
COMP9313: Big Data Management

Lecturer: Xin Cao
Course web site: http://www.cse.unsw.edu.au/~cs9313/

2.2

Chapter 2.2: MapReduce II

2.3

Overview of Previous Lecture

❖ Motivation of MapReduce

❖ Data Structures in MapReduce: (key, value) pairs

❖ Hadoop MapReduce Programming

➢ Mapper

 Output pairs do not need to be of the same types as input

pairs. A given input pair may map to zero or many output pairs.

➢ Reducer

 Reducer has 3 primary phases: shuffle, sort and reduce.

➢ Combiner

 Users can optionally specify a combiner to perform local

aggregation of the intermediate outputs

➢ Partitioner

 The total number of partitions is the same as the number of

reduce tasks for the job. Users can control which go to which

Reducer by implementing a custom Partitioner.

➢ Driver: configure the job and start running

2.4

For Large Datasets

❖ Data stored in HDFS (organized as blocks)

❖ Hadoop MapReduce Divides input into fixed-size pieces, input splits

➢ Hadoop creates one map task for each split

➢ Map task runs the user-defined map function for each record in

the split

➢ Size of a split is normally the size of a HDFS block (e.g., 64Mb)

➢ The number of maps is usually driven by the total size of the

inputs, that is, the total number of blocks of the input files.

❖ Data locality optimization

➢ Run the map task on a node where the input data resides in HDFS

➢ This is the reason why the split size is the same as the block size

 The largest size of the input that can be guaranteed to be

stored on a single node

 If the split spanned two blocks, it would be unlikely that any

HDFS node stored both blocks

2.5

For Large Datasets

❖ Map tasks write their output to local disk (not to HDFS)

➢ Map output is intermediate output

➢ Once the job is complete the map output can be thrown away

➢ Storing it in HDFS with replication, would be overkill

➢ If the node of map task fails, Hadoop will automatically rerun the

map task on another node

2.6

For Large Datasets

❖ Reduce tasks don’t have the advantage of data locality

➢ Input to a single reduce task is normally the output from all

mappers

➢ Output of the reduce is stored in HDFS for reliability

➢ The number of reduce tasks is not governed by the size of the

input, but is specified independently

➢ The right number of reduces seems to be 0.95 or 1.75 multiplied

by (<no. of nodes> * <no. of maximum containers per node>)

 With 0.95 all of the reduces can launch immediately and start

transferring map outputs as the maps finish. With 1.75 the

faster nodes will finish their first round of reduces and launch a

second wave of reduces doing a much better job of load

balancing

2.7

More Detailed MapReduce Dataflow

❖ When there are multiple reducers, the map tasks partition their output:

➢ One partition for each reduce task

➢ The records for every key are all in a single partition

➢ Partitioning can be controlled by a user-defined partitioning

function

2.8

More Detailed MapReduce Dataflow

❖ When there are multiple reducers, the map tasks partition their output:

➢ One partition for each reduce task

➢ The records for every key are all in a single partition

➢ Partitioning can be controlled by a user-defined partitioning

function

2.9

MapReduce Algorithm Design Patterns

2.10

Design Pattern 1: In-mapper Combining

2.11

Importance of Local Aggregation

❖ Ideal scaling characteristics:

➢ Twice the data, twice the running time

➢ Twice the resources, half the running time

❖ Why can’t we achieve this?

➢ Data synchronization requires communication

➢ Communication kills performance

❖ Thus… avoid communication!

➢ Reduce intermediate data via local aggregation

➢ Combiners can help

2.12

WordCount Baseline

What’s the impact of combiners?

2.13

Word Count: Version 1

Are combiners still needed?

2.14

Word Count: Version 2

2.15

Design Pattern for Local Aggregation

❖ “In-mapper combining”

➢ Fold the functionality of the combiner into the mapper by

preserving state across multiple map calls

❖ Advantages

➢ Speed

➢ Why is this faster than actual combiners?

❖ Disadvantages

➢ Explicit memory management required

➢ Potential for order-dependent bugs

2.16

Combiner Design

❖ Both input and output data types must be consistent with the output of

mapper (or input of reducer)

❖ Combiners and reducers share same method signature

➢ Sometimes, reducers can serve as combiners

➢ Often, not…

❖ Hadoop do not guarantee how many times it will call combiner

function for a particular map output record

➢ It is just optimization

➢ The number of calling (even zero) does not affect the output of

Reducers

❖ Applicable on problems that are commutative and associative

➢ Commutative: max(a, b) = max(b, a)

➢ Associative: max (max(a, b), c) = max(a, max(b, c))

max(0, 20, 10, 25, 15) = max(max(0, 20, 10), max(25, 15)) = max(20, 25) = 25

2.17

Computing the Mean: Version 1

Why can’t we use reducer as combiner?

Mean(1, 2, 3, 4, 5) != Mean(Mean(1, 2), Mean(3, 4, 5))

2.18

Computing the Mean: Version 2

Why doesn’t this work?
Combiners must have the same input and output type,

consistent with the input of reducers (output of mappers)

2.19

Computing the Mean: Version 3

Fixed? Check the correctness by removing the combiner

2.20

Computing the Mean: Version 4

2.21

How to Implement In-mapper Combiner

in MapReduce?

2.22

Lifecycle of Mapper/Reducer (Java)

❖ Lifecycle: setup -> map -> cleanup

➢ setup(): called once at the beginning of the task

➢ map(): do the map

➢ cleanup(): called once at the end of the task.

➢ We do not invoke these functions

❖ In-mapper Combining:

➢ Use setup() to initialize the state preserving data structure

➢ Use clearnup() to emit the final key-value pairs

2.23

Word Count: Version 2

setup()

cleanup()

2.24

Implementation in MRJob

❖ A step consists of a mapper, a combiner and a reducer.

❖ In addition, there are more methods you can override to write a one-

step job

➢ mapper_init()

➢ combiner_init()

➢ reducer_init()

➢ mapper_final()

➢ combiner_final()

➢ reducer_final()

❖ For im-mapper combing

➢ Initialize the “AssociativeArray” in mapper_init(),

➢ Update the “AssociativeArray” in mapper()

➢ Yield the results in mapper_final()

2.25

Design Pattern 2: Pairs vs Stripes

2.26

Term Co-occurrence Computation

❖ Term co-occurrence matrix for a text collection

➢ M = N x N matrix (N = vocabulary size)

➢ Mij: number of times i and j co-occur in some context

(for concreteness, let’s say context = sentence)

➢ specific instance of a large counting problem

 A large event space (number of terms)

 A large number of observations (the collection itself)

 Goal: keep track of interesting statistics about the events

❖ Basic approach

➢ Mappers generate partial counts

➢ Reducers aggregate partial counts

❖ How do we aggregate partial counts efficiently?

2.27

First Try: “Pairs”

❖ Each mapper takes a sentence

➢ Generate all co-occurring term pairs

➢ For all pairs, emit (a, b) → count

❖ Reducers sum up counts associated with these pairs

❖ Use combiners!

2.28

“Pairs” Analysis

❖ Advantages

➢ Easy to implement, easy to understand

❖ Disadvantages

➢ Lots of pairs to sort and shuffle around (upper bound?)

➢ Not many opportunities for combiners to work

2.29

Another Try: “Stripes”

❖ Idea: group together pairs into an associative array

❖ Each mapper takes a sentence:

➢ Generate all co-occurring term pairs

➢ For each term, emit a → { b: countb, c: countc, d: countd … }

❖ Reducers perform element-wise sum of associative arrays

(a, b) → 1

(a, c) → 2

(a, d) → 5

(a, e) → 3

(a, f) → 2

a → { b: 1, c: 2, d: 5, e: 3, f: 2 }

a → { b: 1, d: 5, e: 3 }

a → { b: 1, c: 2, d: 2, f: 2 }

a → { b: 2, c: 2, d: 7, e: 3, f: 2 }
+

2.30

Stripes: Pseudo-Code

2.31

“Stripes” Analysis

❖ Advantages

➢ Far less sorting and shuffling of key-value pairs

➢ Can make better use of combiners

❖ Disadvantages

➢ More difficult to implement

➢ Underlying object more heavyweight

➢ Fundamental limitation in terms of size of event space

2.32

Compare “Pairs” and “Stripes”

Cluster size: 38 cores

Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3),

which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

2.33

Pairs vs. Stripes

❖ The pairs approach

➢ Keep track of each team co-occurrence separately

➢ Generates a large number of key-value pairs (also intermediate)

➢ The benefit from combiners is limited, as it is less likely for a

mapper to process multiple occurrences of a word

❖ The stripe approach

➢ Keep track of all terms that co-occur with the same term

➢ Generates fewer and shorted intermediate keys

➢ The framework has less sorting to do

➢ Greatly benefits from combiners, as the key space is the

vocabulary

➢ More efficient, but may suffer from memory problem

❖ These two design patterns are broadly useful and frequently observed

in a variety of applications

➢ Text processing, data mining, and bioinformatics

2.34

How to Implement “Pairs” and “Stripes”

in MapReduce?

2.35

Serialization

❖ Process of turning structured objects into a byte stream for

transmission over a network or for writing to persistent storage

❖ Deserialization is the reverse process of serialization

❖ Requirements

➢ Compact

 To make efficient use of storage space

➢ Fast

 The overhead in reading and writing of data is minimal

➢ Extensible

 We can transparently read data written in an older format

➢ Interoperable

 We can read or write persistent data using different language

2.36

Writable Interface

❖ Hadoop defines its own “box” classes for strings (Text), integers

(IntWritable), etc.

❖ Writable is a serializable object which implements a simple, efficient,

serialization protocol

❖ All values must implement interface Writable

❖ All keys must implement interface WritableComparable

❖ context.write(WritableComparable, Writable)

➢ You cannot use java primitives here!!

public interface Writable {

void write(DataOutput out) throws IOException;

void readFields(DataInput in) throws IOException;

}

2.37

2.38

Writable Wrappers for Java Primitives

❖ There are Writable wrappers for all the Java primitive types except

shot and char (both of which can be stored in an IntWritable)

❖ get() for retrieving and set() for storing the wrapped value

❖ Variable-length formats

➢ If a value is between -122 and 127, use only a single byte

➢ Otherwise, use first byte to indicate whether the value is positive

or negative and how many bytes follow

2.39

Writable Examples

❖ Text

➢ Writable for UTF-8 sequences

➢ Can be thought of as the Writable equivalent of java.lang.String

➢ Maximum size is 2GB

➢ Use standard UTF-8

➢ Text is mutable (like all Writable implementations, except

NullWritable)

 Different from java.lang.String

 You can reuse a Text instance by calling one of the set()

method

❖ NullWritable

➢ Zero-length serialization

➢ Used as a placeholder

➢ A key or a value can be declared as a NullWritable when you

don’t need to use that position

2.40

Stripes Implementation

❖ A stripe key-value pair a → { b: 1, c: 2, d: 5, e: 3, f: 2 }:

➢ Key: the term a

➢ Value: the stripe { b: 1, c: 2, d: 5, e: 3, f: 2 }

 In Java, easy, use map (hashmap)

 How to represent this stripe in MapReduce?

❖ MapWritable: the wrapper of Java map in MapReduce

➢ put(Writable key, Writable value)

➢ get(Object key)

➢ containsKey(Object key)

➢ containsValue(Object value)

➢ entrySet()，returns Set<Map.Entry<Writable,Writable>>, used for

iteration. More details please refer to

https://hadoop.apache.org/docs/r3.3.1/api/org/apache/hadoop/io/

MapWritable.html

❖ How to implement the combiner?

https://hadoop.apache.org/docs/r2.7.2/api/org/apache/hadoop/io/MapWritable.html

2.41

Stripes Implementation (Python)

❖ In Hadoop streaming, mapper/reducer reads input from stdin and

outputs results to stdout, and thus using Python is quite different

❖ A stripe key-value pair a → { b: 1, c: 2, d: 5, e: 3, f: 2 }

❖ In mapper:

➢ key: the term itself as a string

➢ value: a dictionary object

➢ Iterate over the words in the line to generate the stripes

➢ print (key+”\t”+str(value))

❖ In Reducer:

➢ Receive the stripes one by one, and convert each to a dictionary

object

➢ Aggregate the stripes for the same key to obtain the final stripe

➢ Print the term and the final stripe to stdout

❖ What does the combiner look like?

2.42

Stripes Implementation (MRJob)

❖ Using MRJob is even simpler than Hadoop streaming

❖ A stripe key-value pair a → { b: 1, c: 2, d: 5, e: 3, f: 2 }

❖ In mapper:

➢ key: the term itself as a string

➢ value: a dictionary object

➢ Iterate over the words in the line to generate the stripes

➢ yield (key, str(value))

❖ In Reducer:

➢ Receive the list of stripes, and convert each to a dictionary object

➢ Aggregate the stripes for the same key to obtain the final stripe

➢ yield the term and the final stripe as the result

❖ A combiner

2.43

Pairs Implementation

Key-value pair (a, b) → count

➢ Value: count

➢ Key: (a, b)

 In Java, easy, implement a pair class

 How to store the key in MapReduce?

❖ You must customize your own key, which must implement interface

WritableComparable!

❖ First start from an easier task: when the value is a pair, which must

implement interface Writable

2.44

Multiple Output Values

❖ If we are to output multiple values for each key

➢ E.g., a pair of String objects, or a pair of int

❖ How do we do that?

❖ WordCount output a single number as the value

❖ Remember, our object containing the values needs to implement the

Writable interface

❖ We could use Text

➢ Value is a string of comma separated values

➢ Have to convert the values to strings, build the full string

➢ Have to parse the string on input (not hard) to get the values

2.45

Implement a Custom Writable

❖ Suppose we wanted to implement a custom class containing a pair of

integers. Call it IntPair.

❖ How would we implement this class?

➢ Needs to implement the Writable interface

➢ Instance variables to hold the values

➢ Construct functions

➢ A method to set the values (two integers)

➢ A method to get the values (two integers)

➢ write() method： serialize the member variables (two integers)

objects in turn to the output stream

➢ readFields() method: deserialize the member variables (two

integers) in turn from the input stream

➢ As in Java: hashCode(), equals(), toString()

2.46

Implement a Custom Writable

❖ Implement the Writable interface

Instance variables to hold the values

Construct functions

❖ set() method

public class IntPair implements Writable {

private int first, second;

public IntPair() {

}

public IntPair(int first, int second) {

set(first, second);

}

public void set(int left, int right) {

first = left;

second = right;

}

2.47

Implement a Custom Writable

❖ get() method

❖ write() method

➢ Write the two integers to the output stream in turn

❖ readFields() method

➢ Read the two integers from the input stream in turn

public int getFirst() {

return first;

}

public int getSecond() {

return second;

}

public void write(DataOutput out) throws IOException {

out.writeInt(first);

out.writeInt(second);

}

public void readFields(DataInput in) throws IOException {

first = in.readInt();

second = in.readInt();

}

2.48

Complex Key

❖ If the key is not a single value

➢ E.g., a pair of String objects, or a pair of int

❖ How do we do that?

❖ The co-occurrence matrix problem, a pair of terms as the key

❖ Our object containing the values needs to implement the

WritableComparable interface

➢ Why Writable is not competent?

❖ We could use Text again

➢ Value is a string of comma separated values

➢ Have to convert the values to strings, build the full string

➢ Have to parse the string on input (not hard) to get the values

➢ Objects are compared according to the full string!!

2.49

Implement a Custom WritableComparable

❖ Suppose we wanted to implement a custom class containing a pair of

String objects. Call it StringPair.

❖ How would we implement this class?

➢ Needs to implement the WritableComparable interface

➢ Instance variables to hold the values

➢ Construct functions

➢ A method to set the values (two String objects)

➢ A method to get the values (two String objects)

➢ write() method： serialize the member variables (i.e., two String)

objects in turn to the output stream

➢ readFields() method: deserialize the member variables (i.e., two

String) in turn from the input stream

➢ As in Java: hashCode(), equals(), toString()

➢ compareTo() method: specify how to compare two objects of the

self-defind class

2.50

Implement a Custom WritableComparable

❖ implement the Writable interface

Instance variables to hold the values

Construct functions

❖ set() method

public class StringPair implements WritableComparable<StringPair> {

private String first, second;

public StringPair() {

}

public StringPair(String first, String second) {

set(first, second);

}

public void set(String left, String right) {

first = left;

second = right;

}

2.51

❖ get() method

❖ write() method

➢ Utilize WritableUtils.

❖ readFields() method

public String getFirst() {

return first;

}

public String getSecond() {

return second;

}

public void write(DataOutput out) throws IOException {

String[] strings = new String[] { first, second };

WritableUtils.writeStringArray(out, strings);

}

public void readFields(DataInput in) throws IOException {

String[] strings = WritableUtils.readStringArray(in);

first = strings[0];

second = strings[1];

}

Implement a Custom WritableComparable

2.52

❖ compareTo() method:

Implement a Custom WritableComparable

public int compareTo(StringPair o) {

int cmp = compare(first, o.getFirst());

if(cmp != 0){

return cmp;

}

return compare(second, o.getSecond());

}

private int compare(String s1, String s2){

if (s1 == null && s2 != null) {

return -1;

} else if (s1 != null && s2 == null) {

return 1;

} else if (s1 == null && s2 == null) {

return 0;

} else {

return s1.compareTo(s2);

}

}

2.53

❖ You can also make the member variables as Writable objects

❖ Instance variables to hold the values

❖ Construct functions

❖ set() method

Implement a Custom WritableComparable

private Text first, second;

public StringPair() {

set(new Text(), new Text());

}

public StringPair(Text first, Text second) {

set(first, second);

}

public void set(Text left, Text right) {

first = left;

second = right;

}

2.54

❖ get() method

❖ write() method

➢ Delegated to Text

❖ readFields() method

➢ Delegated to Text

public Text getFirst() {

return first;

}

public Text getSecond() {

return second;

}

public void write(DataOutput out) throws IOException {

first.write(out);

second.write(out);

}

public void readFields(DataInput in) throws IOException {

first.readFields(in);

second.readFields(in);

}

Implement a Custom WritableComparable

2.55

❖ In some cases, such as secondary sort, we also need to override the

hashCode() method.

➢ Because we need to make sure that all key-value pairs associated

with the first part of the key are sent to the same reducer!

➢ By doing this, partitioner will only use the hashCode of the first

part.

➢ You can also write a paritioner to do this job

Implement a Custom WritableComparable

public int hashCode()

return first.hashCode();

}

2.56

Pairs Implementation (Python)

❖ In mapper:

➢ key: a pair of two terms as a string

➢ value: a value 1

➢ Iterate over the words in the line to generate all pairs

➢ print (key+”\t1”)

❖ In Reducer:

➢ Receive the pairs one by one

➢ Aggregate the 1s for the same pair to obtain the final co-

occurrence (similar to word count)

➢ Print the pair and the final count to stdout

❖ How about a combiner?

2.57

Pairs Implementation (MRJob)

❖ Using MRJob is even simpler than Hadoop streaming

❖ In mapper:

➢ key: a pair of two terms as a string

➢ value: a value 1

➢ Iterate over the words in the line to generate all pairs

➢ yield(key, 1)

❖ In Reducer:

➢ Receive the list of pairs

➢ Aggregate the 1s to obtain the final co-occurrence (similar to word

count)

➢ Yield the pair of the term and the final co-occurrence

❖ A combiner, but not too much helpful…

2.58

References

❖ MapReduce Chapter of <<Hadoop The Definitive Guide>>

❖ Chapters 3.1, 3.2. Data-Intensive Text Processing with MapReduce.

Jimmy Lin and Chris Dyer. University of Maryland, College Park.

End of Chapter 2.2

