COMP9313: Big Data Management

Lecturer: Xin Cao

Course web site: http://www.cse.unsw.edu.au/~cs9313/

Chapter 4: MapReduce IV

Graph Data Processing in MapReduce

What's a Graph?

* $G=(V, E)$, where
> V represents the set of vertices (nodes)
> E represents the set of edges (links)
> Both vertices and edges may contain additional information
* Different types of graphs:
> Directed vs. undirected edges
> Presence or absence of cycles
* Graphs are everywhere:
> Hyperlink structure of the Web
> Physical structure of computers on the Internet
> Interstate highway system
> Social networks

Graph Analytics

* General Graph
- Count the number of nodes whose degree is equal to 5
> Find the diameter of the graphs
\% Web Graph
> Rank each webpage in the web graph or each user in the twitter graph using PageRank, or other centrality measure
* Transportation Network
> Return the shortest or cheapest flight/road from one city to another
* Social Network
> Detect a group of users who have similar interests
* Financial Network
> Find the path connecting two suspicious transactions;
*

Graphs and MapReduce

* Graph algorithms typically involve:
> Performing computations at each node: based on node features, edge features, and local link structure
> Propagating computations: "traversing" the graph
- Key questions:
> How do you represent graph data in MapReduce?
> How do you traverse a graph in MapReduce?

Representing Graphs

* Adjacency Matrices: Represent a graph as an $n \times n$ square matrix M
$>n=|\mathrm{V}|$
$>M_{i j}=1$ means a link from node i to j

	1	2	3	4
1	0	1	0	1
2	1	0	1	1
3	1	0	0	0
4	1	0	1	0

Adjacency Matrices: Critique

* Advantages:
- Amenable to mathematical manipulation
- Iteration over rows and columns corresponds to computations on outlinks and inlinks
* Disadvantages:
- Lots of zeros for sparse matrices
> Lots of wasted space

Representing Graphs

* Adjacency Lists: Take adjacency matrices... and throw away all the zeros

	1	2	3	4
1	0	1	0	1
2	1	0	1	1
3	1	0	0	0
4	1	0	1	0

$$
\begin{aligned}
& 1: 2,4 \\
& 2: 1,3,4 \\
& 3: 1 \\
& 4: 1,3
\end{aligned}
$$

Adjacency Lists: Critique

* Advantages:
> Much more compact representation
> Easy to compute over outlinks
- Disadvantages:
> Much more difficult to compute over inlinks

Single-Source Shortest Path

Single-Source Shortest Path (SSSP)

* Problem: find shortest path from a source node to one or more target nodes
$>$ Shortest might also mean lowest weight or cost
- Dijkstra's Algorithm:
$>$ For a given source node in the graph, the algorithm finds the shortest path between that node and every other

Dijkstra's Algorithm

```
1: \(\operatorname{Dijkstra}(G, w, s)\)
2: \(\quad d[s] \leftarrow 0\)
3: \(\quad\) for all vertex \(v \in V\) do
4: \(\quad d[v] \leftarrow \infty\)
5: \(\quad Q \leftarrow\{V\}\)
6: \(\quad\) while \(Q \neq \emptyset\) do
7: \(\quad u \leftarrow\) ExtractMin \((Q)\)
8: \(\quad\) for all vertex \(v \in u\).ADJACENCYLIST do
9:
\(10:\)
if \(d[v]>d[u]+w(u, v)\) then
\(d[v] \leftarrow d[u]+w(u, v)\)
```


Dijkstra's Algorithm Example

Finish!

Single Source Shortest Path

* Problem: find shortest path from a source node to one or more target nodes
$>$ Shortest might also mean lowest weight or cost
* Single processor machine: Dijkstra's Algorithm
* MapReduce: parallel Breadth-First Search (BFS)

Finding the Shortest Path

* Consider simple case of equal edge weights
* Solution to the problem can be defined inductively
* Here's the intuition:
> Define: b is reachable from a if b is on adjacency list of a
> $\operatorname{DistanceTo}(s)=0$
> For all nodes p reachable from s, DISTANCETO $(p)=1$
> For all nodes n reachable from some other set of nodes M, $\operatorname{DistanceTo}(n)=1+\min (\operatorname{DistancETo}(m), m \in M)$

Visualizing Parallel BFS

From Intuition to Algorithm

* Data representation:
- Key: node n
> Value: d (distance from start), adjacency list (list of nodes reachable from n)
> Initialization: for all nodes except for start node, $d=\infty$
* Mapper:
> $\forall m \in$ adjacency list: emit $(m, d+1)$
* Sort/Shuffle
> Groups distances by reachable nodes
* Reducer:
> Selects minimum distance path for each reachable node
> Additional bookkeeping needed to keep track of actual path

Multiple Iterations Needed

* Each MapReduce iteration advances the "known frontier" by one hop
> Subsequent iterations include more and more reachable nodes as frontier expands
> The input of Mapper is the output of Reducer in the previous iteration
> Multiple iterations are needed to explore entire graph
* Preserving graph structure:
> Problem: Where did the adjacency list go?
> Solution: mapper emits (n, adjacency list) as well

BFS Pseudo-Code

* Equal Edge Weights (how to deal with weighted edges?)
\% Only distances, no paths stored (how to obtain paths?)

class Mapper

method Map(nid n, node N)
$\mathrm{d} \leftarrow$ N. Distance
Emit(nid n,N.AdjacencyList)
//Pass along graph structure
for all nodeid $m \in N$.AdjacencyList do
Emit(nid m, d+1)
//Emit distances to reachable nodes
class Reducer
method Reduce(nid m, [d1, d2, . . .])
$\mathrm{d}_{\text {min }} \leftarrow \infty$
$\mathrm{M} \leftarrow \emptyset$
for all d \in counts [d1, d2, . . .] do
if IsNode(d) then
M.AdjacencyList $\leftarrow d \quad / /$ Recover graph structure
else if $d<d_{\text {min }}$ then //Look for shorter distance
$d_{\text {min }} \leftarrow d$
M.Distance $\leftarrow \mathrm{d}_{\text {min }} \quad$ //Update shortest distance

Emit(nid m, node M)

Stopping Criterion

* How many iterations are needed in parallel BFS (equal edge weight case)?
* Convince yourself: when a node is first "discovered", we've found the shortest path
* Now answer the question...
> The diameter of the graph, or the greatest distance between any pair of nodes
$>$ Six degrees of separation?
- If this is indeed true, then parallel breadth-first search on the global social network would take at most six MapReduce iterations.

Implementation in MapReduce

\% The actual checking of the termination condition must occur outside of MapReduce.

* The driver (main) checks to see if a termination condition has been met, and if not, repeats.
* Hadoop provides a lightweight API called "counters".
> It can be used for counting events that occur during execution, e.g., number of corrupt records, number of times a certain condition is met, or anything that the programmer desires.
- Counters can be designed to count the number of nodes that have distances of ∞ at the end of the job, the driver program can access the final counter value and check to see if another iteration is necessary.

Chained MapReduce Job (Java)

* In the main function, you can configure like:

```
String input = IN;
String output = OUT + System.nanoTime();
boolean isdone = false;
while (isdone == false) {
    Job job = Job.getInstance(conf, "traverse job");
    //configure your jobs here such as mapper and reducer classes
    FileInputFormat.addlnputPath(job, new Path(input));
    FileOutputFormat.setOutputPath(job, new Path(output));
    job.waitForCompletion(true); //start the job
    Counters counters = job.getCounters();
    Counter counter = counters.findCounter(MY_COUNTERS.REACHED);
    if(counter.getValue() == 0){ //use the counter to check the termination
        isdone = true;
    }
    input = output; //make the current output as the next input
    output = OUT + System.nanoTime();
}
```


Chained MapReduce Job (MRJob)

* To define multiple steps, override steps() to return a list of MRSteps:

```
class MRMostUsedWord(MRJob):
    def mapper_get_words(self, _, line):
        # yield each word in the line
        for word in WORD_RE.findall(line):
        yield (word.lower(), 1)
    def combiner_count_words(self, word, counts):
        # sum the words we've seen so far
    yield (word, sum(counts))
    def reducer_count_words(self, word, counts):
    # send all (num_occurrences, word) pairs to the same reducer.
    # num_occurrences is so we can easily use Python's max() function.
    yield None, (sum(counts), word)
    # discard the key; it is just None
    def reducer_find_max_word(self, _, word_count_pairs):
        # each item of word_count_pairs is (count, word),
        # so yielding one results in key=counts, value=word
        yield max(word_count_pairs)
    def steps(self):
        return [
        MRStep(mapper=self.mapper_get_words,
                combiner=self.combiner_count_words,
                reducer=self.reducer_count_words),
            MRStep(reducer=self.reducer_find_max_word)
    ]
```


MapReduce Counters

* Instrument Job's metrics
> Gather statistics
- Quality control - confirm what was expected.
- E.g., count invalid records
- Application-level statistics.
> Problem diagnostics
> Try to use counters for gathering statistics instead of log files
* Framework provides a set of built-in metrics
> For example, bytes processed for input and output
* User can create new counters
> Number of records consumed
> Number of errors or warnings

Buillt-in Counters

* Hadoop maintains some built-in counters for every job.
* Several groups for built-in counters
> File System Counters - number of bytes read and written
> Job Counters - documents number of map and reduce tasks launched, number of failed tasks
> Map-Reduce Task Counters- mapper, reducer, combiner input and output records counts, time and memory statistics

User-Defined Counters

- You can create your own counters
> Counters are defined by a Java enum
- serves to group related counters
- E.g.,
enum Temperature \{ MISSING, MALFORMED
\}
* Increment counters in Reducer and/or Mapper classes
> Counters are global: Framework accurately sums up counts across all maps and reduces to produce a grand total at the end of the job

Implement User-Defined Counters

* Retrieve Counter from Context object
> Framework injects Context object into map and reduce methods
* Increment Counter's value
- Can increment by 1 or more

```
parser.parse(value);
if (parser.isValidTemperature()) {
    int airTemperature = parser.getAirTemperature();
    context.write(new Text(parser.getYear()),
        new IntWritable(airTemperature));
} else if (parser.isMalformedTemperature()) {
    System.err.println("Ignoring possibly corrupt input: " + value);
    context getCounter(Temperature.MALFORMED) increment(1);
} else if (parser.isMissingTemperature())
    context.getCounter(Temperature.MISSING
    .increment(1);
}
```


Implement User-Defined Counters

* Get Counters from a finished job in Java
> Counter counters = job.getCounters()
\% Get the counter according to name
> Counter c 1 = counters.findCounter(Temperature.MISSING)
* Enumerate all counters after job is completed

```
for (CounterGroup group : counters) {
    System.out.println("* Counter Group: " + group.getDisplayName() + " (" +
    group.getName() + ")");
    System.out.println(" number of counters in this group: " + group.size());
    for (Counter counter : group) {
        System.out.println(" - " + counter.getDisplayName() + ": " +
        counter.getName() + ": "+counter.getValue());
    }
}
```


Counters in MRJob

* A counter has a group, a name, and an integer value. Hadoop itself tracks a few counters automatically. mrjob prints your job's counters to the command line when your job finishes, and they are available to the runner object if you invoke it programmatically.
* To increment a counter from anywhere in your job, use the increment_counter() method:

```
class MRCountingJob(MRJob):
    def steps(self):
        # 3 steps so we can check behavior of counters for multiple steps
        return [MRStep(self.mapper),
            MRStep(self.mapper),
            MRStep(self.mapper)]
    def mapper(self, _, value):
        self.increment_counter('group', 'counter_name', 1)
        yield _, value
```

* At the end of your job, you'll get the counter's total value.
* You can also read the counters by using "runner.counters()"
https://mrjob.readthedocs.io/en/latest/guides/runners.html

How to Find the Shortest Path?

* The parallel breadth-first search algorithm only finds the shortest distances.
* Store "back-pointers" at each node, as with Dijkstra's algorithm
$>$ Not efficient to recover the path from the back-pointers
* A simpler approach is to emit paths along with distances in the mapper, so that each node will have its shortest path easily accessible at all times
> The additional space requirement is acceptable

BFS Pseudo-Code (Weighted Edges)

* The adjacency lists, which were previously lists of node ids, must now encode the edge distances as well
> Positive weights!
* In line 6 of the mapper code, instead of emitting $d+1$ as the value, we must now emit $d+w$, where w is the edge distance
* The termination behaviour is very different!
> How many iterations are needed in parallel BFS (positive edge weight case)?
> Convince yourself: when a molde is first "discovered", we've found the shortest path

Additional Complexities

* Assume that p is the current processed node
> In the current iteration, we just "discovered" node r for the very first time.
> We've already discovered the shortest distance to node p, and that the shortest distance to r so far goes through p
> Is s->p->r the shortest path from s to r ?
* The shortest path from source s to node r may go outside the current search frontier
$>$ It is possible that $p->q->r$ is shorter than $p->r$!
> We will not find the shortest distance to r until the search frontier expands to cover q.

How Many Iterations Are Needed?

* In the worst case, we might need as many iterations as there are nodes in the graph minus one
> A sample graph that elicits worst-case behaviour for parallel breadth-first search.
> Eight iterations are required to discover shortest distances to all nodes from n_{1}.

Example (only distances)

* Input file:
s --> $0 \mid n 1: 10, n 2: 5$
n1 --> ∞ |n2: 2, n3:1
n2 --> ∞ |n1:3, n3:9, n4:2
n3 --> ∞ |n4:4
n4 --> ∞ | s:7, n3:6

Iteration I

- Map:

Read s --> $0 \mid n 1: 10, n 2: 5$
Emit: ($\mathrm{n} 1,10$), ($\mathrm{n} 2,5$), and the adjacency list ($\mathrm{s}, \mathrm{n} 1: 10, \mathrm{n} 2: 5$)
The other lists will also be read and emit, but they do not contribute, and thus ignored

- Reduce:

Receives: ($n 1,10$), ($n 2,5$), ($s,<0,(n 1: 10, n 2: 5)>)$
The adjacency list of each node will also be received, ignored in example

Emit:

s --> $0 \mid n 1: 10, \mathrm{n} 2: 5$
n1 --> 10 | n2: 2, n3:1
n2 --> $5 \mid n 1: 3, ~ n 3: 9, ~ n 4: 2$

Iteration 2

- Map:

Read: n1 --> 10 |n2: 2, n3:1
Emit: (n2, 12), (n3, 11), (n1, <10, (n2: 2, n3:1)>)
Read: n2 --> 5 |n1:3, n3:9, n4:2
Emit: (n1, 8), (n3, 14), (n4, 7), (n2, <5, (n1:3, n3:9, n4:2)>)
Ignore the processing of the other lists

- Reduce:

Receives: (n1, (8, <10, (n2: 2, n3:1)>)), (n2, (12, <5, n1:3, n3:9, n4:2>)), (n3, (11, 14)), (n4, 7)
Emit:

```
n1 --> 8 | n2: 2, n3:1
n2 --> 5 | n1:3, n3:9, n4:2
n3 --> 11| n4:4
n4 --> 7 | s:7, n3:6
```


Iteration 3

- Map:

Read: n1 --> 8 |n2: 2, n3:1
Emit: (n2, 10), (n3, 9), (n1, <8, (n2: 2, n3:1)>)
Read: n2 --> 5 |n1:3, n3:9, n4:2 (Again!)
Emit: (n1, 8), (n3, 14), (n4, 7), (n2, <5, (n1:3, n3:9, n4:2)>)
Read: n3 --> $11 \mid n 4: 4$
Emit: (n4, 15), (n3, <11, (n4:4)>)
Read: n4 --> 7 | s:7, n3:6
Emit: (s, 14), (n3, 13), (n4, <7, (s:7, n3:6)>)

* Reduce:

Emit:
$\mathrm{n} 1-->8 \mid n 2: 2, \mathrm{n} 3: 1$
n 2 --> $5 \mid \mathrm{n} 1: 3, \mathrm{n} 3: 9, \mathrm{n} 4: 2$
$\mathrm{n} 3-->9 \mid n 4: 4$
n 4 --> $7 \mid \mathrm{s}: 7, \mathrm{n} 3: 6$

Iteration 4

- Map:

Read: n1 --> $8 \mid n 2: 2, n 3: 1$ (Again!)
Emit: (n2, 10), (n3, 9), (n1, <8, (n2: 2, n3:1)>)
Read: n2 --> 5 |n1:3, n3:9, n4:2 (Again!)

In order to avoid duplicated

Emit: (n1, 8), (n3, 14), (n4, 7), (n2, <5, (n1:3, n3:9, n4:2)>)
Read: n3 --> 9 | n4:4
Emit: ($n 4,13$), (n3, <9, (n4:4)>)
Read: n4 --> 7 | s:7, n3:6 (Again!)
Emit: (s, 14), (n3, 13), (n4, <7, (s:7, n3:6)>)

- Reduce:

Emit:
n1 --> 8 | n2: 2, n3:1
n2 --> 5 |n1:3, n3:9, n4:2
n3 --> 9 | n4:4
n4 --> $7 \mid \mathrm{s}: 7$, n3:6

No updates. Terminate.

Comparison to Dijkstra

* Dijkstra's algorithm is more efficient
- At any step it only pursues edges from the minimum-cost path inside the frontier
* MapReduce explores all paths in parallel
> Lots of "waste"
> Useful work is only done at the "frontier"
*Why can't we do better using MapReduce?

Graphs and MapReduce

* Graph algorithms typically involve:
> Performing computations at each node: based on node features, edge features, and local link structure
> Propagating computations: "traversing" the graph
* Generic recipe:
> Represent graphs as adjacency lists
> Perform local computations in mapper
> Pass along partial results via outlinks, keyed by destination node
> Perform aggregation in reducer on inlinks to a node
> Iterate until convergence: controlled by external "driver"
> Don't forget to pass the graph structure between iterations

Issues with MapReduce on Graph Processing

* MapReduce Does not support iterative graph computations:
- External driver. Huge I/O incurs
- No mechanism to support global data structures that can be accessed and updated by all mappers and reducers
- Passing information is only possible within the local graph structure - through adjacency list
- Dijkstra's algorithm on a single machine: a global priority queue that guides the expansion of nodes
- Dijkstra's algorithm in Hadoop, no such queue available. Do some "wasted" computation instead
* MapReduce algorithms are often impractical on large, dense graphs.
> The amount of intermediate data generated is on the order of the number of edges.
> For dense graphs, MapReduce running time would be dominated by copying intermediate data across the network.

Iterative MapReduce

Only a subset of data needs computation:

Iterative MapReduce

System is not optimized for iteration:

Better Partitioning

* Default: hash partitioning
- Randomly assign nodes to partitions
* Observation: many graphs exhibit local structure
> E.g., communities in social networks
> Better partitioning creates more opportunities for local aggregation
* Unfortunately, partitioning is hard!
> Sometimes, chick-and-egg...
- But cheap heuristics sometimes available
> For webgraphs: range partition on domain-sorted URLs

References

* Chapter 5, Data-Intensive Text Processing with MapReduce. Jimmy Lin and Chris Dyer. University of Maryland, College Park.

End of Chapter 3.2

Practices

Practice: Design MapReduce Algorithms

* Counting total enrollments of two specified courses
* Input Files: A list of students with their enrolled courses Jamie: COMP9313, COMP9318
Tom: COMP9331, COMP9313
* Mapper selects records and outputs initial counts
> Input: Key - student, value - a list of courses
> Output: (COMP9313, 1), (COMP9318, 1), ...
* Reducer accumulates counts
> Input: (COMP9313, [1, 1, ...]), (COMP9318, [1, 1, ...])
> Output: (COMP9313, 16), (COMP9318, 35)

Practice: Design MapReduce Algorithms

- Remove duplicate records
- Input: a list of records

2013-11-01 aa
2013-11-02 bb
2013-11-03 cc
2013-11-01 aa
2013-11-03 dd

- Mapper
> Input (record_id, record)
> Output (record, "")
- E.g., (2013-11-01 aa, ""), (2013-11-02 bb, ""), ...
- Reducer
> Input (record, ["", "", "", ...])
- E.g., (2013-11-01 aa, ["", ""]), (2013-11-02 bb, [""]), ...
> Output (record, "")

Practice: Design MapReduce Algorithms

* Assume that in an online shopping system, a huge log file stores the information of each transaction. Each line of the log is in format of "userIDlt product|t pricelt time". Your task is to use MapReduce to find out the top-5 expensive products purchased by each user in 2016
* Mapper:
> Input(transaction_id, transaction)
> initialize an associate array H (UserID, priority queue Q of log record based on price)
> map(): get local top-5 for each user
> cleanup(): emit the entries in H
* Reducer:
$>$ Input(userID, list of queues[])
> get top-5 products from the list of queues

Practice: Design MapReduce Algorithms

* Reverse graph edge directions \& output in node order

Input: adjacency list of graph (3 nodes and 4 edges)

$(3,[1,2])$	
$(1,[2,3]) \rightarrow$	$(1,[3])$
	$(2,[1,3])$
	$(3,[1])$

* Note, the node_ids in the output values are also sorted. But Hadoop only sorts on keys!
* Solutions: Secondary sort

Practice: Design MapReduce Algorithms

* Map
> Input: (3, [1, 2]), (1, [2, 3]).
> Intermediate: (1, [3]), (2, [3]), (2, [1]), (3, [1]). (reverse direction)
> Output: (<1, 3>, [3]), (<2, 3>, [3]), (<2, 1>, [1]), (<3, 1>, [1]).
- Copy node_ids from value to key.
* Partition on Key.field1, and Sort on whole Key (both fields)
$>$ Input: (<1, 3>, [3]), (<2, 3>, [3]), (<2, 1>, [1]), (<3, 1>, [1])
$>$ Output: $(\langle 1,3\rangle,[3]), \quad(<2,1\rangle,[1]), \quad(<2,3\rangle,[3]),(\langle 3,1\rangle,[1])$
* Grouping complarator
> Merge accdrding to part of the key
$>$ Output: $(<1,3>,[3]), \quad(<2,1>,[1,3]), \quad(<3,1>,[1])$ this will be the reducer's input
* Reducer
> Merge according to part of the key
> Output: (1, [3]), (2, [1, 3]), (3, [1])

Practice: Design MapReduce Algorithms

* Calculate the common friends for each pair of users in Facebook. Assume the friends are stored in format of Person->[List of Friends],
 [$B C D$]. Note that the "friendship" is bi-directional, which means that if A is in B's list, B would be in A's list as well. Your result should be like:
$>(A B)->(C D)$
$>(A C)->(B D)$
$>(A D)->(B C)$
$>(\mathrm{BC})->(\mathrm{ADE})$
> ($\mathrm{B} D)->(\mathrm{ACE})$
> (BE) $->(\mathrm{CD})$
> (CD) $->(\mathrm{ABE})$
$>(C E)->(B D)$
$>(\mathrm{DE})->(\mathrm{BC})$

Practice: Design MapReduce Algorithms

* Mapper:
> Input(user u, List of Friends $\left.\left[f_{1}, f_{2}, \ldots,\right]\right)$
$>\operatorname{map}()$: for each friend f_{i}, emit ($<u, f_{i}>$, List of Friends $\left[f_{1}, f_{2}, \ldots,\right]$)
- Need to generate the pair $<u, f_{i}>$ according to an order! Thus $<u$, fi> and <fi, $u>$ will be the same key
* Reducer:
> Input(user pair, list of friends lists[])
> Get the intersection from all friends lists
* Example: http://scaryscientist.blogspot.com/2015/04/common-friends-using-mapreduce.html

