuing labels

from Br which represents the non-empty bucket with the smallest

order number until we �nd a solution or no result exists(lines 5�

23). If all queues become empty, it is assured that no feasible route

exists (line 7). After we select a label Lk
i on node vi, for each out-

going neighbor vj of vi, we create a new label for it (line 10). When

a new label Ll
j is generated, we check: 1) if it can be dominated

by other labels on vj ; 2) if it cannot generate results de�nitely. If

so, we ignore it (line 11); Otherwise, we use it to delete labels on

vj that can be dominated by it, and we enqueue this label to the

corresponding bucket according to its best possible objective score

(lines 12�18). When Ll
j already covers all the query keywords and

also falls into Br , we still need to test if the path corresponding to

LOW(Ll
j) satis�es the budget constraint. If so, we �nd a solution

and exit the loop according to Lemma 5 (lines 19�23).

Theorem 3: Algorithm 2 offers the approximation ratio �

1!�
. Proof

Sketch: Assume that the solution RBB is found in Bk. According

to Lemma 5, the route found by OSScalingROS is also contained

in Bk. Thus, we have OS(ROS) � �k
OS(�st) and OS(RBB) <

�k+1
OS(�st). According to Theorem 2, we can get:

OS(RBB)
OS(Ropt)

=

OS(RBB)
OS(ROS)

OS(ROS)
OS(Ropt)

<
�k+1

OS(�st)

�kOS(�st)(1!�)
= �

1!�
2Although

BucketBound has the same worst case complexity as Algorithm 1,

it processes much fewer labels and is more ef�cient in practice.

Note that the two optimization strategies in OSScaling are still

applicable in BucketBound.

3.4 Greedy Algorithm
We propose an approximation algorithm using the greedy ap-

proach to solve KOR. It has no performance guarantee.

There are three constraints in the KOR problem: a) a set of

keywords must be covered; b) the objective score must be mini-

mized; c) the budget limit � must be satis�ed. As discussed in

Section 2, by considering only two of them, the problem is still

NP-hard. Therefore, a greedy approach normally cannot grantee

that two constraints are satis�ed. Since the keyword and budget

constraints are hard constraint, we design a greedy algorithm such

that it is able to �nd a route either covering all the query keywords

or satisfying the budget constraint, while minimizing the objective

score greedily.

The idea is that we start from the source node, and keep selecting

the next best node according to a certain strategy until we �nally

reach the target node. The strategy of selecting the next node affects

the results signi�cantly. We design a greedy strategy that takes

into account all the three constraints simultaneously to �nd the best

next node: a) the node contains uncovered query keywords; and

b) the best route that can be generated after including this node into

the current partial route is expected to have a small objective score

and ful�ll the budget constraint. We use a parameter � to balance

the importance of the objective and budget scores when selecting

a node: at node vi, when we extend the current partial route Ri

ending at vi, we select the node vj that minimizes the following

score:

score(vj ; Ri) = �(Ri:OS + OS(�i;j) + OS(�j;t))

+ (1 ! �)(Ri:BS + BS(�i;j) + BS(�j;t))
(1)

When � = 0, we select a node only based on the budget score, i.e.,

selecting the node such that the budget score of the corresponding

partial route plus the best budget score from the node to the target

node vt is the smallest. When � = 1, the algorithm �nds a node

such that the objective score of the corresponding partial route plus

the best objective score from the node to vt is minimized.

1142

Algorithm 3: Greedy Algorithm

1 nodeSet ;; wordSet Q:
 n vs: ;
2 vpre vs; OS 0; BS 0;
3 for each word wt 2 wordSet do

4 Get the location set lSet containing wt;
5 nodeSet nodeSet

S
lSet;

6 while wordSet is not empty do

7 minS argminvm2nodeSetscore(vm; Rpre);
8 OS OS + OS(�pre;m); BS BS + BS(�pre;m);
9 vpre vm;

10 wordSet wordSet n vm: ;
11 Remove the locations containing vm: from nodeSet;

12 OS OS + OS(�pre;t); BS BS + BS(�pre;t);
13 Return the route found with scores OS and BS;

The pseudocode is outlined in Algorithm 3. We use wordSet to

keep track of the uncovered query keywords and nodeSet to store

all the locations containing uncovered query keywords (line 1).

vpre denotes the node where the current partial path ends and is

initialized as vs. OS and BS are used to store the objective and

budget scores and both initialized to 0 (line 2). We utilize inverted

�le to �nd locations for nodeSet (lines 3�5). The algorithm termi-

nates when wordSet is empty. While it is not empty, we �nd the

best node according to Equation 1 (line 7), extend the partial route

(line 8�9), and update wordSet and nodeSet (lines 10�11). After

we exit the loop, we add the last segment from the partial route’s

last node to the target node vt to construct the �nal route and return

(lines 12�13).

Algorithm 3 may fail to �nd a feasible route even if there ex-

its a feasible one. In each step, it selects the next best node. If

we �nd more nodes at each step, the accuracy will be better while

the search space becomes much larger. Hence, it is a tradeoff be-

tween the accuracy and ef�ciency. In the experiments, we study the

performance of Algorithm 3 when the best 2 nodes are selected at

each step. We denote the algorithm selecting one node by Greedy-

1, and the algorithm selecting two nodes by Greedy-2. The worst

time complexity of Greedy-1 is O(mn) and for Greedy-2 it is

O(2mn), where m is the number of query keywords and n is the

number of nodes in the graph.

Algorithm 3 guarantees that the query keywords are always cov-

ered while the budget limit may not be satis�ed. This is desirable

when the query keywords are important to users (e.g., the users do

not want to miss any type of locations in their plan). However, if

the budget score is very important (e.g., the users cannot overrun

their money budget), we modify this algorithm slightly to accom-

modate the need. We return a route with budget score not exceed-

ing � while the query keywords may not be totally covered. We

break the while-loop when the current partial route cannot be ex-

tended any more. That is, in line 6 in Algorithm 3, we check if

L:BS + BS(�l;t) > � instead of if wordSet is empty.

3.5 Keyword-aware Top-k Optimal Route
Search

We further extend the KOR query to the keyword-aware top-k

route (KkR) query. Instead of �nding the optimal route de�ned

in KOR, the KkR query is to return the top-k routes starting and

ending at the given locations such that they have the best objective

scores, cover all the query keywords, and satisfy the given budget

constraint. We introduce how to modify the OSScaling algorithm

and the BucketBound algorithm for solving KkR approximately.

It is relatively straightforward to extend the two approximation

algorithms OSScaling and BucketBound for processing the KkR
query. Due to space limitations, we only brie�y present the exten-

sion. We need to introduce the de�nition of �k-dominate�. A label

is �k-dominated� if at least k labels dominate it. In the pseudocode

of OSScaling algorithm, we need to replace �dominate� by �k-

dominate.� Moreover, instead of keeping track of only the current

best result, we need to track the current best k results. The budget

score of the kth best route is used as the upper bound U to prune

unnecessary labels. Similarly, in the BucketBound algorithm, we

also apply �k-dominate�. Moreover, instead of returning immedi-

ately when we �nd a feasible route in the bucket containing ROS ,

the algorithm terminates when we �nd k feasible routes from the

non-empty bucket with the smallest order number.

Note that we do not extend the greedy algorithm for solving

KkR. The greedy approach is not able to guarantee that a feasi-

ble route can be found. Therefore, it is meaningless to return k

routes using such a method.

4. EXPERIMENTAL STUDY

4.1 Experimental Settings
Algorithms. We study the performance of the following proposed

algorithms: the approximation algorithm OSScaling in Section 3.2,

the approximation algorithm BucketBound in Section 3.3, and

the greedy algorithms in Section 3.4, denoted by Greedy-1 and

Greedy-2 corresponding to selecting the top-1 and top-2 best loca-

tions, respectively.

Additionally, we also implemented a naive brute-force approach

discussed in Section 3.2. However, it is at least 2 orders of magni-

tude slower than OSScaling and cannot �nish after 1 day, and thus

is omitted.

Data and queries. We use �ve datasets in our experimental study.

The �rst one is a real-life dataset collected from Flickr 3 using its

public API. We collected 1,501,553 geo-tagged photos taken by

30,664 unique users in the region of the New York city in the United

States. Each photo is associated with a set of user-annotated tags.

The latitude and the longitude of the place where the photo is taken

and its taken time are also collected. Following the work [15], we

utilize a clustering method to group the photos into locations. We

associate each location with tags obtained by aggregating the tags

of all photos in that location after removing the noisy tags, such

as tags contributed by only one user. Finally, we obtain 5,199 lo-

cations and 9,785 tags in total. Each location is associated with a

number of photos taken in the location. Next, we sort the photos

from the same user according to their taken time. If two consecu-

tive photos are taken at two different places and the taken time gap

is less than 1 day, we consider that the user made a trip between the

two locations, and we build an edge between them.

On each edge, the Euclidean distance between its two vertices

(locations) serves as the budget value. We compute a popularity

score for each edge following the idea of the work [4]. The pop-

ularity of an edge (vi; vj) is estimated as the probability of the

edge being visited: Pri;j =
Num(vi;vj)

T otalT rips
, where Num(vi; vj) is

the number of trips between vi and vj and TotalTrips is the to-

tal number of trips. The total popularity score of a route R =
(v0; v1; :::; vn) is computed as: PS(R) =

Qn

i=1 Pri!1;i. How-

ever, the popularity score should be maximized. To transform the

maximization problem to the minimization problem as de�ned in

KOR, we compute the objective score on each edge (vi; vj) as:

o(vi; vj) = log(1
P ri;j

). Therefore, if OS(R) is minimized, PS(R)

is maximized.

3http://www.�ickr.com/

1143

The other 4 datasets are generated from real data, mainly for

scalability experiment. By extracting the subgraph of the New York

road network 4, we obtain 4 datasets containing 5,000, 10,000,

15,000, and 20,000 nodes, respectively. Each node is associated

with a set of randomly selected tags from the real Flickr dataset.

The travel distance is used as the budget score, and we randomly

generate the objective score in the range (0,1) on each edge to cre-

ate the graphs for the four datasets.

We generate 5 query sets for the Flickr dataset, in which the num-

ber of keywords are 2, 4, 6, 8, and 10, respectively. The starting

and ending locations are selected randomly. Each set comprises 50

queries. Similarly, we also generate 5 query sets for each of the 4

other datasets.

All algorithms were implemented in VC++ and run on an In-

tel(R) Xeon(R) CPU X5650 @2.66GHz with 4GB RAM.

4.2 Experimental Results

4.2.1 Ef�ciency of Different Algorithms

The objective of this set of experiments is to study the ef�ciency

of the proposed algorithms with variation of the number of query

keywords and the budget limit � (travel distance). We set the value

for the scaling parameter � in OSScaling and BucketBound at 0.5,

the speci�ed parameter � at 1.2 for BucketBound, and the default

value for � in Greedy at 0.5. We conduct the experiment to study

the runtime when varying the value of � for OSScaling, and the

experiment to study the runtime when varying the value of � for

BucketBound (�=0.5). Note that the runtime of Greedy is not

affected by �.

1

10

100

1000

10000

100000

2 4 6 8 10

R
u
n
ti

m
e

(m
il

li
se

co
n
d
s)

number of query keywords

OSScaling
BucketBound

Greedy-2
Greedy-1

Figure 4: Runtime (Flickr)

1

10

100

1000

10000

100000

3 6 9 12 15

R
u
n
ti

m
e

(m
il

li
se

co
n
d
s)

D (kilometers)

OSScaling
BucketBound

Greedy-2
Greedy-1

Figure 5: Runtime (Flickr)

Varying the number of query keywords. Figure 4 shows the run-

time of the four algorithms on the Flickr dataset when we vary the

number of query keywords. For each number, we report the aver-

age runtime over �ve runs, each using a different �, namely 3, 6,

9, 12, and 15 kilometers, respectively. Note that the y-axis is in

logarithmic scale. We can see that all the algorithms are reasonably

ef�cient on this dataset. As expected, the algorithm OSScaling
runs much slower than the other three algorithms. BucketBound
is usually 8-10 times faster than OSScaling, although OSScaling
and BucketBound have the same worst time complexity. This

is because BucketBound terminates immediately when a feasi-

ble route is found in the bucket containing ROS , the route found

by OSScaling, and thus it generates much fewer labels than does

OSScaling. The worst time complexity of both OSScaling and

BucketBound is exponential in the number of query keywords.

However, as shown in the experiment, the runtime does not increase

dramatically as the number of query keywords is increased. This

is due to the two optimization strategies employed in both algo-

rithms. Without employing the optimization strategies, both algo-

rithms will be 3-5 times slower. Due to space limitations, we omit

the details.

4http://www.dis.uniroma1.it/ challenge9/download.shtml

Greedy-1 is the fastest since it only selects the best node in each

step. However, as to be shown, its accuracy is the worst. Greedy-

1 is not affected signi�cantly by the number of query keywords.

The runtime of Greedy-2 increases dramatically with the increase

of query keywords. This is because Greedy-2 selects the best 2

nodes at each step, and its asymptotically tight bound complexity

is exponential in the number of query keywords.

Varying the budget limit �. Figure 5 shows the runtime of the

four approaches on the Flickr dataset with the variation of �. At

each �, the average runtime is reported over 5 runs, each with a

different number of query keywords from 2 to 10. The runtime

of OSScaling grows when � increases from 3 km to 6 km as a

smaller � can prune more routes. However, as � continues to

increase, the runtime decreases slightly. This is due to the fact

that with a larger �, OSScaling �nds a feasible solution earlier

(since � is more likely to be satis�ed), and then the feasible solu-

tion can be used to prune the subsequent search space. The saving

dominates the extra cost incurred by using larger � (notice that

larger � deteriorates the worst-case performance rather than the

average performance). As for the other approximation algorithms,

their runtime is almost not affected by the budget limit as shown in

the �gure.

0

1000

2000

3000

0.1 0.3 0.5 0.7 0.9

R
u

n
ti

m
e

(m
il

li
se

co
n

d
s)

e

OSScaling

Figure 6: Runtime

1

1.005

1.01

1.015

1.02

0.1 0.3 0.5 0.7 0.9

R
el

at
iv

e
R

at
io

e

OSScaling

Figure 7: Relative Ratio

Varying the parameter � for OSScaling. Figure 6 shows the run-

time of OSScaling when we vary the value of �. We set � as 6

km and the number of query keywords as 6. It is observed that

OSScaling runs faster as the value of � increases. This is because

when � becomes larger, Lmax, the upper bound of the number of

labels on a node is decreased, and thus more labels (representing

partial routes) can be pruned during the algorithm. This is consis-

tent with the complexity analysis of OSScaling, which shows that

OSScaling runs linearly in 1
�
.

0

30

60

90

120

1.2 1.4 1.6 1.8 2.0

R
u

n
ti

m
e
 (

m
il

li
se

c
o

n
d

s)

b

BucketBound

Figure 8: Runtime

1

1.05

1.10

1.15

1.20

1.2 1.4 1.6 1.8 2.0

R
e
la

ti
v

e
 R

a
ti

o

b

BucketBound

Figure 9: Relative Ratio

Varying the parameter � for BucketBound. Figure 8 shows the

runtime of BucketBound when we vary the value of �, the spec-

i�ed parameter. In this set of experiments, �=6 km, �=0.5, and

the number of query keywords is 6. As expected, BucketBound
runs faster as the value of � increases. This is because when �

becomes larger, the interval of each bucket becomes larger and

each bucket can accommodate more labels. Hence, it is faster for

BucketBound to �nd a feasible solution in the bucket containing

the best route in G.

1144

4.2.2 Accuracy of Approximation Algorithms

The purpose of this set of experiments is to study the accuracy of

the approximation algorithms. The brute-forth method discussed

in Section 3.2 failed to �nish for most of settings after more than

1 day. We note that in the very few successful cases (small � and

keywords), the practical approximation ratios of OSScaling and

BucketBound are a lot smaller than their theoretical bounds, com-

pared with the exact results by the brute-forth method,. To make

the experiments tractable, we study the relative approximation ra-

tio. We use the result of OSScaling with �=0.1 (which has the

smallest approximation ratio in the proposed methods) as the base

and compare the relative performance of the other algorithms with

it. We compute the relative ratio of an algorithm over OSScaling
with �=0.1 as follows: For each query, we compute the ratio of the

objective score of the route found by the algorithm to the score of

the route found by OSScaling with �=0.1, and the average ratio

over all queries is �nally reported as the measure.

With the measure, we study the effect of the following parame-

ters on accuracy, namely the number of query keywords, the budget

limit �, the scaling parameter � in OSScaling, the speci�ed pa-

rameter � in BucketBound, and the parameter � which balances

the importance of the objective and budget scores during the node

selection, for Greedy.

1

1.1

1.2

1.3

1.4

2 4 6 8 10

R
el

at
iv

e
R

at
io

number of query keywords

BucketBound
Greedy-2
Greedy-1

Figure 10: Relative Ratio

1

1.1

1.2

1.3

1.4

3 6 9 12 15

R
el

at
iv

e
R

at
io

D (kilometer)

BucketBound
Greedy-2
Greedy-1

Figure 11: Relative Ratio

Varying the number of query keywords or �. Figure 10 shows

the relative ratio compared with the results of OSScaling with

�=0.1 for the experiment in Figure 4, in which we vary the num-

ber of query keywords. Figure 11 shows the relative ratio for the

experiment in Figure 5, in which we vary the value of budget limit

�, respectively. Note that �=0.5 and �=1.2 in the two experiments.

Since the greedy algorithms fail to �nd a feasible solution on

about 10%�20% queries, for greedy algorithms we measure the rel-

ative ratio only on the queries where Greedy-1 and Greedy-2 are

able to �nd feasible routes. For OSScaling and BucketBound, the

reported results are based on all queries, which are similar to the re-

sults if we only use the set of queries for which Greedy returns fea-

sible solutions. We observe that the relative ratio of BucketBound
compared with the results of OSScaling is always below the spec-

i�ed parameter �. It can also be observed that BucketBound can

achieve much better accuracy than do Greedy-1 and Greedy-2,

especially when the number of query keywords or the value of �
is large.

Varying the parameter � for OSScaling. Figure 7 shows the ef-

fect of � on the relative ratio in OSScaling. We set � as 6 kilome-

ters and the number of query keywords at 6. We can observe that

the relative ratio becomes worse as we increase �, which is consis-

tent with the result of Theorem 2, i.e., the performance bound of

OSScaling is 1
1!�

.

Varying the parameter � for BucketBound. Figure 9 shows the

effect of � on the relative ratio in BucketBound, while the corre-

sponding runtime is reported in Figure 8, where we set �=0.5, �=6

km, and the number of query keywords as 6. As expected, the rela-

tive ratio becomes worse as we increase �. Note that relative ratio

of BucketBound compared to the results of OSScaling is consis-

tently smaller than the speci�ed �.

1

1.2

1.4

1.6

0 0.25 0.50 0.75 1.00

R
el

at
iv

e
R

at
io

a

Greedy-1
Greedy-2

Figure 12: Relative Ratio

0

5

10

15

20

0 0.25 0.50 0.75 1.00

F
ai

lu
re

 P
er

ce
n

ta
g

e
%

a

Greedy-1
Greedy-2

Figure 13: Failure Percentage

Varying the parameter � for Greedy. Figure 12 shows the rela-

tive ratio of Greedy-1 and Greedy-2 compared with the results

of OSScaling when we vary �, and Figure 13 shows the per-

centage of failed queries. In this set of experiments, we set �
as 6 kilometers, and the average performance is reported over 5

runs, each with a different number of query keywords from 2 to

10. Note that the relative ratio is computed based on the set of

queries where Greedy-1 and Greedy-2 are able to �nd feasible

routes over the set of queries with feasible solutions (OSScaling
and BucketBound guarantee to return feasible results if any). We

observe that as the value of � increases the relative ratio becomes

worse for both Greedy-1 and Greedy-2, but they succeed in �nd-

ing feasible routes for more queries. When � is set as 0, which

means that the objective score is the only criterion when selecting

the node in each step of Greedy, both Greedy-1 and Greedy-2

achieve the best average ratio while the failure percentage is the

largest. When �=1, the next best node is selected merely based

on the budget score. Hence, Greedy is able to �nd feasible re-

sults on more queries, but the relative accuracy becomes much

worse on the queries for which Greedy is able to return feasible

solutions. Greedy-2 outperforms Greedy-1 consistently, because

more routes are checked in Greedy and it is likely to �nd more

feasible and better routes.

4.2.3 Comparing OSScaling and BucketBound

0

10

100

1000

10000

2 4 6 8 10

R
u

n
ti

m
e

(m
il

li
se

co
n

d
s)

Ratio

OSScaling
BucketBound

Figure 14: Runtime

1.03

1.06

1.09

1.12

1.15

2 4 6 8 10

R
el

at
iv

e
R

at
io

Ratio

OSScaling
BucketBound

Figure 15: Relative Ratio

The aim of this set of experiment is to compare the performance

of OSScaling and BucketBound when they have the same theo-

retical approximation ratio. In this set of experiments, �=6 km,

�=1.2, and the number of query keywords is 6. The values of �

are computed according to different performance bounds for both

algorithms. Figures 14 and 15 show the runtime and relative ratio

of OSScaling and BucketBound when we vary the performance

bound, respectively. We observe that BucketBound runs consis-

tently faster than OSScaling over all performance bounds while

OSScaling always achieves better relative ratio.

4.2.4 Performance of Algorithms for KkR

We study the performance of the modi�ed versions of the two

approximation algorithms, i.e., OSScaling and BucketBound for

1145

900

600

300

0
54321

R
un

tim
e

(m
ill

is
ec

on
ds

)

k

OSScaling
BucketBound

Figure 16: Runtime

10000
1000
100
10
1

20k15k10k5k

ru
nt

im
e

(m
ill

is
ec

on
ds

)

number of nodes

OSScaling
BucketBound

Greedy-2
Greedy-1

Figure 17: Scalability

processingKkR. We set� =0.5, � =1.2, � =6 km, and the aver-
age runtime is reported over 5 runs, each with a different number
of query keywords from 2 to 10. The results are shown in Fig-
ure 16.BucketBound always outperformsOSScaling in terms of
runtime. As expected, both algorithms run slower as we increase
the value ofk. In OSScaling, more labels need to be generated for
largerk, which leads to longer runtime. AlgorithmBucketBound
terminates only after the top-k feasible routes are found, thus need-
ing longer query time.

4.2.5 Experiments on More Datasets

10000
1000
100
10
1

108642

R
un

tim
e

(m
ill

is
ec

on
ds

)

number of query keywords

OSScaling
BucketBound

Greedy-2
Greedy-1

Figure 18: Runtime

10000
1000
100
10
1

1512963

R
un

tim
e

(m
ill

is
ec

on
ds

)

D (kilometer)

OSScaling
BucketBound

Greedy-2
Greedy-1

Figure 19: Runtime

We also conduct experiments on the synthetic dataset containing
5,000 nodes. Figure 18 and 19 show the runtime when we vary the
number of query keywords and the value of� , respectively. We
set � as 0.5 and� as 1.2. The comparison results are consistent
with those on the Flickr dataset. For the relative ratio, we observe
qualitatively similar results on this dataset as we do on Flickr. We
omit the results due to space limitations.

4.2.6 Scalability
Figure 17 shows the runtime of the proposed algorithms (the

number of query keywords is 6 and� =30 km). They all scale
well with the size of the dataset. The relative ratio changes only
slightly; we omit the details due to the space limitation.

4.2.7 Example

Figure 20: Example Route 1 Figure 21: Example Route 2

We use one example found in the Flickr dataset to show that
KOR is able to �nd routes according to users' various preferences.
We set the starting location at the Dewitt Clinton park and the des-
tination at United Nations Headquarters, and the query keywords
are “jazz”, “imax”, “vegetation”, and “Cappuccino”, i.e., a user

would like to �nd a route such that he can listen to jazz music,
watch a movie, eat vegetarian food and have a cup of Cappuccino.
When we set the distance threshold� as 9 km, the route shown
in Figure 20 is returned byOSScaling as the most popular route
that covers all query keywords and satis�es distance threshold. We
�nd that according to the historical trips, this route has the most
visitors among all routes covering all the query keywords shorter
than 9 km. However, when� is set as 6 km, the route shown in
Figure 21 is returned. This route has the most visitors among all
feasible routes given� =6 km. In the case, the route in Figure 20
exceeds the limit� =6 km and is pruned during the execution of
OSScaling algorithm.

5. RELATED WORK
Travel route search: The travel route search problem has received
a lot of attention. Li et al. [17] propose a new query called Trip
Planning Query (TPQ) in spatial databases, in which each spatial
object has a location and a category, and the objects are indexed
by an R-tree. A TPQ has three components: a start locations, an
end locationt, and a set of categoriesC, and it is to �nd the short-
est route that starts ats, passes through at least one object from
each category inC and ends att . It is shown that TPQ can be
reduced from the Traveling Salesman problem, which is NP-hard.
Based on the triangle inequality property of metric space, two ap-
proximation algorithms including a greedy algorithm and an inte-
ger programming algorithm are proposed. Compared with TPQ,
KOR studied in this paper includes an additional constraint (the
budget constraint), and thus is more expressive. The algorithms in
the work [17] cannot be used to processKOR.

Sharifzadeh et al. [22] study a variant problem of TPQ [17],
called optimal sequenced route query (OSR). In OSR, a total or-
der on the categoriesC is imposed and only the starting locations
is speci�ed. The authors propose two elegant exact algorithms L-
LORD and R-LORD. Under the same setting [17] that objects are
stored in spatial databases and indexed by an R-tree, metric space
based pruning strategies are developed in the two exact algorithms.

Chen et al. [3] considers the multi-rule partial sequenced route
(MRPSR) query, which is a uni�ed query of TPQ and OSR. Three
heuristic algorithms are proposed to answer MRPSR.KOR is dif-
ferent from OSR and MRPSR and the their algorithms are not ap-
plicable to processKOR.

Kanza et al. [14] consider a different route search query on the
spatial database: the length of the route should be smaller than a
speci�ed threshold while the total text relevance of this route is
maximized. Greedy algorithm is proposed without guaranteeing to
�nd a feasible route. Their subsequent work [12] develops several
heuristic algorithms for answering a similar query in an interac-
tive way. After visiting each object, the user provides feedback on
whether the object satis�es the query, and the feedback is consid-
ered when computing the next object to be visited. In the work [16],
approximate algorithms for solving OSR [22] in the presence of
order constraints in an interactive way are developed. Kanza et
al. also study the problem of searching optimal sequenced route in
probabilistic spatial database [13]. Lu et al. [18] consider the same
query [14] and propose a data mining-based approach. The queries
considered in these works are different fromKOR and these algo-
rithms cannot be used to answerKOR.

Malviya et al. [20] tackle the problem of answering continu-
ous route planning queries over a road network. The route plan-
ning [20] aims to �nd the shortest path in the presence of updates
to the delay estimates. Roy et al. [21] consider the problem of in-
teractive trip planning, in which the users give feedbacks for the

1146

