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Chapter 1.2 Introduction to 

HDFS, YARN, and MapReduce
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Part 1: HDFS
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File System

❖ A filesystem is the methods and data structures that an operating 

system uses to keep track of files on a disk or partition; that is, the 

way the files are organized on the disk.
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How to Move Data to Workers?

Compute Nodes

NAS

SAN

What’s the problem here?

In many traditional cluster architectures, storage 

is viewed as a distinct and separate component 

from computation.

As dataset sizes increase, the link between the 

compute nodes and the storage becomes a 

bottleneck!
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Latency and Throughput

❖ Latency is the time required to perform some action or to produce 

some result. 

➢ Measured in units of time -- hours, minutes, seconds, 

nanoseconds or clock periods.

➢ I/O latency: the time that it takes to complete a single I/O.

❖ Throughput is the number of such actions executed or results 

produced per unit of time. 

➢ Measured in units of whatever is being produced (e.g., data) per 

unit of time. 

➢ Disk throughput: the maximum rate of sequential data transfer, 

measured by Mb/sec etc.
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Distributed File System

❖ Don’t move data to workers… move workers to the data!

➢ Store data on the local disks of nodes in the cluster

➢ Start up the workers on the node that has the data local

❖ Why?

➢ Not enough RAM to hold all the data in memory

➢ Disk access is slow (low-latency), but disk throughput is 

reasonable (high throughput)

❖ A distributed file system is the answer

➢ A distributed file system is a client/server-based application that 

allows clients to access and process data stored on the server as 

if it were on their own computer

➢ GFS (Google File System) for Google’s MapReduce

➢ HDFS (Hadoop Distributed File System) for Hadoop
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Assumptions and Goals of HDFS

❖ Very large datasets

➢ 10K nodes, 100 million files, 10PB

❖ Streaming data access

➢ Designed more for batch processing rather than interactive use by 

users

➢ The emphasis is on high throughput of data access rather than 

low latency of data access.

Simple coherency model

➢ Built around the idea that the most efficient data processing 

pattern is a write-once read-many-times pattern

➢ A file once created, written, and closed need not be changed 

except for appends and truncates

“Moving computation is cheaper than moving data”

➢ Data locations exposed so that computations can move to where 

data resides
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Assumptions and Goals of HDFS (Cont’)

❖ Assumes Commodity Hardware

➢ Files are replicated to handle hardware failure

➢ Hardware failure is normal rather than exception. Detect failures 

and recover from them

❖ Portability across heterogeneous hardware and software platforms

➢ designed to be easily portable from one platform to another

❖ HDFS is not suited for:

➢ Low-latency data access (HBase is a better option)

➢ Lots of small files (NameNodes hold metadata in memory)
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HDFS Features

❖ The Hadoop Distributed File System (HDFS) is a distributed file 

system designed to run on commodity hardware.

❖ Basic Features:

➢ Suitable for applications with large data sets

➢ Streaming access to file system data

➢ High throughput

➢ Can be built out of commodity hardware 

➢ Highly fault-tolerant
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HDFS Architecture

❖ HDFS is a block-structured file system: Files broken into blocks of 

64MB or 128MB

❖ A file can be made of several blocks, and they are stored across a 

cluster of one or more machines with data storage capacity. 

❖ Each block of a file is replicated across a number of machines, To 

prevent loss of data.
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HDFS Architecture

❖ HDFS has a master/slave architecture.

❖ There are two types (and a half) of machines in a HDFS cluster

➢ NameNode: the heart of an HDFS filesystem,  it maintains and 

manages the file system metadata. E.g., what blocks make up a 

file, and on which datanodes those blocks are stored.

 Only one in an HDFS cluster

➢ DataNode: where HDFS stores the actual data. Serves read, write 

requests, performs block creation, deletion, and replication upon 

instruction from Namenode

 A number of DataNodes usually one per node in a cluster.

 A file is split into one or more blocks and set of blocks are 

stored in DataNodes.

➢ Secondary NameNode: NOT a backup of NameNode!!

 Checkpoint node. Periodic merge of Transaction log

 Help NameNode start up faster next time
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HDFS Architecture
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Functions of a NameNode

❖ Managing the file system namespace:

➢ Maintain the namespace tree operations like opening, closing, and 

renaming files and directories.

➢ Determine the mapping of file blocks to DataNodes (the physical 

location of file data). 

➢ Store file metadata.

❖ Coordinating file operations:

➢ Directs clients to DataNodes for reads and writes

➢ No data is moved through the NameNode

❖ Maintaining overall health:

➢ Collect block reports and heartbeats from DataNodes

➢ Block re-replication and rebalancing

➢ Garbage collection
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NameNode Metadata

❖ HDFS keeps the entire namespace in RAM, allowing fast access to the 

metadata.

➢ 4GB of local RAM is sufficient

❖ Types of metadata

➢ List of files

➢ List of Blocks for each file

➢ List of DataNodes for each block

➢ File attributes, e.g. creation time, replication factor

❖ A Transaction Log (EditLog)

➢ Records file creations, file deletions etc
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Functions of DataNodes

❖ Responsible for serving read and write requests from the file system’s 

clients. 

❖ Perform block creation, deletion, and replication upon instruction from 

the NameNode.

❖ Periodically sends a report of all existing blocks to the NameNode 

(Blockreport)

❖ Facilitates Pipelining of Data

➢ Forwards data to other specified DataNodes
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❖ Heartbeats

➢ DataNodes send heartbeats to the NameNode to confirm that the 

DataNode is operating and the block replicas it hosts are 

available. 

 Once every 3 seconds

➢ The NameNode marks DataNodes without recent Heartbeats as 

dead and does not forward any new IO requests to them

❖ Blockreports

➢ A Blockreport contains a list of all blocks on a DataNode

❖ The Namenode receives a Heartbeat and a BlockReport from each 

DataNode in the cluster periodically

Communication between NameNode and DataDode
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Communication between NameNode and DataDode

❖ TCP – every 3 seconds a Heartbeat

❖ Every 10th heartbeat is a Blockreport

❖ Name Node builds metadata from Blockreports

❖ If Name Node is down, HDFS is down
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Inside NameNode

❖ FsImage - the snapshot of the filesystem when NameNode started

➢ A master copy of the metadata for the file system

❖ EditLogs - the sequence of changes made to the filesystem after 

NameNode started



1.20

Inside NameNode

❖ Only in the restart of NameNode, EditLogs are applied to FsImage to 

get the latest snapshot of the file system.

❖ But NameNode restart are rare in production clusters which means 

EditLogs can grow very large for the clusters where NameNode runs 

for a long period of time.

➢ EditLog become very large , which will be challenging to manage it

➢ NameNode restart takes long time because lot of changes has to

be merged

➢ In the case of crash, we will lose huge amount of metadata since 

FsImage is very old

❖ How to overcome this issue?
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Secondary NameNode

❖ Secondary NameNode helps to overcome the above issues by taking 

over responsibility of merging EditLogs with FsImage from the 

NameNode.

➢ It gets the EditLogs from the NameNode periodically and applies 

to FsImage

➢ Once it has new FsImage, it copies back to NameNode

➢ NameNode will use this FsImage for the next restart, which will 

reduce the startup time
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File System Namespace

❖ Hierarchical file system with directories and files

➢ /user/comp9313

❖ Create, remove, move, rename etc.

❖ NameNode maintains the file system

❖ Any meta information changes to the file system recorded by the 

NameNode (EditLog).

❖ An application can specify the number of replicas of the file needed: 

replication factor of the file. 
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HDFS Commands

❖ All HDFS commands are invoked by the bin/hdfs script. Running the 

hdfs script without any arguments prints the description for all 

commands.

❖ Usage: hdfs [SHELL_OPTIONS] COMMAND [GENERIC_OPTIONS] 

[COMMAND_OPTIONS]

➢ hdfs dfs [COMMAND [COMMAND_OPTIONS]]

➢ Run a filesystem command on the file system supported in 

Hadoop. The various COMMAND_OPTIONS can be found at File 

System Shell Guide.

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/FileSystemShell.html
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Data Replication

❖ The NameNode makes all decisions regarding replication of blocks.
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File Read Data Flow in HDFS
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File Write Data Flow in HDFS
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Replication Engine

❖ NameNode detects DataNode failures

➢ Missing Heartbeats signify lost Nodes

➢ NameNode consults metadata, finds affected data

➢ Chooses new DataNodes for new replicas

➢ Balances disk usage

➢ Balances communication traffic to DataNodes
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Cluster Rebalancing

❖ Goal: % disk full on DataNodes should be similar

➢ Usually run when new DataNodes are added

➢ Rebalancer is throttled to avoid network congestion

➢ Does not interfere with MapReduce or HDFS

➢ Command line tool
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Fault tolerance

❖ Failure is the norm rather than exception

❖ A HDFS instance may consist of thousands of server machines, each 

storing part of the file system’s data.

❖ Since we have huge number of components and that each component 

has non-trivial probability of failure means that there is always some 

component that is non-functional.

❖ Detection of faults and quick, automatic recovery from them is a core 

architectural goal of HDFS.
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Metadata Disk Failure

❖ FsImage and EditLog are central data structures of HDFS. A 

corruption of these files can cause a HDFS instance to be non-

functional. 

➢ A NameNode can be configured to maintain multiple copies of the 

FsImage and EditLog

➢ Multiple copies of the FsImage and EditLog files are updated 

synchronously
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HDFS Erasure Coding

❖ Replication is expensive – the default 3x replication scheme in HDFS 

has 200% overhead in storage space and other resources. 

❖ Therefore, a natural improvement is to use Erasure Coding (EC) in 

place of replication, which provides the same level of fault-tolerance 

with much less storage space. 

➢ Erasure Coding transforms a message of k symbols into a longer 

message with n symbols such that the original message can be 

recovered from a subset of the n symbols.

➢ In typical Erasure Coding (EC) setups, the storage overhead is no 

more than 50%. Replication factor of an EC file is meaningless. It 

is always 1 and cannot be changed via -setrep command.



1.32

Unique features of HDFS

❖ HDFS has a bunch of unique features that make it ideal for distributed 

systems:

➢ Failure tolerant - data is duplicated across multiple DataNodes to 

protect against machine failures. The default is a replication factor 

of 3 (every block is stored on three machines).

➢ Scalability - data transfers happen directly with the DataNodes so 

your read/write capacity scales fairly well with the number of 

DataNodes

➢ Space - need more disk space? Just add more DataNodes and re-

balance

➢ Industry standard - Other distributed applications are built on top 

of HDFS (HBase, MapReduce)

❖ HDFS is designed to process large data sets with write-once-read-

many semantics, it is not for low latency access
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Part 2: YARN
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Why YARN

❖ In Hadoop version 1, MapReduce performed both processing and 

resource management functions. 

➢ It consisted of a Job Tracker which was the single master. The 

Job Tracker allocated the resources, performed scheduling and 

monitored the processing jobs.

➢ It assigned map and reduce tasks on a number of subordinate 

processes called the Task Trackers. The Task Trackers 

periodically reported their progress to the Job Tracker.
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What is YARN

❖ YARN - “Yet Another Resource Negotiator”

➢ The resource management layer of Hadoop, introduced in Hadoop 

2.x

➢ monitors and manages workloads, maintains a multi-tenant 

environment, manages the high availability features of Hadoop, 

and implements security controls

❖ Motivation:

➢ Flexibility - Enabling data processing model more than 

MapReduce

➢ Efficiency - Improving performance and QoS

➢ Resource Sharing - Multiple workloads in cluster
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What is YARN

❖ YARN was introduced in Hadoop version 2.0 in the year 2012 by 

Yahoo and Hortonworks. 

❖ The basic idea behind YARN is to relieve MapReduce by taking over 

the responsibility of Resource Management and Job Scheduling. 

❖ YARN enabled the users to perform operations as per requirement by 

using a variety of tools like Spark for real-time processing, Hive for 

SQL, HBase for NoSQL and others. 
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YARN Framework
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YARN Components

❖ ResourceManager

➢ Arbitrates resources among all the applications in the system 

❖ ApplicationMaster

➢ A framework specific library and is tasked with negotiating 

resources from the ResourceManager and working with the 

NodeManager(s) to execute and monitor the tasks

❖ NodeManager

➢ The per-machine framework agent who is responsible for 

containers, monitoring their resource usage (cpu, memory, disk, 

network) and reporting the same to the ResourceManager

❖ Container

➢ Unit of allocation incorporating resource elements such as 

memory, cpu, disk, network etc, to execute a specific task of the 

application
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Resource Manager

❖ It is the ultimate authority in resource allocation. 

❖ On receiving the processing requests, it passes parts of requests to 

corresponding node managers accordingly, where the actual 

processing takes place.

❖ It is the arbitrator of the cluster resources and decides the allocation of 

the available resources for competing applications.

❖ Optimizes the cluster utilization like keeping all resources in use all the 

time against various constraints such as capacity guarantees, 

fairness, and SLAs.

❖ It has two major components:  

➢ a) Scheduler

➢ b) Application Manager
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Scheduler

❖ The scheduler is responsible for allocating resources to the various 

running applications subject to constraints of capacities, queues etc.

❖ It is called a pure scheduler in ResourceManager, which means that it 

does not perform any monitoring or tracking of status for the 

applications.

❖ If there is an application failure or hardware failure, the Scheduler 

does not guarantee to restart the failed tasks.

❖ Performs scheduling based on the resource requirements of the 

applications.

❖ It has a pluggable policy plug-in, which is responsible for partitioning 

the cluster resources among the various applications. There are two 

such plug-ins: Capacity Scheduler and Fair Scheduler, which are 

currently used as Schedulers in ResourceManager.
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Application Manager

❖ It is responsible for accepting job submissions.

❖ Negotiates the first container from the ResourceManager for executing 

the application specific ApplicationMaster.

❖ Manages running the ApplicationMasters in a cluster and provides 

service for restarting the ApplicationMaster container on failure.



1.42

Node Manager

❖ It takes care of individual nodes in a Hadoop cluster and manages 

user jobs and workflow on the given node.

❖ It registers with the ResourceManager and sends heartbeats with the 

health status of the node.

❖ Its primary goal is to manage application containers assigned to it by 

the resource manager.

❖ It keeps up-to-date with the ResourceManager.

❖ Application Master requests the assigned container from the 

NodeManager by sending it a Container Launch Context(CLC) which 

includes everything the application needs in order to run. The 

NodeManager creates the requested container process and starts it.

❖ Monitors resource usage (memory, CPU) of individual containers.

❖ Performs Log management.

❖ It also kills the container as directed by the ResourceManager.
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Application Master

❖ An application is a single job submitted to the framework. Each such 

application has a unique Application Master associated with it which is 

a framework specific entity.

❖ It is the process that coordinates an application’s execution in the 

cluster and also manages faults.

❖ Its task is to negotiate resources from the ResourceManager and work 

with the NodeManager to execute and monitor the component tasks.

❖ It is responsible for negotiating appropriate resource containers from 

the ResourceManager, tracking their status and monitoring progress.

❖ Once started, it periodically sends heartbeats to the 

ResourceManager to affirm its health and to update the record of its 

resource demands.
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Container

❖ It is a collection of physical resources such as RAM, CPU cores, and 

disks on a single node.

❖ YARN containers are managed by a container launch context which is 

container life-cycle(CLC). This record contains a map of environment 

variables, dependencies stored in a remotely accessible storage, 

security tokens, payload for NodeManager services and the command 

necessary to create the process.

❖ It grants rights to an application to use a specific amount of resources 

(memory, CPU etc.) on a specific host.
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Application Workflow in YARN

❖ Execution Sequence

➢ 1. A client program submits the application 

➢ 2. ResourceManager allocates a specified container to start the 

ApplicationMaster

➢ 3. ApplicationMaster, on boot-up, registers with ResourceManager

➢ 4. ApplicationMaster negotiates with ResourceManager for 

appropriate resource containers 

➢ 5. On successful container allocations, ApplicationMaster contacts 

NodeManager to launch the container 

➢ 6. Application code is executed within the container, and then 

ApplicationMaster is responded with the execution status 

➢ 7. During execution, the client communicates directly with 

ApplicationMaster or ResourceManager to get status, progress 

updates etc. 

➢ 8. Once the application is complete, ApplicationMaster unregisters 

with ResourceManager and shuts down, allowing its own 

container process
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Part 3: MapReduce
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What is MapReduce

❖ Origin from Google, [OSDI’04]

➢ MapReduce: Simplified Data Processing on Large Clusters

➢ Jeffrey Dean and Sanjay Ghemawat

❖ Programming model for parallel data processing

❖ Hadoop can run MapReduce programs written in various languages:

e.g. Java, Ruby, Python, C++

❖ For large-scale data processing

➢ Exploits large set of commodity computers

➢ Executes process in a distributed manner

➢ Offers high availability

http://static.googleusercontent.com/media/research.google.com/en/archive/mapreduce-osdi04.pdf
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Motivation for MapReduce

❖ Typical big data problem challenges:

➢ How do we break up a large problem into smaller tasks that can 

be executed in parallel?

➢ How do we assign tasks to workers distributed across a potentially 

large number of machines?

➢ How do we ensure that the workers get the data they need?

➢ How do we coordinate synchronization among the different 

workers?

➢ How do we share partial results from one worker that is needed by 

another?

➢ How do we accomplish all of the above in the face of software 

errors and hardware faults?
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Motivation for MapReduce

❖ There was need for an abstraction that hides many system-level 

details from the programmer.

❖ MapReduce addresses this challenge by providing a simple 

abstraction for the developer, transparently handling most of the 

details behind the scenes in a scalable, robust, and efficient

manner.

❖ MapReduce separates the what from the how
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Typical Big Data Problem

❖ Iterate over a large number of records

❖ Extract something of interest from each

❖ Shuffle and sort intermediate results

❖ Aggregate intermediate results

❖ Generate final output

Key idea: provide a functional abstraction 

for these two operations
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The Idea of MapReduce

❖ Inspired by the map and reduce functions in functional programming

❖ We can view map as a transformation over a dataset

➢ This transformation is specified by the function f

➢ Each functional application happens in isolation 

➢ The application of f to each element of a dataset can be 

parallelized in a straightforward manner

❖ We can view reduce as an aggregation operation

➢ The aggregation is defined by the function g

➢ Data locality: elements in the list must be “brought together” 

➢ If we can group elements of the list, also the reduce phase can 

proceed in parallel

❖ The framework coordinates the map and reduce phases:

➢ Grouping intermediate results happens in parallel
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Everything Else?

❖ Handles scheduling

➢ Assigns workers to map and reduce tasks

❖ Handles “data distribution”

➢ Moves processes to data

❖ Handles synchronization

➢ Gathers, sorts, and shuffles intermediate data

❖ Handles errors and faults

➢ Detects worker failures and restarts

❖ Everything happens on top of a distributed file system (HDFS)

❖ You don’t know:

➢ Where mappers and reducers run

➢ When a mapper or reducer begins or finishes

➢ Which input a particular mapper is processing

➢ Which intermediate key a particular reducer is processing
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Philosophy to Scale for Big Data Processing

Divide Work

Combine 

Results
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Distributed Word Count

Merge

Block2 Block3 …Block1 Block4

Huge Document

Comptuer2 Comptuer3Comptuer1 Comptuer4 …

Partial Count2 Partial Count3Partial Count1 Partial Count4

Final Result

…
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Distributed Word Count

❖ Challenges?

➢ Where to store the huge document dataset?

➢ How to split the dataset into different blocks?

 How many blocks?

 The size of each block?

➢ What can we do if one node lost the data it received?

➢ What can we do if one node cannot be connected?

➢ … …
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MapReduce Example - WordCount

❖ Hadoop MapReduce is an implementation of MapReduce

➢ MapReduce is a computing paradigm (Google)

➢ Hadoop MapReduce is an open-source software
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Hadoop MapReduce Brief Data Flow

❖ 1. Mappers read from HDFS

❖ 2. Map output is partitioned by key and sent to Reducers

❖ 3. Reducers sort input by key

❖ 4. Reduce output is written to HDFS

❖ Intermediate results are stored on local FS of Map and Reduce 

workers



End of Chapter 1.1



1.59

References

❖ HDFS Architecture. https://hadoop.apache.org/docs/stable/hadoop-

project-dist/hadoop-hdfs/HdfsDesign.html

❖ Understanding Hadoop Clusters and the Network. 

https://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-

and-the-network/

❖ YARN tutorial. https://www.edureka.co/blog/hadoop-yarn-tutorial/

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-and-the-network/
https://www.edureka.co/blog/hadoop-yarn-tutorial/

