
COMP9313: Big Data Management

Lecturer: Xin Cao
Course web site: http://www.cse.unsw.edu.au/~cs9313/

4.2

Chapter 4.2: Spark II

4.3

Download and Configure Spark

❖ Current version: 3.1.2. https://spark.apache.org/downloads.html

➢ You also need to install Java first

❖ After downloading the package, unpack it and then configure the path

variable in file ~/.bashrc

export SPARK_HOME=/home/comp9313/workdir/spark

export PATH=$SPARK_HOME/bin:$PATH

https://spark.apache.org/downloads.html

4.4

Spark Shell

❖ Spark comes with four widely used interpreters that act like interactive

“shells” and enable ad hoc data analysis: pyspark, spark-shell,

sparksql, and sparkR

❖ You can start the spark-shell by using the command “spark-shell”

4.5

Understanding Spark Application Concepts

❖ Application

➢ A user program built on Spark using its APIs. It consists of a driver

program and executors on the cluster

❖ SparkContext/SparkSession

➢ An object that provides a point of entry to interact with underlying

Spark functionality and allows programming Spark with its APIs

❖ Job

➢ A parallel computation consisting of multiple tasks that gets

spawned in response to a Spark action (e.g., save(), collect()).

❖ Stage

➢ Each job gets divided into smaller sets of tasks called stages that

depend on each other.

❖ Task

➢ A single unit of work or execution that will be sent to a Spark

executor.

4.6

Spark Application and SparkSession

❖ The core of every Spark application is the Spark driver program, which

creates a SparkSession (SparkContext in Spark 1.x) object.

➢ When you’re working with a Spark shell, the driver is part of the

shell and the SparkSession/SparkContext object (accessible via

the variable spark) is created for you

➢ Once you have a SparkSession/ SparkContext, you can program

Spark using the APIs to perform Spark operations.

4.7

Spark Jobs

❖ During interactive sessions with Spark shells, the driver converts your

Spark application into one or more Spark jobs

❖ It then transforms each job into a Spark’s execution plan as a DAG,

where each node within a DAG could be a single or multiple Spark

stages.

4.8

Spark Stages and Tasks

❖ Stages are created based on what operations can be performed

serially or in parallel.

❖ Each stage is comprised of Spark tasks (a unit of execution), which

are then federated across each Spark executor; each task maps to a

single core and works on a single partition of data

4.9

The Spark UI

❖ Spark includes a graphical user interface that you can use to inspect

or monitor Spark applications in their various stages of

decomposition—that is jobs, stages, and tasks.

❖ The driver launches a web UI, running by default on port 4040, where

you can view metrics and details such as:

➢ A list of scheduler stages and tasks

➢ A summary of RDD sizes and memory usage

➢ Information about the environment

➢ Information about the running executors

➢ All the Spark SQL queries

❖ In local mode, you can access this interface at http://localhost:4040 in

a web browser.

4.10

Part 1: Programming with RDD

4.11

RDD Operations

❖ Transformation: returns a new RDD.

➢ Nothing gets evaluated when you call a Transformation function, it

just takes an RDD and return a new RDD.

➢ Transformation functions include map, filter, flatMap, groupByKey,

reduceByKey, aggregateByKey, join, etc.

❖ Action: evaluates and returns a new value.

➢ When an Action function is called on a RDD object, all the data

processing queries are computed at that time and the result value

is returned.

➢ Action operations include reduce, collect, count, first, take,

countByKey, foreach, saveAsTextFile, etc.

4.12

Example

❖ Web service is experiencing errors and an operators want to search

terabytes of logs in the Hadoop file system to find the cause.

➢ Line1: RDD backed by an HDFS file (base RDD lines not loaded

in memory)

➢ Line3: Asks for errors to persist in memory (errors are in RAM)

//base RDD

val lines = sc.textFile(“hdfs://…”)

//Transformed RDD

val errors = lines.filter(_.startsWith(“Error”))

errors.persist()

errors.count()

errors.filter(_.contains(“HDFS”))

.map(_.split(‘\t’)(3))

.collect()

4.13

Lineage Graph

RDDs keep track of lineage

❖ RDD has enough information about how it was derived from to

compute its partitions from data in stable storage.

❖ Example:

➢ If a partition of errors is lost, Spark rebuilds it by applying a filter

on only the corresponding partition of lines.

➢ Partitions can be recomputed in parallel on different nodes,

without having to roll back the whole program.

lines

errors

HDFS errors

time fields

RDD1

RDD2

RDD3

RDD4

filter(lambda x: x.startswith(“Error”)

filter(lambda x: “HDFS” in x)

map(lambda x:x.split('\t')[3])

4.14

Deconstructed

//base RDD

val lines = sc.textFile(“hdfs://…”)

//Transformed RDD

val errors = lines.filter(_.startsWith(“Error”))

errors.persist()

errors.count()

errors.filter(_.contains(“HDFS”))

.map(_.split(‘\t’)(3))

.collect()

4.15

Deconstructed

//base RDD

val lines = sc.textFile(“hdfs://…”)

//Transformed RDD

val errors = lines.filter(_.startsWith(“Error”))

errors.persist()

errors.count()

count() causes Spark to: 1) read

data; 2) sum within partitions; 3)

combine sums in driver

Put transform and action together:

errors.filter(_.contains(“HDFS”)).map(_split(‘\t’)(3)).collect()

4.16

SparkContext

❖ SparkContext is the entry point to Spark for a Spark application.

❖ Once a SparkContext instance is created you can use it to

➢ Create RDDs

➢ Create accumulators

➢ Create broadcast variables

➢ access Spark services and run jobs

❖ A Spark context is essentially a client of Spark’s execution

environment and acts as the master of your Spark application

❖ The first thing a Spark program must do is to create a SparkContext

object, which tells Spark how to access a cluster

❖ In the Spark shell, a special interpreter-aware SparkContext is already

created for you, in the variable called sc

4.17

RDD Persistence: Cache/Persist

❖ One of the most important capabilities in Spark

is persisting (or caching) a dataset in memory across operations.

❖ When you persist an RDD, each node stores any partitions of it. You

can reuse it in other actions on that dataset

❖ Each persisted RDD can be stored using a different storage level, e.g.

➢ MEMORY_ONLY:

 Store RDD as deserialized Java objects in the JVM.

 If the RDD does not fit in memory, some partitions will not be

cached and will be recomputed when they're needed.

 This is the default level.

➢ MEMORY_AND_DISK:

 If the RDD does not fit in memory, store the partitions that don't

fit on disk, and read them from there when they're needed.

❖ cache() = persist(StorageLevel.MEMORY_ONLY)

4.18

Why Persisting RDD?

val lines = sc.textFile(“hdfs://…”)

val errors = lines.filter(_.startsWith(“Error”))

errors.persist()

errors.count()

❖ If you do errors.count() again, the file will be loaded again and

computed again.

❖ Persist will tell Spark to cache the data in memory, to reduce the data

loading cost for further actions on the same data

❖ erros.persist() will do nothing. It is a lazy operation. But now the RDD

says "read this file and then cache the contents". The action will

trigger computation and data caching.

4.19

Spark Key-Value RDDs

❖ Similar to Map Reduce, Spark supports Key-Value pairs

❖ Each element of a Pair RDD is a pair tuple

❖ Spark supports data partitioning control for pair RDDs

❖ Some Key-Value transformation functions:

4.20

Pair RDD Example (Transformation)

❖ Transformations on one pair RDD rdd = {(1, 2), (3, 4), (3, 6)}

Name Purpose Example Result

reduceByKey(func) Combine values

with the same key

rdd.reduceByKey(

(x, y) => x + y)

{(1, 2)}

groupByKey() Group values with

the same key

rdd.groupByKey() {(1, [2]), (3, [4, 6])}

mapValues(func) Apply a function to

each value of a pair

RDD without

changing the key

rdd.mapValues(x

=> x+1)

{(1, 3), (3, 5), (3, 7)}

keys() Return an RDD of

just the keys

rdd.keys() {1, 3, 3}

values() Return an RDD of

just the values

rdd.values() {2, 4, 6}

sortByKey() Return an RDD

sorted by the key

rdd.sortByKey() {(1, 2), (3, 4), (3, 6)}

4.21

Pair RDD Example (Transformation)

❖ Transformations on two pair RDDs rdd1 = {(1, 2), (3, 4), (3, 6)} and

rdd2 = {(3, 9)})

Name Purpose Example Result

subtractByKey Remove elements

with a key present in

the other RDD

rdd1.subtractByKey

(rdd2)

{(1, 2), (3, 10)}

join Perform an inner

join between two

RDDs

rdd1.join(rdd2) {(3, (4, 9)), (3, (6, 9))}

cogroup Group data from

both RDDs sharing

the same key

rdd1.cogroup(rdd2) {(1,([2],[])),

(3, ([4, 6],[9]))}

4.22

Pair RDD Example (Actions)

❖ Actions on one pair RDD rdd = ({(1, 2), (3, 4), (3, 6)})

Name Purpose Example Result

countByKey() Count the number

of elements for

each key

rdd.countByKey() {(1, 1), (3, 2)}

collectAsMap() Collect the result as

a map to provide

easy lookup

rdd.collectAsMap() Map{(1, 2), (3,

4), (3, 6)}

lookup(key) Return all values

associated with the

provided key

rdd.lookup(3) [4, 6]

4.23

A Few Practices on Pair RDD

val lines = sc.parallelize(List("hello world", "this is a scala program", "to create a pair RDD", "in

spark"))

val pairs = lines.map(x => (x.split(" ")(0), x))

pairs.filter {case (key, value) => key.length <3}.foreach(println)

val pairs = sc.parallelize(List((1, 2), (3, 1), (3, 6), (4,2)))

val pairs1 = pairs.mapValues(x=>(x, 1))

val pairs2 = pairs1.reduceByKey((x,y) => (x._1 + y._1, x._2+y._2))

pairs2.foreach(println)

val pairs = sc.parallelize(List((1, 2), (3, 4), (3, 9), (4,2)))

val pairs1 = pairs.mapValues(x=>(x, 1)).reduceByKey((x,y) => (x._1 + y._1,

x._2+y._2)).mapValues(x=>x._2/x._1)

pairs1.foreach(println)

4.24

Passing Functions to RDD

❖ Spark’s API relies heavily on passing functions in the driver program

to run on the cluster.

➢ Anonymous function. E.g.,

 val words = input.flatMap(line => line.split(" "))

➢ Static methods in a global singleton object. E.g,

 object MyFunctions { def func1(s: String): String = { ... } }

myRdd.map(MyFunctions.func1)

4.25

Understanding Closures

❖ RDD operations that modify variables outside of their scope can be a

frequent source of confusion.

❖ Consider the naive RDD element sum below, which may behave

differently depending on whether execution is happening within the

same JVM. A common example of this is when running Spark in local

mode (--master = local[n]) versus deploying a Spark application to a

cluster (e.g. via spark-submit to YARN):

➢ The behavior of the above code is undefined, and may not work

as intended.

➢ Spark sends the closure to each task containing variables must be

visible to the executors. Thus “counter” in the executor is only a

copy of the “counter” in the driver.

var counter = 0

var rdd = sc.parallelize(data)

rdd.foreach(x => counter += x)

println("Counter value: " + counter)

4.26

Load Your Data

❖ File formats range from unstructured, like text, to semi-structured, like

JSON, to structured, like SequenceFiles.

❖ Text File:

➢ input = sc.textFile("file:///home/holden/repos/spark/README.md")

❖ CSV File:

➢ You can use csv libraries such as opencsv:

➢ If you know the field separator in advance, you can also split each

record into columns using the separator such as “,”

import Java.io.StringReader
import au.com.bytecode.opencsv.CSVReader

val input = sc.textFile(inputFile)
val result = input.map{ line =>

val reader = new CSVReader(new StringReader(line));
reader.readNext();

}

4.27

Save Your Data

❖ Text File:

➢ result.saveAsTextFile(outputFile)

❖ CSV File:

➢ You can use StringWriter/StringIO to allow us to put the result in

our RDD

➢ You can also convert each record to a string with the fields

separated by a separator such as “,”, and then save to a text file.

pandaLovers.map(person => List(person.name,
person.favoriteAnimal).toArray)
.mapPartitions{people =>

val stringWriter = new StringWriter();
val csvWriter = new CSVWriter(stringWriter);
csvWriter.writeAll(people.toList)
Iterator(stringWriter.toString)

}.saveAsTextFile(outFile)

4.28

Setting the Level of Parallelism

❖ All the pair RDD operations take an optional second parameter for

number of tasks

> words.reduceByKey((x,y) => x + y, 5)

> words.groupByKey(5)

4.29

Using Local Variables

❖ Any external variables you use in a closure will automatically be

shipped to the cluster:

> query = sys.stdin.readline()

> pages.filter(x => x.contains(query)).count()

❖ Some caveats:

➢ Each task gets a new copy (updates aren’t sent back)

➢ Variable must be Serializable

4.30

Shared Variables

❖ When you perform transformations and actions that use functions

(e.g., map(f: T=>U)), Spark will automatically push a closure

containing that function to the workers so that it can run at the

workers.

❖ Any variable or data within a closure or data structure will be

distributed to the worker nodes along with the closure

❖ When a function (such as map or reduce) is executed on a cluster

node, it works on separate copies of all the variables used in it.

❖ Usually these variables are just constants but they cannot be shared

across workers efficiently.

4.31

Shared Variables

❖ Consider These Use Cases

➢ Iterative or single jobs with large global variables

 Sending large read-only lookup table to workers

 Sending large feature vector in a ML algorithm to workers

 Problems? Inefficient to send large data to each worker with

each iteration

 Solution: Broadcast variables

➢ Counting events that occur during job execution

 How many input lines were blank?

 How many input records were corrupt?

 Problems? Closures are one way: driver -> worker

 Solution: Accumulators

4.32

Broadcast Variables

❖ Broadcast variables allow the programmer to keep a read-only

variable cached on each machine rather than shipping a copy of it with

tasks.

➢ For example, to give every node a copy of a large input dataset

efficiently

❖ Spark also attempts to distribute broadcast variables using efficient

broadcast algorithms to reduce communication cost

❖ Broadcast variables are created from a variable v by calling

SparkContext.broadcast(v). Its value can be accessed by calling

the value method.

❖ The broadcast variable should be used instead of the value v in any

functions run on the cluster, so that v is not shipped to the nodes more

than once.

scala > val broadcastVar =sc.broadcast(Array(1, 2, 3))

broadcastVar: org.apache.spark.broadcast.Broadcast[Array[Int]] = Broadcast(0)

scala > broadcastVar.value

res0: Array[Int] = Array(1, 2, 3)

4.33

Accumulators

❖ Accumulators are variables that are only “added” to through an

associative and commutative operation and can therefore be

efficiently supported in parallel.

❖ They can be used to implement counters (as in MapReduce) or sums.

❖ Spark natively supports accumulators of numeric types, and

programmers can add support for new types.

❖ Only driver can read an accumulator’s value, not tasks

❖ An accumulator is created from an initial value v by calling

SparkContext.accumulator(v).

scala> val accum = sc.longAccumulator("My Accumulator")

accum: org.apache.spark.util.LongAccumulator = LongAccumulator(id: 0, name:

Some(My Accumulator), value: 0)

scala> sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum.add(x))

... 10/09/29 18:41:08 INFO SparkContext: Tasks finished in 0.317106 s

scala> accum.value

res2: Long = 10

4.34

Accumulators Example (Python)

❖ Counting empty lines

➢ blankLines is created in the driver, and shared among workers

➢ Each worker can access this variable

file = sc.textFile(inputFile)

Create Accumulator[Int] initialized to 0

blankLines = sc.accumulator(0)

def extractCallSigns(line):

global blankLines # Make the global variable accessible

if (line == ""):

blankLines += 1

return line.split(" ")

callSigns = file.flatMap(extractCallSigns)

print ("Blank lines: %d" % blankLines.value)

4.35

RDD Operations

Spark RDD API Examples:

http://homepage.cs.latrobe.edu.au/zhe/ZhenHeSparkRDDAPIExamples.html

4.36

Spark

4.37

Part 2: Spark Programming Model (RDD)

4.38

How Spark Works

❖ User application create RDDs, transform them, and run actions.

❖ This results in a DAG (Directed Acyclic Graph) of operators.

❖ DAG is compiled into stages

❖ Each stage is executed as a series of Task (one Task for each

Partition).

4.39

Word Count in Spark

val file = sc.textFile(“hdfs://…”, 4) RDD[String]

textFile

4.40

Word Count in Spark

val file = sc.textFile(“hdfs://…”, 4)

val words = file.flatMap(line =>

line.split(“ ”))

RDD[String]

RDD[List[String]]

textFile flatMap

4.41

Word Count in Spark

val file = sc.textFile(“hdfs://…”, 4)

val words = file.flatMap(line =>

line.split(“ ”))

val pairs = words.map(t => (t, 1))

RDD[String]

RDD[List[String]]

RDD[(String, Int)]

maptextFile flatMap

4.42

Word Count in Spark

val file = sc.textFile(“hdfs://…”, 4)

val words = file.flatMap(line =>

line.split(“ ”))

val pairs = words.map(t => (t, 1))

val count = pairs. reduceByKey(_+_)

RDD[String]

RDD[List[String]]

RDD[(String, Int)]

maptextFile flatMap

RDD[(String, Int)]

reduceByKey

4.43

Word Count in Spark

val file = sc.textFile(“hdfs://…”, 4)

val words = file.flatMap(line =>

line.split(“ ”))

val pairs = words.map(t => (t, 1))

val count = pairs. reduceByKey(_+_)

count.collect()

RDD[String]

RDD[List[String]]

RDD[(String, Int)]

maptextFile flatMap

RDD[(String, Int)]

reduceByKey

Array[(String, Int)]

collect

4.44

Execution Plan

maptextFile flatMap reduceByKey

collect

Stage 1 Stage 2

❖ The scheduler examines the RDD’s lineage graph to build a DAG of

stages.

❖ Stages are sequences of RDDs, that don’t have a Shuffle in between

❖ The boundaries are the shuffle stages.

4.45

Execution Plan

maptextFile flatMap reduceByKey

collect

Stage 1 Stage 2

Stage 1 Stage 2

1. Read HDFS split

2. Apply both the maps

3. Start Partial reduce

4. Write shuffle data

1. Read shuffle data

2. Final reduce

3. Send result to

driver program

4.46

Spark Web Console

❖ You can browse the web

interface for the information

of Spark Jobs, storage, etc.

at: http://localhost:4040

4.47

Stage Execution

❖ Create a task for each Partition in the new RDD

❖ Serialize the Task

❖ Schedule and ship Tasks to Slaves

❖ All this happens internally

Task 1

Task 2

Task 3

Task 4

4.48

Word Count in Spark (As a Whole View)

❖ Word Count using Scala in Spark

Transformation

Action

“to be or”

“not to be”

“to”
“be”
“or”

“not”
“to”
“be”

(to, 1)
(be, 1)
(or, 1)

(not, 1)
(to, 1)
(be, 1)

(be, 2)
(not, 1)

(or, 1)
(to, 2)

4.49

map vs. flatMap

❖ Sample input file:

❖ map: Return a new distributed dataset formed by passing each

element of the source through a function func.

❖ flatMap: Similar to map, but each input item can be mapped to 0 or

more output items (so func should return a Seq rather than a single

item).

4.50

Part 3: Running on a Cluster

4.51

WordCount (RDD, Scala)

❖ Standalone code

❖ You need to create a SparkContext object first

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

object WordCount {
def main(args: Array[String]) {
val inputFile = args(0)
val outputFolder = args(1)
val conf = new SparkConf().setAppName(“wordCount”).setMaster(“local”)
// Create a Scala Spark Context.
val sc = new SparkContext(conf)
// Load our input data.
val input = sc.textFile(inputFile)
// Split up into words.
val words = input.flatMap(line => line.split(" "))
// Transform into word and count.
val counts = words.map(word => (word, 1)).reduceByKey(_+_)
counts.saveAsTextFile(outputFolder)

}
}

4.52

WordCount (RDD, Scala)

❖ Linking with Apache Spark

➢ The first step is to explicitly import the required spark classes into

your Spark program

❖ Initializing Spark

➢ Create a Spark context object with the desired spark configuration

that tells Apache Spark on how to access a cluster

➢ SparkConf: Spark configuration class

➢ setAppName: set the name for your application

➢ setMaster: set the cluster master URL

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

import org.apache.spark.SparkConf

val conf = new SparkConf().setAppName(“wordCount”).setMaster(“local”)

val sc = new SparkContext(conf)

4.53

setMaster

❖ Set the cluster master URL to connect to

❖ Parameters for setMaster:

➢ local(default) - run locally with only one worker thread (no parallel)

➢ local[k] - run locally with k worker threads

➢ spark://HOST:PORT - connect to Spark standalone cluster URL

➢ mesos://HOST:PORT - connect to Mesos cluster URL

➢ yarn - connect to Yarn cluster URL

 Specified in SPARK_HOME/conf/yarn-site.xml

❖ setMaster parameters configurations:

➢ In source code

 SparkConf().setAppName(“wordCount”).setMaster(“local”)

➢ spark-submit

 spark-submit --master local

➢ In SPARK_HOME/conf/spark-default.conf

 Set value for spark.master

4.54

WordCount (RDD, Scala)

❖ Creating a Spark RDD

➢ Create an input Spark RDD that reads the text file input.txt using

the Spark Context created in the previous step

❖ Spark RDD Transformations in Wordcount Example

➢ flatMap() is used to tokenize the lines from input text file into

words

➢ map() method counts the frequency of each word

➢ reduceByKey() method counts the repetitions of word in the text

file

❖ Save the results to disk

val input = sc.textFile(inputFile)

counts.saveAsTextFile(outputFolder)

4.55

Run the Application on a Cluster

❖ A Spark application is launched on a set of machines using an

external service called a cluster manager

➢ Local threads

➢ Standalone

➢ Mesos

➢ Yarn

❖ Driver

❖ Executor

4.56

Launching a Program

❖ Spark provides a single script you can use to submit your program to it

called spark-submit

➢ The user submits an application using spark-submit

➢ spark-submit launches the driver program and invokes the main()

method specified by the user

➢ The driver program contacts the cluster manager to ask for

resources to launch executors

➢ The cluster manager launches executors on behalf of the driver

program

➢ The driver process runs through the user application. Based on

the RDD actions and transformations in the program, the driver

sends work to executors in the form of tasks

➢ Tasks are run on executor processes to compute and save results

➢ If the driver’s main() method exits or it calls SparkContext.stop(), it

will terminate the executors and release resources from the cluster

manager

4.57

Package Your Code and Dependencies

❖ Ensure that all your dependencies are present at the runtime of your

Spark application

❖ Java Application (Maven)

❖ Scala Application (sbt)

➢ a newer build tool most often used for Scala projects

➢ libraryDependencies: list all dependent libraries (including third

party libraries)

➢ A jar file simple-project_2.12-1.0.jar will be created after

compilation

name := "Simple Project"

version := "1.0"

scalaVersion := "2.12.10"

libraryDependencies += "org.apache.spark" %% "spark-

core" % “3.1.2"

4.58

Deploying Applications in Spark

❖ spark-submit

➢ spark-submit --master spark://hostname:7077 \

--class YOURCLASS \

--executor-memory 2g \

YOURJAR "options" "to your application" "go here"

Common flags Explanation

--master Indicates the cluster manager to connect to

--class The “main” class of your application if you’re running a

Java or Scala program

--name A human-readable name for your application. This will be

displayed in Spark’s web UI.

--executor-memory The amount of memory to use for executors, in bytes.

Suffixes can be used to specify larger quantities such as

“512m” (512 megabytes) or “15g” (15 gigabytes)

--driver-memory The amount of memory to use for the driver process, in

bytes.

4.59

In-Memory Can Make a Big Difference

❖ Two iterative Machine Learning algorithms:

4.60

Spark Core Programming Practice

4.61

Practice

❖ Problem 1: Given a pair RDD of type [(String, Int)], compute the per-

key average

key value

panda 0

pink 3

pirate 3

panda 1

pink 4

key value

panda 0.5

pink 3.5

pirate 3

key value

panda (0, 1)

pink (3, 1)

pirate (3, 1)

panda (1, 1)

pink (4, 1)

key value

panda (1, 2)

pink (7, 2)

pirate (3, 1)

mapValues

reduceByKey

mapValues

pair.mapValues(x=>(x,1))

.reduceByKey((x,y)=>(x._1+y._1, x._2+y._2))

.mapValues(x=>x._1.toDouble/x._2)

4.62

Practice

❖ Problem 2: Given the data in format of key-value pairs <Int, Int>, find

the maximum value for each key across all values associated with that

key.

val pairs = sc. Parallelize(List((1, 2), (3, 4),… …))

// ???

resMax.foreach(x => println(x._1, x._2))

val resMax = pairs.groupByKey().mapValues(x=>x.max)val resMax = pairs.reduceByKey((a, b) => if(a > b) a else b)

4.63

Practice

❖ Problem 3: Given a collection of documents, compute the average

length of words starting with each letter.

val textFile = sc.textFile(inputFile)

val words = textFile.flatMap(_.split(“ “).toLowerCase)

val counts = words.filter(x=> x.length >=1 && x.charAt(0)<=’z’ &&

x.charAt(0)>=’a’).map(x=>(x.charAt(0), (x.length, 1)))

val avgLen = counts.reduceByKey((a, b)=>(a._1+b._1, a._2+b._2)).foreach(x=>(x._1,

x._2._1.toDouble/x._2._2))

avgLen.foreach(x => println(x._1, x._2))

4.64

References

❖ http://spark.apache.org/docs/latest/index.html

❖ Learning Spark. 1st and 2nd edition

http://spark.apache.org/docs/latest/index.html
https://www.safaribooksonline.com/library/view/learning-spark/9781449359034/

End of Chapter 4.2

