
COMP9313: Big Data Management

Lecturer: Xin Cao
Course web site: http://www.cse.unsw.edu.au/~cs9313/

4.2

Chapter 4.1: Spark I

4.3

Part 1: Spark Introduction

4.4

Limitations of MapReduce

❖ MapReduce greatly simplified big data analysis on large, unreliable

clusters. It is great at one-pass computation.

❖ But as soon as it got popular, users wanted more:

➢ More complex, multi-pass analytics (e.g. ML, graph)

➢ More interactive ad-hoc queries

➢ More real-time stream processing

❖ All 3 need faster data sharing across parallel jobs

➢ One reaction: specialized models for some of these apps, e.g.,

 Pregel (graph processing)

 Storm (stream processing)

4.5

Limitations of MapReduce

❖ As a general programming model:

➢ It is more suitable for one-pass computation on a large dataset

➢ Hard to compose and nest multiple operations

➢ No means of expressing iterative operations

❖ As implemented in Hadoop

➢ All datasets are read from disk, then stored back on to disk

➢ All data is (usually) triple-replicated for reliability

➢ Not easy to write MapReduce programs using Java

Benefits of data flow: runtime can decide

where to run tasks and can automatically

recover from failures

4.6

Data Sharing in MapReduce

Slow due to replication, serialization, and disk IO

❖ Complex apps, streaming, and interactive queries all need one thing

that MapReduce lacks:

Efficient primitives for data sharing

4.7

Data Sharing in MapReduce

❖ Iterative jobs involve a lot of disk I/O for each repetition

❖ Interactive queries and online processing involves lots of disk I/O

4.8

Example: Shortest Path

❖ Repeatedly send graph structure from mapper to reducer

4.9

Hardware for Big Data

Lots of hard drives Lots of CPUs

And lots of memory!

4.10

Goals of Spark

❖ Keep more data in-memory to improve the performance!

❖ Extend the MapReduce model to better support two common classes

of analytics apps:

➢ Iterative algorithms (machine learning, graphs)

➢ Interactive data mining

❖ Enhance programmability:

➢ Integrate into Scala programming language

➢ Allow interactive use from Scala interpreter

4.11

Data Sharing in Spark Using RDD

10-100× faster than network and disk

4.12

What is Spark

❖ One popular answer to “What’s beyond MapReduce?”

❖ Open-source engine for large-scale distributed data processing

➢ Supports generalized dataflows

➢ Written in Scala, with bindings in Java, Python, and R

❖ Brief history:

➢ Developed at UC Berkeley AMPLab in 2009

➢ Open-sourced in 2010

➢ Became top-level Apache project in February 2014

➢ Commercial support provided by DataBricks

4.13

What is Spark

❖ Fast and expressive cluster computing system interoperable with

Apache Hadoop

❖ Improves efficiency through:

➢ In-memory computing primitives

➢ General computation graphs

❖ Improves usability through:

➢ Rich APIs in Scala, Java, Python

➢ Interactive shell

❖ Spark is not

➢ a modified version of Hadoop

➢ dependent on Hadoop because it has its own cluster management

➢ Spark uses Hadoop for storage purpose only

Up to 100× faster
(10× on disk)

Often 5× less code

4.14

What is Spark

❖ Spark’s design philosophy centers around four key characteristics:

➢ Speed

 Its internal implementation benefits immensely from the

performance improvement of CPUs and memory

 Spark builds its query computations as a directed acyclic graph

 It has a physical execution engine which generates compact

code for execution

➢ Ease of use

 RDD, DataFrames, and Datasets

➢ Modularity

 Spark operations can be applied across many types of

workloads and expressed in any of the supported programming

languages: Scala, Java, Python, SQL, and R.

➢ Extensibility

 Spark focuses on its fast, parallel computation engine rather

than on storage

4.15

Data Sources

❖ Local Files

➢ file:///opt/httpd/logs/access_log

❖ S3

❖ Hadoop Distributed Filesystem

➢ Regular files, sequence files, any other Hadoop InputFormat

❖ HBase, Cassandra, etc.

4.16

What is Spark

❖ Spark is the basis of a wide set of projects in the Berkeley Data

Analytics Stack (BDAS)

➢ Spark SQL (SQL on Spark)

➢ Spark Streaming (stream processing)

➢ GraphX (graph processing)

➢ MLlib (machine learning library)

Spark Core
(Scala, Python, Java, R, SQL)

Spark
Streaming

(real-time)

GraphX
(graph)

…

Spark SQL
(SQL)

MLlib
(machine
learning)

4.17

Spark’s Ecosystem of Connectors

❖ The community of Spark developers maintains a list of third-party

Spark packages as part of the growing ecosystem

4.18

Spark Ideas

❖ Expressive computing system, not limited to map-reduce model

❖ Facilitate system memory

➢ avoid saving intermediate results to disk

➢ cache data for repetitive queries (e.g. for machine learning)

❖ Layer an in-memory system on top of Hadoop.

❖ Achieve fault-tolerance by re-execution instead of replication

4.19

Spark Workflow (Spark 1.x)

❖ A Spark program first creates a

SparkContext object

➢ Tells Spark how and where

to access a cluster

➢ Define RDDs

➢ Connect to several types of

cluster managers (e.g.,

YARN, Mesos, or its own

manager)

❖ Cluster manager:

➢ Allocate resources across

applications

❖ Spark executor:

➢ Run computations

➢ Access data storage

4.20

Spark Workflow (Spark 3.x)

❖ A Spark application consists of a driver program that is responsible for

orchestrating parallel operations on the Spark cluster. The driver

accesses the distributed components in the cluster—the Spark

executors and cluster manager—through a SparkSession.

4.21

Spark Components (Spark 3.x)

❖ Spark Driver: part of the Spark application responsible for

instantiating a SparkSession

➢ Communicates with the cluster manager

➢ Requests resources (CPU, memory, etc.) from the cluster

manager for Spark’s executors (JVMs)

➢ Transforms all the Spark operations into DAG computations,

schedules them, and distributes their execution as tasks across

the Spark executors

➢ Once the resources are allocated, it communicates directly with

the executors.

4.22

Spark Components (Spark 3.x)

❖ Since Spark 2.x, the SparkSession became a unified conduit to all

Spark operations and data (it subsumes previous entry points to Spark

like the SparkContext)

❖ SparkSession provides a single unified entry point to all of Spark’s

functionality

➢ Create JVM runtime parameters

➢ Define DataFrames and Datasets

➢ Read from Data Sources

➢ Access catalog metadata

➢ Issue Spark SQL queries

4.23

Spark Components (Spark 3.x)

❖ Cluster manager

➢ Responsible for managing and allocating resources for the cluster

of nodes on which your Spark application runs.

➢ Support four cluster managers: the built-in standalone cluster

manager, Apache Hadoop YARN, Apache Mesos, and

Kubernetes.

❖ Spark executor

➢ Runs on each worker node in the cluster.

➢ Communicate with the driver program and is responsible for

executing tasks on the workers.

➢ In most deployments modes, only a single executor runs per node.

4.24

Distributed Data and Partitions

❖ Actual physical data is distributed across storage as partitions residing

in either HDFS or other cloud storage.

❖ The data is distributed as partitions across the physical cluster

❖ Spark treats each partition as a high-level logical data abstraction in

memory.

❖ Each Spark executor is preferably allocated a task that requires it to

read the partition closest to it in the network, observing data locality.

4.25

Distributed Data and Partitions

❖ Each executor’s core is assigned its own data partition to work on

4.26

Word Count in Spark (RDD API)

“to be or”

“not to be”

“to”
“be”
“or”

“not”
“to”
“be”

(to, 1)
(be, 1)
(or, 1)

(not, 1)
(to, 1)
(be, 1)

(be, 2)
(not, 1)

(or, 1)
(to, 2)

(“hdfs://…”, 4)

4.27

Part 2: Scala Introduction

4.28

Scala (Scalable language)

❖ Scala is a general-purpose programming language designed to

express common programming patterns in a concise, elegant, and

type-safe way

❖ Scala supports both Object Oriented Programming and Functional

Programming

❖ Scala is Practical

➢ Can be used as drop-in replacement for Java

 Mixed Scala/Java projects

➢ Use existing Java libraries

➢ Use existing Java tools (Ant, Maven, JUnit, etc…)

➢ Decent IDE Support (NetBeans, IntelliJ, Eclipse)

4.29

Why Scala

❖ Scala supports object-oriented programming. Conceptually, every

value is an object and every operation is a method-call. The language

supports advanced component architectures through classes and

traits

❖ Scala is also a functional language. Supports functions, immutable

data structures and preference for immutability over mutation

❖ Seamlessly integrated with Java

❖ Being used heavily for Big data, e.g., Spark, Kafka, etc.

4.30

Scala Basic Syntax

❖ When considering a Scala program, it can be defined as a collection

of objects that communicate via invoking each other’s methods.

❖ Object − same as in Java

❖ Class − same as in Java

❖ Methods − same as in Java

❖ Fields − Each object has its unique set of instant variables, which are

called fields. An object's state is created by the values assigned to

these fields.

❖ Traits − Like Java Interface. A trait encapsulates method and field

definitions, which can then be reused by mixing them into classes.

❖ Closure − A closure is a function, whose return value depends on the

value of one or more variables declared outside this function.

closure = function + enviroment

4.31

Object-Oriented Programming in Scala

❖ Scala is object-oriented, and is based on Java’s model

❖ An object is a singleton object (there is only one of it)

➢ Variables and methods in an object are somewhat similar to

Java’s static variables and methods

➢ Reference to an object’s variables and methods have the syntax

ObjectName.methodOrVariableName

➢ The name of an object should be capitalized

❖ A class may take parameters, and may describe any number of

objects

➢ The class body is the constructor, but you can have additional

constructors

➢ With correct use of val and var, Scala provides getters and

setters for class parameters

4.32

Scala is Statically Typed

❖ You don't have to specify a type in most cases

❖ Type Inference

val sum = 1 + 2 + 3

val nums = List(1, 2, 3)

val map = Map("abc" -> List(1,2,3))

Explicit Types

val sum: Int = 1 + 2 + 3

val nums: List[Int] = List(1, 2, 3)

val map: Map[String, List[Int]] = ...

4.33

Scala is High level

// Java – Check if string has uppercase character

boolean hasUpperCase = false;

for(int i = 0; i < name.length(); i++) {

if(Character.isUpperCase(name.charAt(i))) {

hasUpperCase = true;

break;

}

}

// Scala

val hasUpperCase = name.exists(_.isUpper)

4.34

Scala is Concise

// Java
public class Person {

private String name;

private int age;

public Person(String name, Int age) {

this.name = name;

this.age = age;

}

public String getName() { // name getter

return name;

}

public int getAge() { // age getter

return age;

}

public void setName(String name) { // name setter

this.name = name;

}

public void setAge(int age) { // age setter

this.age = age;

}

}

// Scala
class Person(var name: String, private var _age: Int) {
def age = _age // Getter for age
def age_=(newAge:Int) { // Setter for age

println("Changing age to: "+newAge)
_age = newAge

}
}

4.35

Variables and Values

❖ Variables: values stored can be changed

var foo = "foo"

foo = "bar" // okay

❖ Values: immutable variable

val foo = "foo"

foo = "bar" // nope

4.36

Scala is Pure Object Oriented

// Every value is an object

1.toString

// Every operation is a method call

1 + 2 + 3 → (1).+(2).+(3)

// Can omit . and ()

"abc" charAt 1 → "abc".charAt(1)

// Classes (and abstract classes) like Java

abstract class Language(val name:String) {

override def toString = name

}

// Example implementations

class Scala extends Language("Scala")

// Anonymous class

val scala = new Language("Scala") { /* empty */ }

4.37

Scala Traits

// Like interfaces in Java

trait JVM {

// But allow implementation

override def toString = super.toString+" runs on JVM" }

trait Static {

override def toString = super.toString+" is Static" }

// Traits are stackable

class Scala extends Language with JVM with Static {

val name = "Scala"

}

println(new Scala) → "Scala runs on JVM is Static"

4.38

Scala is Functional

❖ First-Class Functions. Functions are treated like objects:

➢ passing functions as arguments to other functions

➢ returning functions as the values from other functions

➢ assigning functions to variables or storing them in data structures

// Lightweight anonymous functions

(x:Int) => x + 1

// Calling the anonymous function

val plusOne = (x:Int) => x + 1

plusOne(5) → 6

4.39

Scala is Functional

❖ Closures: a function whose return value depends on the value of one

or more variables declared outside this function.

// plusFoo can reference any values/variables in scope

var foo = 1

val plusFoo = (x:Int) => x + foo

plusFoo(5) → 6

// Changing foo changes the return value of plusFoo

foo = 5

plusFoo(5) → 10

4.40

Scala is Functional

❖ Higher Order Functions

➢ A function that does at least one of the following:

 takes one or more functions as arguments

 returns a function as its result

val plusOne = (x:Int) => x + 1

val nums = List(1,2,3)

// map takes a function: Int => T

nums.map(plusOne) → List(2,3,4)

// Inline Anonymous

nums.map(x => x + 1) → List(2,3,4)

// Short form

nums.map(_ + 1) → List(2,3,4)

4.41

More Examples on Higher Order Functions

val nums = List(1,2,3,4)

// A few more examples for List class

nums.exists(_ == 2) → true

nums.find(_ == 2) → Some(2)

nums.indexWhere(_ == 2) → 1

// functions as parameters, apply f to the value “1”

def call(f: Int => Int) = f(1)

call(plusOne) → 2

call(x => x + 1) → 2

call(_ + 1) → 2

4.42

val basefunc = (x:Int) => ((y:Int) => x + y)

// interpreted by:

basefunc(x){

sumfunc(y){ return x+y;}

return sumfunc;

}

val closure1 = basefunc(1) closure1(5) = ?

6

val closure2 = basefunc(4) closure2(5) = ?

9

❖ basefunc returns a function, and closure1 and closure2 are of function

type.

❖ While closure1 and closure2 refer to the same function basefunc, the

associated environments differ, and the results are different

More Examples on Higher Order Functions

4.43

The Usage of “_” in Scala

❖ In anonymous functions, the “_” acts as a placeholder for parameters

nums.map(x => x + 1)

is equivalent to:

nums.map(_ + 1)

List(1,2,3,4,5).foreach(print(_))

is equivalent to:

List(1,2,3,4,5).foreach(a => print(a))

❖ You can use two or more underscores to refer different parameters.

val sum = List(1,2,3,4,5).reduceLeft(_+_)

is equivalent to:

val sum = List(1,2,3,4,5).reduceLeft((a, b) => a + b)

➢ The reduceLeft method works by applying the function/operation

you give it, and applying it to successive elements in the collection

4.44

Part 3: RDD Introduction

4.45

Challenge

❖ Existing Systems

➢ Existing in-memory storage systems have interfaces based on

fine-grained updates

 Reads and writes to cells in a table

 E.g., databases, key-value stores, distributed memory

➢ Requires replicating data or logs across nodes for fault tolerance

-> expensive!

 10-100x slower than memory write

❖ How to design a distributed memory abstraction that is both fault-

tolerant and efficient?

4.46

Solution: Resilient Distributed Datasets

❖ Resilient Distributed Datasets (RDDs)

➢ Distributed collections of objects that can be cached in memory

across cluster

➢ Manipulated through parallel operators

➢ Automatically recomputed on failure based on lineage

❖ RDDs can express many parallel algorithms, and capture many

current programming models

➢ Data flow models: MapReduce, SQL, …

➢ Specialized models for iterative apps: Pregel, …

4.47

What is RDD

❖ Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-

Memory Cluster Computing. Matei Zaharia, et al. NSDI’12

➢ RDD is a distributed memory abstraction that lets programmers

perform in-memory computations on large clusters in a fault-

tolerant manner.

❖ Resilient

➢ Fault-tolerant, is able to recompute missing or damaged partitions

due to node failures.

❖ Distributed

➢ Data residing on multiple nodes in a cluster.

❖ Dataset

➢ A collection of partitioned elements, e.g. tuples or other objects

(that represent records of the data you work with).

❖ RDD is the primary data abstraction in Apache Spark and the core of

Spark. It enables operations on collection of elements in parallel.

4.48

RDD Traits

❖ In-Memory, i.e. data inside RDD is stored in memory as much (size)

and long (time) as possible.

❖ Immutable or Read-Only, i.e. it does not change once created and

can only be transformed using transformations to new RDDs.

❖ Lazy evaluated, i.e. the data inside RDD is not available or

transformed until an action is executed that triggers the execution.

❖ Cacheable, i.e. you can hold all the data in a persistent "storage" like

memory (default and the most preferred) or disk (the least preferred

due to access speed).

❖ Parallel, i.e. process data in parallel.

❖ Typed, i.e. values in a RDD have types, e.g. RDD[Long] or RDD[(Int,

String)].

❖ Partitioned, i.e. the data inside a RDD is partitioned (split into

partitions) and then distributed across nodes in a cluster (one partition

per JVM that may or may not correspond to a single node).

4.49

RDD Operations

❖ Transformation: returns a new RDD.

➢ Nothing gets evaluated when you call a Transformation function, it

just takes an RDD and return a new RDD.

➢ Transformation functions include map, filter, flatMap, groupByKey,

reduceByKey, aggregateByKey, join, etc.

❖ Action: evaluates and returns a new value.

➢ When an Action function is called on a RDD object, all the data

processing queries are computed at that time and the result value

is returned.

➢ Action operations include reduce, collect, count, first, take,

countByKey, foreach, saveAsTextFile, etc.

4.50

Working with RDDs

❖ Create an RDD from a data source

➢ by parallelizing existing collections (lists or arrays)

➢ by transforming an existing RDDs

➢ from files in HDFS or any other storage system

❖ Apply transformations to an RDD: e.g., map, filter

❖ Apply actions to an RDD: e.g., collect, count

❖ Users can control two other aspects:

➢ Persistence

➢ Partitioning

4.51

Creating RDDs

❖ From HDFS, text files, Amazon S3, Apache HBase, SequenceFiles,

any other Hadoop InputFormat

❖ Creating an RDD from a File

➢ val inputfile = sc.textFile("...", 4)

 RDD distributed in 4 partitions

 Elements are lines of input

 Lazy evaluation means no execution happens now

❖ Turn a collection into an RDD

➢ sc.parallelize([1, 2, 3]), creating from a Python list

➢ sc.parallelize(Array(“hello”, “spark”)), creating from a Scala Array

❖ Creating an RDD from an existing Hadoop InputFormat

➢ sc.hadoopFile(keyClass, valClass, inputFmt, conf)

4.52

Spark Transformations

❖ Create new datasets from an existing one

❖ Use lazy evaluation: results not computed right away – instead Spark

remembers set of transformations applied to base dataset

➢ Spark optimizes the required calculations

➢ Spark recovers from failures

❖ Some transformation functions

4.53

Spark Actions

❖ Cause Spark to execute recipe to transform source

❖ Mechanism for getting results out of Spark

❖ Some action functions

❖ Example: words.collect().foreach(println)

4.54

References

❖ http://spark.apache.org/docs/latest/index.html

❖ http://www.scala-lang.org/documentation/

❖ http://www.scala-lang.org/docu/files/ScalaByExample.pdf

❖ A Brief Intro to Scala, by Tim Underwood.

❖ Learning Spark. 1st and 2nd Edition

http://spark.apache.org/docs/latest/index.html
http://www.scala-lang.org/documentation/
http://www.scala-lang.org/docu/files/ScalaByExample.pdf
https://www.slideshare.net/tpunder/a-brief-intro-to-scala
http://shop.oreilly.com/product/0636920028512.do

End of Chapter 4.1

