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Chapter 4: MapReduce IV
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Graph Data Processing in MapReduce
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What’s a Graph?

❖ G = (V,E), where

➢ V represents the set of vertices (nodes)

➢ E represents the set of edges (links)

➢ Both vertices and edges may contain additional information

❖ Different types of graphs:

➢ Directed vs. undirected edges

➢ Presence or absence of cycles

❖ Graphs are everywhere:

➢ Hyperlink structure of the Web

➢ Physical structure of computers on the Internet

➢ Interstate highway system

➢ Social networks
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Graph Analytics

❖ General Graph 

➢ Count the number of nodes whose degree is equal to 5

➢ Find the diameter of the graphs

❖ Web Graph

➢ Rank each webpage in the web graph or each user in the twitter 

graph using PageRank, or other centrality measure

❖ Transportation Network

➢ Return the shortest or cheapest flight/road from one city to another

❖ Social Network

➢ Detect a group of users who have similar interests

❖ Financial Network

➢ Find the path connecting two suspicious transactions;

❖ … …
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Graphs and MapReduce

❖ Graph algorithms typically involve:

➢ Performing computations at each node: based on node features, 

edge features, and local link structure

➢ Propagating computations: “traversing” the graph

❖ Key questions:

➢ How do you represent graph data in MapReduce?

➢ How do you traverse a graph in MapReduce?
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Representing Graphs

❖ Adjacency Matrices: Represent a graph as an n x n square matrix M

➢ n = |V|

➢ Mij = 1 means a link from node i to j

1 2 3 4

1 0 1 0 1

2 1 0 1 1

3 1 0 0 0

4 1 0 1 0

1

2

3

4
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Adjacency Matrices: Critique

❖ Advantages:

➢ Amenable to mathematical manipulation

➢ Iteration over rows and columns corresponds to computations on 

outlinks and inlinks

❖ Disadvantages:

➢ Lots of zeros for sparse matrices

➢ Lots of wasted space
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Representing Graphs

❖ Adjacency Lists: Take adjacency matrices… and throw away all the 

zeros

1 2 3 4

1 0 1 0 1

2 1 0 1 1

3 1 0 0 0

4 1 0 1 0

1: 2, 4

2: 1, 3, 4

3: 1

4: 1, 3
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Adjacency Lists: Critique

❖ Advantages:

➢ Much more compact representation

➢ Easy to compute over outlinks

❖ Disadvantages:

➢ Much more difficult to compute over inlinks
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Single-Source Shortest Path
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Single-Source Shortest Path (SSSP)

❖ Problem: find shortest path from a source node to one or more target 

nodes

➢ Shortest might also mean lowest weight or cost

❖ Dijkstra’s Algorithm: 

➢ For a given source node in the graph, the algorithm finds the 

shortest path between that node and every other
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm Example
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Dijkstra’s Algorithm Example
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Dijkstra’s Algorithm Example
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Dijkstra’s Algorithm Example
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Dijkstra’s Algorithm Example
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Dijkstra’s Algorithm Example
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Single Source Shortest Path

❖ Problem: find shortest path from a source node to one or more target 

nodes

➢ Shortest might also mean lowest weight or cost

❖ Single processor machine: Dijkstra’s Algorithm

❖ MapReduce: parallel Breadth-First Search (BFS)
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Finding the Shortest Path

❖ Consider simple case of equal edge weights

❖ Solution to the problem can be defined inductively

❖ Here’s the intuition:

➢ Define: b is reachable from a if b is on adjacency list of a

➢ DISTANCETO(s) = 0

➢ For all nodes p reachable from s, 

DISTANCETO(p) = 1

➢ For all nodes n reachable from some other set of nodes M, 

DISTANCETO(n) = 1 + min(DISTANCETO(m), m  M)

s

m3

m2

m1

n

…

…

…

d1

d2

d3
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Visualizing Parallel BFS

n0

n3
n2

n1
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n8
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From Intuition to Algorithm

❖ Data representation:

➢ Key: node n

➢ Value: d (distance from start), adjacency list (list of nodes 

reachable from n)

➢ Initialization: for all nodes except for start node, d = 

❖ Mapper:

➢ m  adjacency list: emit (m, d + 1)

❖ Sort/Shuffle

➢ Groups distances by reachable nodes

❖ Reducer:

➢ Selects minimum distance path for each reachable node

➢ Additional bookkeeping needed to keep track of actual path
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Multiple Iterations Needed

❖ Each MapReduce iteration advances the “known frontier” by one hop

➢ Subsequent iterations include more and more reachable nodes as 

frontier expands

➢ The input of Mapper is the output of Reducer in the previous 

iteration

➢ Multiple iterations are needed to explore entire graph

❖ Preserving graph structure:

➢ Problem: Where did the adjacency list go?

➢ Solution: mapper emits (n, adjacency list) as well
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BFS Pseudo-Code

❖ Equal Edge Weights (how to deal with weighted edges?)

❖ Only distances, no paths stored (how to obtain paths?)

class Mapper

method Map(nid n, node N)

d ← N.Distance

Emit(nid n,N.AdjacencyList) //Pass along graph structure

for all nodeid m ∈ N.AdjacencyList do

Emit(nid m, d+1) //Emit distances to reachable nodes

class Reducer

method Reduce(nid m, [d1, d2, . . .])

dmin←∞

M ← ∅
for all d ∈ counts [d1, d2, . . .] do

if IsNode(d) then

M.AdjacencyList ← d //Recover graph structure

else if d < dmin then //Look for shorter distance

dmin ← d

M.Distance ← dmin //Update shortest distance

Emit(nid m, node M)
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Stopping Criterion

❖ How many iterations are needed in parallel BFS (equal edge weight 

case)?

❖ Convince yourself: when a node is first “discovered”, we’ve found the 

shortest path

❖ Now answer the question...

➢ The diameter of the graph, or the greatest distance between any 

pair of nodes

➢ Six degrees of separation?

 If this is indeed true, then parallel breadth-first search on the 

global social network would take at most six MapReduce 

iterations.
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Implementation in MapReduce

❖ The actual checking of the termination condition must occur outside of 

MapReduce. 

❖ The driver (main) checks to see if a termination condition has been 

met, and if not, repeats. 

❖ Hadoop provides a lightweight API called “counters”. 

➢ It can be used for counting events that occur during execution, 

e.g., number of corrupt records, number of times a certain 

condition is met, or anything that the programmer desires. 

➢ Counters can be designed to count the number of nodes that have 

distances of ∞ at the end of the job, the driver program can access 

the final counter value and check to see if another iteration is 

necessary.
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Chained MapReduce Job (Java)

❖ In the main function, you can configure like:

https://github.com/himank/Graph-Algorithm-MapReduce/blob/master/src/DijikstraAlgo.java

String input = IN;

String output = OUT + System.nanoTime();

boolean isdone = false;

while (isdone == false) {

Job job = Job.getInstance(conf, "traverse job");

//configure your jobs here such as mapper and reducer classes

FileInputFormat.addInputPath(job, new Path(input));

FileOutputFormat.setOutputPath(job, new Path(output));

job.waitForCompletion(true); //start the job

Counters counters = job.getCounters();

Counter counter = counters.findCounter(MY_COUNTERS.REACHED);

if(counter.getValue() == 0){ //use the counter to check the termination

isdone = true;

}

input = output; //make the current output as the next input

output = OUT + System.nanoTime();

}

https://github.com/himank/Graph-Algorithm-MapReduce/blob/master/src/DijikstraAlgo.java
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Chained MapReduce Job (MRJob)

❖ To define multiple steps, override steps() to return a list of MRSteps:
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MapReduce Counters

❖ Instrument Job’s metrics

➢ Gather statistics 

 Quality control – confirm what was expected. 

– E.g., count invalid records 

 Application-level statistics.

➢ Problem diagnostics 

➢ Try to use counters for gathering statistics instead of log files

❖ Framework provides a set of built-in metrics

➢ For example, bytes processed for input and output

❖ User can create new counters

➢ Number of records consumed

➢ Number of errors or warnings
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Built-in Counters

❖ Hadoop maintains some built-in counters for every job.

❖ Several groups for built-in counters

➢ File System Counters – number of bytes read and written

➢ Job Counters – documents number of map and reduce tasks 

launched, number of failed tasks

➢ Map-Reduce Task Counters– mapper, reducer, combiner input 

and output records counts, time and memory statistics
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User-Defined Counters

❖ You can create your own counters

➢ Counters are defined by a Java enum

 serves to group related counters

 E.g., 

enum Temperature {

MISSING,

MALFORMED

}

❖ Increment counters in Reducer and/or Mapper classes

➢ Counters are global: Framework accurately sums up counts 

across all maps and reduces to produce a grand total at the end of 

the job
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Implement User-Defined Counters

❖ Retrieve Counter from Context object

➢ Framework injects Context object into map and reduce methods

❖ Increment Counter’s value

➢ Can increment by 1 or more
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Implement User-Defined Counters

❖ Get Counters from a finished job in Java 

➢ Counter counters = job.getCounters()

❖ Get the counter according to name

➢ Counter c1 = counters.findCounter(Temperature.MISSING)

❖ Enumerate all counters after job is completed

for (CounterGroup group : counters) {

System.out.println("* Counter Group: " + group.getDisplayName() + " (" + 

group.getName() + ")");

System.out.println(" number of counters in this group: " + group.size());

for (Counter counter : group) {

System.out.println(" - " + counter.getDisplayName() + ": " + 

counter.getName() + ": "+counter.getValue());

}

}
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Counters in MRJob

❖ A counter has a group, a name, and an integer value. Hadoop itself 

tracks a few counters automatically. mrjob prints your job’s counters to 

the command line when your job finishes, and they are available to the 

runner object if you invoke it programmatically.

❖ To increment a counter from anywhere in your job, use the 

increment_counter() method:

❖ At the end of your job, you’ll get the counter’s total value. 

❖ You can also read the counters by using “runner.counters()”

https://mrjob.readthedocs.io/en/latest/guides/runners.html

https://mrjob.readthedocs.io/en/latest/guides/runners.html
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How to Find the Shortest Path?

❖ The parallel breadth-first search algorithm only finds the shortest 

distances.

❖ Store “back-pointers” at each node, as with Dijkstra's algorithm

➢ Not efficient to recover the path from the back-pointers

❖ A simpler approach is to emit paths along with distances in the 

mapper, so that each node will have its shortest path easily accessible 

at all times

➢ The additional space requirement is acceptable
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BFS Pseudo-Code (Weighted Edges)

❖ The adjacency lists, which were previously lists of node ids, must now 

encode the edge distances as well

➢ Positive weights!

❖ In line 6 of the mapper code, instead of emitting d + 1 as the value, we 

must now emit d + w, where w is the edge distance

❖ The termination behaviour is very different!

➢ How many iterations are needed in parallel BFS (positive edge 

weight case)?

➢ Convince yourself: when a node is first “discovered”, we’ve found 

the shortest path
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Additional Complexities

❖ Assume that p is the current processed node

➢ In the current iteration, we just “discovered” node r for the very first 

time. 

➢ We've already discovered the shortest distance to node p, and 

that the shortest distance to r so far goes through p

➢ Is s->p->r the shortest path from s to r?

❖ The shortest path from source s to node r may go outside the current 

search frontier

➢ It is possible that p->q->r is shorter than p->r! 

➢ We will not find the shortest distance to r until the search frontier 

expands to cover q.

s

p
q

r

search frontier
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How Many Iterations Are Needed?

❖ In the worst case, we might need as many iterations as there are 

nodes in the graph minus one

➢ A sample graph that elicits worst-case behaviour for parallel 

breadth-first search.

➢ Eight iterations are required to discover shortest distances to all 

nodes from n1.

10

n1

n2

n3

n4

n5

n6 n7

n8

n9

1

1
1

1

1

1

1

1
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Example (only distances)

❖ Input file:

s  --> 0 | n1: 10, n2: 5

n1 --> ∞ | n2: 2, n3:1

n2 --> ∞ | n1: 3, n3:9， n4:2

n3 --> ∞ | n4:4 

n4 --> ∞ | s:7, n3:6
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Iteration 1

❖ Map: 

Read s  --> 0 | n1: 10, n2: 5

Emit: (n1, 10), (n2, 5), and the adjacency list (s, n1: 10, n2: 5)

The other lists will also be read and emit, but they do not contribute, and 

thus ignored

❖ Reduce: 

Receives: (n1, 10), (n2, 5), (s, <0, (n1: 10, n2: 5)>)

The adjacency list of each node will also be received, ignored in example

Emit:

s  --> 0 | n1: 10, n2: 5

n1 --> 10 | n2: 2, n3:1

n2 --> 5 | n1: 3, n3:9， n4:2
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Iteration 2

❖ Map: 

Read: n1 --> 10 | n2: 2, n3:1

Emit: (n2, 12), (n3, 11), (n1, <10, (n2: 2, n3:1)>)

Read: n2 --> 5 | n1: 3, n3:9， n4:2

Emit: (n1, 8), (n3, 14), (n4, 7)，(n2, <5, (n1: 3, n3:9，n4:2)>)

Ignore the processing of the other lists

❖ Reduce: 

Receives: (n1, (8, <10, (n2: 2, n3:1)>)), (n2, (12, <5, n1: 3, n3:9，n4:2>)), 

(n3, (11, 14)), (n4, 7)

Emit:

n1 --> 8 | n2: 2, n3:1

n2 --> 5 | n1: 3, n3:9， n4:2

n3 --> 11 | n4:4

n4 --> 7 | s:7, n3:6
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Iteration 3

❖ Map: 

Read: n1 --> 8 | n2: 2, n3:1

Emit: (n2, 10), (n3, 9), (n1, <8, (n2: 2, n3:1)>)

Read: n2 --> 5 | n1: 3, n3:9， n4:2 (Again!)

Emit: (n1, 8), (n3, 14), (n4, 7)，(n2, <5, (n1: 3, n3:9，n4:2)>)

Read: n3 --> 11 | n4:4

Emit: (n4, 15)，(n3, <11, (n4:4)>)

Read: n4 --> 7 | s:7, n3:6

Emit: (s, 14), (n3, 13), (n4, <7, (s:7, n3:6)>)

❖ Reduce: 

Emit:

n1 --> 8 | n2: 2, n3:1

n2 --> 5 | n1: 3, n3:9， n4:2

n3 --> 9 | n4:4

n4 --> 7 | s:7, n3:6
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Iteration 4

❖ Map: 

Read: n1 --> 8 | n2: 2, n3:1 (Again!)

Emit: (n2, 10), (n3, 9), (n1, <8, (n2: 2, n3:1)>)

Read: n2 --> 5 | n1: 3, n3:9， n4:2 (Again!)

Emit: (n1, 8), (n3, 14), (n4, 7)，(n2, <5, (n1: 3, n3:9，n4:2)>)

Read: n3 --> 9 | n4:4

Emit: (n4, 13)，(n3, <9, (n4:4)>)

Read: n4 --> 7 | s:7, n3:6 (Again!)

Emit: (s, 14), (n3, 13), (n4, <7, (s:7, n3:6)>)

❖ Reduce: 

Emit:

n1 --> 8 | n2: 2, n3:1

n2 --> 5 | n1: 3, n3:9， n4:2

n3 --> 9 | n4:4

n4 --> 7 | s:7, n3:6
No updates. Terminate.

In order to avoid duplicated 

computations, you can use 

a status value to indicate 

whether the distance of the 

node has been modified in 

the previous iteration.
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Comparison to Dijkstra

❖ Dijkstra’s algorithm is more efficient 

➢ At any step it only pursues edges from the minimum-cost path 

inside the frontier

❖ MapReduce explores all paths in parallel

➢ Lots of “waste”

➢ Useful work is only done at the “frontier”

❖ Why can’t we do better using MapReduce?
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Graphs and MapReduce

❖ Graph algorithms typically involve:

➢ Performing computations at each node: based on node features, 

edge features, and local link structure

➢ Propagating computations: “traversing” the graph

❖ Generic recipe:

➢ Represent graphs as adjacency lists

➢ Perform local computations in mapper

➢ Pass along partial results via outlinks, keyed by destination node

➢ Perform aggregation in reducer on inlinks to a node

➢ Iterate until convergence: controlled by external “driver”

➢ Don’t forget to pass the graph structure between iterations
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Issues with MapReduce on Graph Processing

❖ MapReduce Does not support iterative graph computations: 

➢ External driver. Huge I/O incurs

➢ No mechanism to support global data structures that can be 

accessed and updated by all mappers and reducers

 Passing information is only possible within the local graph 

structure – through adjacency list

 Dijkstra's algorithm on a single machine: a global priority 

queue that guides the expansion of nodes

 Dijkstra‘s algorithm in Hadoop, no such queue available. Do 

some “wasted” computation instead

❖ MapReduce algorithms are often impractical on large, dense graphs.

➢ The amount of intermediate data generated is on the order of the 

number of edges. 

➢ For dense graphs, MapReduce running time would be dominated 

by copying intermediate data across the network. 
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Iterative MapReduce

Only a subset of data needs computation:
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Iterative MapReduce

System is not optimized for iteration:
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Better Partitioning

❖ Default: hash partitioning

➢ Randomly assign nodes to partitions

❖ Observation: many graphs exhibit local structure

➢ E.g., communities in social networks

➢ Better partitioning creates more opportunities for local aggregation

❖ Unfortunately, partitioning is hard!

➢ Sometimes, chick-and-egg… 

➢ But cheap heuristics sometimes available

➢ For webgraphs: range partition on domain-sorted URLs
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End of Chapter 3.2
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Practices
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Practice： Design MapReduce Algorithms

❖ Counting total enrollments of two specified courses

❖ Input Files: A list of students with their enrolled courses

Jamie: COMP9313, COMP9318

Tom: COMP9331, COMP9313

… …

❖ Mapper selects records and outputs initial counts

➢ Input: Key – student, value – a list of courses

➢ Output: (COMP9313, 1), (COMP9318, 1), …

❖ Reducer accumulates counts

➢ Input: (COMP9313, [1, 1, …]), (COMP9318, [1, 1, …])

➢ Output: (COMP9313, 16), (COMP9318, 35)
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❖ Remove duplicate records

❖ Input: a list of records

2013-11-01 aa

2013-11-02 bb

2013-11-03 cc

2013-11-01 aa

2013-11-03 dd

❖ Mapper

➢ Input (record_id, record)

➢ Output (record, “”)

 E.g., (2013-11-01 aa, “”), (2013-11-02 bb, “”), …

❖ Reducer

➢ Input (record, [“”, “”, “”, …])

 E.g., (2013-11-01 aa, [“”, “”]), (2013-11-02 bb, [“”]), …

➢ Output (record, “”)

Practice： Design MapReduce Algorithms
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❖ Assume that in an online shopping system, a huge log file stores the 

information of each transaction. Each line of the log is in format of 

“userID\t product\t price\t time”. Your task is to use MapReduce to find 

out the top-5 expensive products purchased by each user in 2016

❖ Mapper:

➢ Input(transaction_id, transaction)

➢ initialize an associate array H(UserID, priority queue Q of log 

record based on price)

➢ map(): get local top-5 for each user

➢ cleanup(): emit the entries in H

❖ Reducer:

➢ Input(userID, list of queues[])

➢ get top-5 products from the list of queues

Practice： Design MapReduce Algorithms
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Practice： Design MapReduce Algorithms

❖ Reverse graph edge directions & output in node order

Input: adjacency list of graph (3 nodes and 4 edges)

(3, [1, 2])         (1, [3])

(1, [2, 3])  ➔ (2, [1, 3])

(3, [1])

❖ Note, the node_ids in the output values are also sorted.  But Hadoop 

only sorts on keys!

❖ Solutions: Secondary sort
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❖ Map

➢ Input:    (3, [1, 2]),   (1, [2, 3]).

➢ Intermediate: (1, [3]), (2, [3]), (2, [1]), (3, [1]).  (reverse direction)

➢ Output:  (<1, 3>, [3]), (<2, 3>, [3]),   (<2, 1>, [1]), (<3, 1>, [1]).

 Copy node_ids from value to key.

❖ Partition on Key.field1, and Sort on whole Key (both fields)

➢ Input:    (<1, 3>, [3]),   (<2, 3>, [3]),   (<2, 1>, [1]), (<3, 1>, [1])

➢ Output: (<1, 3>, [3]),   (<2, 1>, [1]),   (<2, 3>, [3]), (<3, 1>, [1])

❖ Grouping comparator

➢ Merge according to part of the key

➢ Output: (<1, 3>, [3]),   (<2, 1>, [1, 3]),   (<3, 1>, [1])

this will be the reducer’s input

❖ Reducer

➢ Merge according to part of the key 

➢ Output: (1, [3]),   (2, [1, 3]),   (3, [1])

Practice： Design MapReduce Algorithms
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❖ Calculate the common friends for each pair of users in Facebook. 

Assume the friends are stored in format of Person->[List of Friends], 

e.g.: A -> [B C D], B -> [A C D E], C -> [A B D E], D -> [A B C E], E -> 

[B C D]. Note that the “friendship” is bi-directional, which means that if 

A is in B’s list, B would be in A’s list as well. Your result should be like: 

➢ (A B) -> (C D)

➢ (A C) -> (B D)

➢ (A D) -> (B C)

➢ (B C) -> (A D E)

➢ (B D) -> (A C E)

➢ (B E) -> (C D)

➢ (C D) -> (A B E)

➢ (C E) -> (B D)

➢ (D E) -> (B C)

Practice： Design MapReduce Algorithms



3.60

❖ Mapper:

➢ Input(user u, List of Friends [f1, f2, …,])

➢ map(): for each friend fi, emit (<u, fi>, List of Friends [f1, f2, …,])

 Need to generate the pair <u, fi> according to an order! Thus 

<u, fi> and <fi, u> will be the same key

❖ Reducer:

➢ Input(user pair, list of friends lists[])

➢ Get the intersection from all friends lists

❖ Example: http://scaryscientist.blogspot.com/2015/04/common-friends-

using-mapreduce.html

Practice： Design MapReduce Algorithms

http://scaryscientist.blogspot.com/2015/04/common-friends-using-mapreduce.html

