
COMP9313: Big Data Management

Lecturer: Xin Cao
Course web site: http://www.cse.unsw.edu.au/~cs9313/

2.2

Chapter 2.1: MapReduce

2.3

MapReduce Example - WordCount

❖ Hadoop MapReduce is an implementation of MapReduce

➢ MapReduce is a computing paradigm (Google)

➢ Hadoop MapReduce is an open-source software

2.4

Data Structures in MapReduce

❖ Key-value pairs are the basic data structure in MapReduce

➢ Keys and values can be: integers, float, strings, raw bytes

➢ They can also be arbitrary data structures, but must be

comparable (for sorting)

❖ The design of MapReduce algorithms involves:

➢ Imposing the key-value structure on arbitrary datasets

 E.g.: for a collection of Web pages, input keys may be URLs

and values may be the HTML content

➢ In some algorithms, input keys are not used (e.g., wordcount), in

others they uniquely identify a record

➢ Keys can be combined in complex ways to design various

algorithms

2.5

Map and Reduce Functions

❖ Programmers specify two functions:

➢ map (k1, v1) → list [<k2, v2>]

 Map transforms the input into key-value pairs to process

➢ reduce (k2, list [v2]) → [<k3, v3>]

 Reduce aggregates the list of values for each key

 All values with the same key are sent to the same reducer

➢ list [<k2, v2>] will be grouped according to key k2 as (k2, list [v2])

❖ The MapReduce environment takes in charge of everything else…

❖ A complex program can be decomposed as a succession of Map and
Reduce tasks

2.6

Understanding MapReduce

❖ Map>>

➢ (K1, V1) →

 Info in

 Input Split

➢ list (K2, V2)

 Key / Value out

(intermediate values)

 One list per local

node

 Can implement local

Reducer (or

Combiner)

Reduce

(K2, list(V2)) →

 Shuffle / Sort phase

precedes Reduce phase

 Combines Map output

into a list

list (K3, V3)

 Usually aggregates

intermediate values

(input) <k1, v1>→map→ <k2, v2> → combine→ <k2, list(V2)> → reduce→ <k3, v3> (output)

Shuffle/Sort>>

2.7

WordCount - Mapper

Let’s count number of each word in documents (e.g., Tweets/Blogs)

➢ Reads input pair <k1,v1>

 The input to the mapper is in format of <docID, docText>:

<D1,“Hello World” >,<D2,“Hello Hadoop Bye Hadoop” >

➢ Outputs pairs <k2, v2>

 The output of the mapper is in format of <term, 1>:

<Hello, 1><World, 1><Hello, 1><Hadoop, 1><Bye, 1><Hadoop, 1>

➢ After shuffling and sort, reducer receives <k2, list(v2)>

<Hello, {1, 1}><World, {1}><Hadoop, {1, 1}><Bye, {1}>

➢ The output is in format of <k3, v3>:

<Hello, 2><World, 1><Hadoop, 2><Bye, 1>

2.8

A Brief View of MapReduce

2.9

Shuffle and Sort

❖ Shuffle

➢ Input to the Reducer is the sorted output of the mappers. In this

phase the framework fetches the relevant partition of the output of

all the mappers, via HTTP.

❖ Sort

➢ The framework groups Reducer inputs by keys (since different

Mappers may have output the same key) in this stage.

❖ Hadoop framework handles the Shuffle and Sort step .

2.10

“Hello World” in MapReduce

2.11

“Hello World” in MapReduce

❖ Input:

➢ Key-value pairs: (docid, doc) of a file stored on the distributed

filesystem

➢ docid : unique identifier of a document

➢ doc: is the text of the document itself

❖ Mapper:

➢ Takes an input key-value pair, tokenize the line

➢ Emits intermediate key-value pairs: the word is the key, and the

integer is the value

❖ The framework:

➢ Guarantees all values associated with the same key (the word)

are brought to the same reducer

❖ The reducer:

➢ Receives all values associated to some keys

➢ Sums the values and writes output key-value pairs: the key is the

word, and the value is the number of occurrences

2.12

Write Your Own WordCount in Java?

2.13

MapReduce Program

❖ A MapReduce program consists of the following 3 parts:

➢ Driver → main (would trigger the map and reduce methods)

➢ Mapper

➢ Reducer

➢ It is better to include the map reduce and main methods in 3

different classes

❖ Check detailed information of all classes at:

https://hadoop.apache.org/docs/r3.3.1/api/allclasses-noframe.html

https://hadoop.apache.org/docs/r3.3.1/api/allclasses-noframe.html

2.14

Mapper

public class TokenizerMapper

extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(Object key, Text value, Context context) throws

IOException, InterruptedException {

StringTokenizer itr = new

StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {

word.set(itr.nextToken());

context.write(word, one);

}

}

}

2.15

Mapper Explanation

❖ Maps input key/value pairs to a set of intermediate key/value pairs.

//Map class header

public class TokenizerMapper

extends Mapper<Object, Text, Text, IntWritable>{

➢ Class Mapper<KEYIN,VALUEIN,KEYOUT,VALUEOUT>

 KEYIN,VALUEIN -> (k1, v1) -> (docid, doc)

 KEYOUT,VALUEOUT ->(k2, v2) -> (word, 1)

// IntWritable: A serializable and comparable object for integer

private final static IntWritable one = new IntWritable(1);

//Text: stores text using standard UTF8 encoding. It provides methods to

serialize, deserialize, and compare texts at byte level

private Text word = new Text();

//hadoop supported data types for the key/value pairs, in package

org.apache.hadoop

https://hadoop.apache.org/docs/r2.7.2/api/org/apache/hadoop/io/BinaryComparable.html

2.16

What is Writable?

❖ Hadoop defines its own “box” classes for strings (Text), integers

(IntWritable), etc.

❖ All values must implement interface Writable

❖ All keys must implement interface WritableComparable

❖ Writable is a serializable object which implements a simple, efficient,

serialization protocol

2.17

Mapper Explanation (Cont’)

//Map method header

public void map(Object key, Text value, Context context) throws

IOException, InterruptedException

➢ Object key/Text value: Data type of the input Key and Value to the

mapper

➢ Context: An inner class of Mapper, used to store the context of a

running task. Here it is used to collect data output by either the

Mapper or the Reducer, i.e. intermediate outputs or the output of

the job

➢ Exceptions: IOException, InterruptedException

➢ This function is called once for each key/value pair in the input

split. Your application should override this to do your job.

2.18

Mapper Explanation (Cont’)

//Use a string tokenizer to split the document into words

StringTokenizer itr = new StringTokenizer(value.toString());

//Iterate through each word and a form key value pairs

while (itr.hasMoreTokens()) {

//Assign each work from the tokenizer(of String type) to a Text ‘word’

word.set(itr.nextToken());

//Form key value pairs for each word as <word, one> using context

context.write(word, one);

}

❖ Map function produces Map.Context object

➢ Map.context() takes (k, v) elements

❖ Any (WritableComparable, Writable) can be used

2.19

Reducer

public class IntSumReducer

extends Reducer<Text,IntWritable,Text,IntWritable> {

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,

Context context) throws IOException,

InterruptedException{

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

context.write(key, result);

}

}

2.20

Reducer Explanation

//Reduce Header similar to the one in map with different key/value data type

public class IntSumReducer

extends Reducer<Text, IntWritable, Text, IntWritable>

//data from map will be <”word”,{1,1,..}>, so we get it with an Iterator and thus we

can go through the sets of values

public void reduce(Text key, Iterable<IntWritable> values,

Context context) throws IOException, InterruptedException{

//Initaize a variable ‘sum’ as 0

int sum = 0;

//Iterate through all the values with respect to a key and sum up all of them

for (IntWritable val : values) {

sum += val.get();

}

// Form the final key/value pairs results for each word using context

result.set(sum);

context.write(key, result);

2.21

Main (Driver)

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = Job.getInstance(conf, "word count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

}

2.22

Main(The Driver)

❖ Given the Mapper and Reducer code, the short main() starts the

MapReduce running

❖ The Hadoop system picks up a bunch of values from the command

line on its own

❖ Then the main() also specifies a few key parameters of the problem in

the Job object

❖ Job is the primary interface for a user to describe a map-reduce job to

the Hadoop framework for execution (such as what Map and Reduce

classes to use and the format of the input and output files)

❖ Other parameters, i.e. the number of machines to use, are optional

and the system will determine good values for them if not specified

❖ Then the framework tries to faithfully execute the job as-is described

by Job

2.23

Main Explanation

//Creating a Configuration object and a Job object, assigning a job name for

identification purposes

Configuration conf = new Configuration();

Job job = Job.getInstance(conf, "word count");

➢ Job Class: It allows the user to configure the job, submit it, control

its execution, and query the state. Normally the user creates the

application, describes various facets of the job via Job and then

submits the job and monitor its progress.

//Setting the job's jar file by finding the provided class location

job.setJarByClass(WordCount.class);

//Providing the mapper and reducer class names

job.setMapperClass(TokenizerMapper.class);

job.setReducerClass(IntSumReducer.class);

//Setting configuration object with the Data Type of output Key and Value for map

and reduce

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

https://hadoop.apache.org/docs/r2.7.2/api/org/apache/hadoop/mapreduce/Job.html

2.24

Main Explanation (Cont’)

//The hdfs input and output directory to be fetched from the command line

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

//Submit the job to the cluster and wait for it to finish.

System.exit(job.waitForCompletion(true) ? 0 : 1);

2.25

Make It Running！

❖ Configure environment variables

export JAVA_HOME=…

export PATH=${JAVA_HOME}/bin:${PATH}

export HADOOP_CLASSPATH=${JAVA_HOME}/lib/tools.jar

❖ Compile WordCount.java and create a jar:

$ hadoop com.sun.tools.javac.Main WordCount.java

$ jar cf wc.jar WordCount*.class

❖ Put files to HDFS

$ hdfs dfs –put YOURFILES input

❖ Run the application

$ hadoop jar wc.jar WordCount input output

❖ Check the results

$ hdfs dfs –cat output/*

2.26

Combiners

❖ Often a Map task will produce many pairs of the form (k,v1), (k,v2), …

for the same key k

➢ E.g., popular words in the word count example

❖ Combiners are a general mechanism to reduce the amount of

intermediate data, thus saving network time

➢ They could be thought of as “mini-reducers”

❖ Warning!

➢ The use of combiners must be thought carefully

 Optional in Hadoop: the correctness of the algorithm cannot

depend on computation (or even execution) of the combiners

 A combiner operates on each map output key. It must have the

same output key-value types as the Mapper class.

 A combiner can produce summary information from a large

dataset because it replaces the original Map output

➢ Works only if reduce function is commutative and associative

(explained later)

 In general, reducer and combiner are not interchangeable

2.27

Combiners in WordCount

❖ Combiner combines the values of all keys of a single mapper node

(single machine):

❖ Much less data needs to be copied and shuffled!

❖ If combiners take advantage of all opportunities for local aggregation

we have at most m × V intermediate key-value pairs

➢ m: number of mappers

➢ V: number of unique terms in the collection

❖ Note: not all mappers will see all terms

2.28

Combiners in WordCount

❖ In WordCount.java, you only need to add the follow line to Main:

job.setCombinerClass(IntSumReducer.class);

➢ This is because in this example, Reducer and Combiner do the

same thing

➢ Note: Most cases this is not true!

➢ You need to write an extra combiner class

❖ Given two files:

➢ file1: Hello World Bye World

➢ file2: Hello Hadoop Bye Hadoop

❖ The first map emits:

➢ < Hello, 1> < World, 2> < Bye, 1>

❖ The second map emits:

➢ < Hello, 1> < Hadoop, 2> < Bye, 1>

2.29

Partitioner

❖ Partitioner controls the partitioning of the keys of the intermediate

map-outputs.

➢ The key (or a subset of the key) is used to derive the partition,

typically by a hash function.

➢ The total number of partitions is the same as the number of

reduce tasks for the job.

 This controls which of the m reduce tasks the intermediate key

(and hence the record) is sent to for reduction.

❖ System uses HashPartitioner by default:

➢ hash(key) mod R

❖ Sometimes useful to override the hash function:

➢ E.g., hash(hostname(URL)) mod R ensures URLs from a host

end up in the same output file

 https://www.unsw.edu.au/faculties and

https://www.unsw.edu.au/about-us will be stored in one file

❖ Job sets Partitioner implementation (in Main)

https://www.unsw.edu.au/faculties
https://www.unsw.edu.au/about-us

2.30

MapReduce: Recap

❖ Programmers must specify:

➢ map (k1, v1) → [(k2, v2)]

➢ reduce (k2, [v2]) → [<k3, v3>]

➢ All values with the same key are reduced together

❖ Optionally, also:

➢ combine (k2, [v2]) → [<k3, v3>]

 Mini-reducers that run in memory after the map phase

 Used as an optimization to reduce network traffic

➢ partition (k2, number of partitions) → partition for k2

 Often a simple hash of the key, e.g., hash(k2) mod n

 Divides up key space for parallel reduce operations

❖ The execution framework handles everything else…

2.31

MapReduce: Recap

2.32

Write Your Own WordCount in Python?

2.33

Hadoop Streaming

❖ Hadoop streaming allows us to create and run Map/Reduce jobs with

any executable or script as the mapper and/or the reducer. For

example:

➢ -input: specify the input folder

➢ -output: specify the output folder

➢ -mapper: specify the mapper script/executable

➢ -reducer: specify the reducer script/executable

➢ The mapper and reducer read the input from stdin (line by line)

and emit the output to stdout

❖ Thus, you can use other languages such as C++ or Python to write

MapReduce programs

2.34

Hadoop Streaming

❖ When an executable is specified for mappers, each mapper task will

launch the executable as a separate process when the mapper is

initialized.

❖ As the mapper task runs, it converts its inputs into lines and feed the

lines to the stdin of the process.

❖ In the meantime, the mapper collects the line oriented outputs from

the stdout of the process and converts each line into a key/value pair,

which is collected as the output of the mapper.

❖ By default, the prefix of a line up to the first tab character is the key

and the rest of the line (excluding the tab character) will be the value.

❖ If there is no tab character in the line, then entire line is considered as

key and the value is null. However, this can be customized by setting -

inputformat command option, as discussed later.

2.35

Hadoop Streaming

❖ When an executable is specified for reducers, each reducer task will

launch the executable as a separate process then the reducer is

initialized.

❖ As the reducer task runs, it converts its input key/values pairs into

lines and feeds the lines to the stdin of the process.

❖ In the meantime, the reducer collects the line oriented outputs from

the stdout of the process, converts each line into a key/value pair,

which is collected as the output of the reducer.

❖ By default, the prefix of a line up to the first tab character is the key

and the rest of the line (excluding the tab character) is the value.

However, this can be customized by setting -outputformat command

option, as discussed later.

2.36

Mapper

2.37

Mapper

❖ Let’s test our mapper.py locally that it is working fine or not.

➢ Make it executable by “chmod +x mapper.py”

➢ cat inputText | python mapper.py

➢ The output of the mapper is shown below

➢ Let’s store it in a temporal file “intermediateResult”: cat inputText |

python mapper.py > intermediateResult

2.38

Reducer

2.39

Reducer

❖ Let’s test our reducer.py locally that it is working fine or not.

➢ Make it executable by “chmod +x reducer.py”

➢ Run “cat intermediateResult | sort -k1,1 | python reducer.py”

➢ sort is a Linux command, used to sort a file, arranging the records

in a particular order

 -k[n,m] Option: sorting the records on the basis of columns n

to m. Here, “sort -k1,1” means sorting the key-value pairs

based on the keys (the first column)

2.40

Run On Hadoop

❖ Start HDFS and YARN

❖ Store your input files into a folder in HDFS

❖ Utilize the hadoop-streaming jar file to run MapReduce streaming

jobs:

➢ -input: The input folder in HDFS

➢ -output: The output folder in HDFS storing the results

➢ -mapper: the mapper class

➢ -reducer: the reducer class

❖ Check your result on HDFS: hdfs dfs –cat output/part*

hadoop jar hadoop/share/hadoop/tools/lib/hadoop-streaming-3.3.1.jar \

-input input \

-output output \

-mapper /home/comp9313/mapper.py \

-reducer /home/comp9313/reducer.py

2.41

Run On Hadoop

❖ The python file do not need to pre-exist on the machines in the cluster;

however, if they don’t, you will need to use “-file” option to tell the

framework to pack them as a part of job submission. For example:

➢ The option “-file /home/comp9313/mapper.py” causes the python

executable shipped to the cluster machines as a part of job

submission.

❖ Using a combiner: add the “-combiner” option

➢ -combiner /home/comp9313/combiner.py

hadoop jar hadoop/share/hadoop/tools/lib/hadoop-streaming-3.3.1.jar \

-input input \

-output output \

-mapper /home/comp9313/mapper.py \

-reducer /home/comp9313/reducer.py \

-file /home/comp9313/mapper.py \

-file /home/comp9313/reducer.py

2.42

MRJob

❖ MRJob is the easiest route to writing Python programs that run on

Hadoop. If you just need to run local MapReduce jobs, you even do

not need to install Hadoop.

➢ You can test your code locally without installing Hadoop

➢ You can run it on a cluster of your choice.

➢ MRJob has extensive integration with AWS EMR and Google

Dataproc. Once you’re set up, it’s as easy to run your job in the

cloud as it is to run it on your laptop.

❖ MRJob has a number of features that make writing MapReduce jobs

easier. In MRJob, you can:

➢ Keep all MapReduce code for one job in a single class.

➢ Easily upload and install code and data dependencies at runtime.

➢ Switch input and output formats with a single line of code.

➢ Automatically download and parse error logs for Python

tracebacks.

➢ Put command line filters before or after your Python code.

2.43

MRJob WordCount

❖ Open a file called mr_word_count.py and type this into it:

❖ Run the code locally: python mr_word_count.py inputText

2.44

How MRJob Works

❖ A job is defined by a class that inherits from MRJob. This class

contains methods that define the steps of your job.

❖ A step consists of a mapper, a combiner and a reducer. All of these

are optional, though you must have at least one. So you could have a

step that’s just a mapper, or just a combiner and a reducer.

❖ When you only have one step, all you have to do is write methods

called mapper(), combiner() and reducer().

❖ The mapper() method takes a key and a value as args and yields as

many key-value pairs as it likes.

❖ The reduce() method takes a key and an iterator of values, and also

yields as many key-value pairs as it likes.

❖ The final required component of a job file is to include the following

two lines at the end of the file, every time:

➢ These lines pass control over the command line arguments and

execution to mrjob. Without them, your job will not work.

if __name__ == '__main__’:

MRWordCounter.run() # where MRWordCounter is your job class

2.45

Run in Different Ways

❖ The most basic way to run your job is on the command line, using:

➢ python my_job.py input.txt

➢ By default, the output will be written to stdout.

❖ You can pass input via stdin, but be aware that MRJob will just dump

it to a file first:

➢ python my_job.py < input.txt

❖ By default, MRJob will run your job in a single Python process. This

provides the friendliest debugging experience, but it’s not exactly

distributed computing!

❖ You change the way the job is run with the -r/--runner option. You can

use -r inline (the default), -r local, -r hadoop or -r emr.

➢ To run your job in multiple subprocesses with a few Hadoop

features simulated, use -r local

➢ To run it on your Hadoop cluster, use -r hadoop

 python my_job.py –r hadoop hdfs:///my_home/my_file

➢ If you have EMR/Dataproc configured, you can run it there with -r

emr/dataproc.

2.46

❖ Data from NCDC(National Climatic Data Center)

➢ A large volume of log data collected by weather sensors: e.g. temperature

❖ Data format

➢ Line-oriented ASCII format

➢ Each record has many elements

➢ We focus on the temperature element

➢ Data files are organized by date and weather station

➢ There is a directory for each year from 1901 to 2001, each containing a
gzipped file for each weather station with its readings for that year

❖ Query

➢ What’s the highest recorded global temperature for each year in the dataset?

0067011990999991950051507004...9999999N9+00001+99999999999...
0043011990999991950051512004...9999999N9+00221+99999999999...
0043011990999991950051518004...9999999N9-00111+99999999999...
0043012650999991949032412004...0500001N9+01111+99999999999...
0043012650999991949032418004...0500001N9+00781+99999999999...

List of data filesContents of data files

Year Temperature

Another Example： Analysis of Weather Dataset

2.47

Analyzing the Data with Unix Tools

❖ To provide a performance baseline

❖ Use awk for processing line-oriented data

❖ Complete run for the century took 42 minutes on a single EC2 High-

CPU Extra Large Instance

2.48

How Can We Parallelize This Work?

❖ To speed up the processing, we need to run parts of the program in

parallel

❖ Challenges?

➢ Divide the work into even distribution is not easy

 File size for different years varies

➢ Combining the results is complicated

 Get the result from the maximum temperature for each chunk

➢ We are still limited by the processing capacity of a single machine

 Some datasets grow beyond the capacity of a single machine

❖ To use multiple machines, we need to consider a variety of complex

problems

➢ Coordination: Who runs the overall job?

➢ Reliability: How do we deal with failed processes?

❖ Hadoop can take care of these issues

2.49

MapReduce Design

❖ We need to answer these questions:

➢ What are the map input key and value types?

➢ What does the mapper do?

➢ What are the map output key and value types?

➢ Can we use a combiner?

➢ Is a partitioner required?

➢ What does the reducer do?

➢ What are the reduce output key and value types?

❖ And: What are the file formats?

➢ For now we are using text files

➢ We may use binary files

2.50

MapReduce Types

❖ General form

❖ Combine function

➢ The same form as the reduce function, except its output types

➢ Output type is the same as Map

➢ The combine and reduce functions may be the same

❖ Partition function

➢ Input intermediate key and value types

➢ Returns the partition index

map: (K1, V1) → list(K2, V2)

reduce: (K2, list(V2)) → list(K3, V3)
=

≠

2.51

MapReduce Design (Java)

❖ Identify the input and output of the problem

➢ Text input format of the dataset files (input of mapper)

 Key: offset of the line (unnecessary)

 Value: each line of the files (string)

➢ Output (output of reducer)

 Key: year (string or integer)

 Value: maximum temperature (integer)

❖ Decide the MapReduce data types

➢ Hadoop provides its own set of basic types

 optimized for network serialization

 org.apache.hadoop.io package

➢ In WordCount, we have used Text and IntWritable

➢ Key must implement interface WritableComparable

➢ Value must implement interface Writable

2.52

Writable Wrappers

2.53

What does the Mapper Do?

❖ Pull out the year and the temperature

➢ Indeed in this example, the map phase is simply data preparation

phase

➢ Drop bad records(filtering)

Input File

Input of Map Function (key, value)

Output of Map Function (key, value)

Map

2.54

Map Input and Output (Java)

Input

➢ Key: offset of the line (unnecessary)

 The dataset is quite large and contains a huge number of lines

 LongWritable

➢ Value: each line of the files (string)

 Text

❖ Output

➢ Key: year

 Both string or integer format

 Text/IntWritable

➢ Value: temperature

 Integer is already enough to store it

 IntWritable

❖ Combiner and Partitioner?

2.55

What does the Reducer Do (Java)?

❖ Reducer input

➢ (year, [temperature1, temperature2, temperature3, …])

❖ Scan all values received for the key, and find out the maximum one

❖ Reducer output

➢ Key: year

 Text/IntWritable

➢ Value: maximum temperature

 IntWritable

2.56

MapReduce Design of NCDC Example

❖ The output from the map function is processed by MapReduce framework

➢ Sorts and groups the key-value pairs by key

Sort and Group By

Reduce

▪ Reduce function iterates through the list and pick up the maximum value

2.57

Java Implementation of the Example

public class MaxTemperatureMapper extends Mapper<LongWritable, Text, Text,

IntWritable> {

private static final int MISSING = 9999;

@Override

public void map(LongWritable key, Text value, Context context) throws

IOException, InterruptedException {

String line = value.toString();

String year = line.substring(15, 19);

int airTemperature = Integer.parseInt(line.substring(87, 92));

String quality = line.substring(92, 93);

if (airTemperature != MISSING && quality.matches("[01459]")) {

context.write(new Text(year), new IntWritable(airTemperature));

}

}

}

2.58

Java Implementation of the Example

public class MaxTemperatureReducer extends Reducer<Text, IntWritable, Text,

IntWritable> {

@Override

public void reduce(Text key, Iterable<IntWritable> values, Context context)

throws IOException, InterruptedException {

int maxValue = Integer.MIN_VALUE;

for (IntWritable value : values) {

maxValue = Math.max(maxValue, value.get());

}

context.write(key, new IntWritable(maxValue));

}

}

Complete codes can be found here:

http://hadoopbook.com/code.html

http://hadoopbook.com/code.html

2.59

MRJob Implementation of the Example

#!/usr/bin/env python

from mrjob.job import MRJob

class Weather(MRJob):

def mapper(self, _, line):

val = line.strip()

(year, temp) = (val[15:19], val[87:92])

if (temp != "+9999"):

yield year, int(temp)

def reducer(self, key, values):

yield key, max(values)

if __name__ == '__main__’:

Weather.run()

2.60

References

❖ MapReduce Chapter of <<Hadoop The Definitive Guide>>

❖ Hadoop Streaming. https://hadoop.apache.org/docs/current/hadoop-

streaming/HadoopStreaming.html

❖ MRJob. https://mrjob.readthedocs.io/en/latest/index.html

https://hadoop.apache.org/docs/current/hadoop-streaming/HadoopStreaming.html
https://mrjob.readthedocs.io/en/latest/index.html

End of Chapter 2.1

