
COMP9313: Big Data Management

Lecturer: Xin Cao
Course web site: http://www.cse.unsw.edu.au/~cs9313/

5.2

Chapter 5.2: Spark IV

5.3

Part 1: Spark Structured APIs

5.4

A Brief Review of RDD

❖ The RDD is the most basic abstraction in Spark. There are three vital

characteristics associated with an RDD:

➢ Dependencies (lineage)

 When necessary to reproduce results, Spark can recreate an

RDD from the dependencies and replicate operations on it.

This characteristic gives RDDs resiliency.

➢ Partitions (with some locality information)

 Partitions provide Spark the ability to split the work to

parallelize computation on partitions across executors

 Reading from HDFS—Spark will use locality information to

send work to executors close to the data

➢ Compute function: Partition => Iterator[T]

 An RDD has a compute function that produces an Iterator[T]

for the data that will be stored in the RDD.

5.5

Compute Average Values for Each Key

❖ Assume that we want to aggregate all the ages for each name, group

by name, and then compute the average age for each name

val dataRDD = sc.parallelize(List(("Brooke", 20), ("Denny",
31), ("Jules", 30),("TD", 35), ("Brooke", 25)))

dataRDD.map(x=> (x._1, (x._2, 1)))

.reduceByKey((a, b)=> (a._1 + b._1, a._2 + b._2))

.map(x => (x._1, x._2._1.toDouble/x._2._2)))

5.6

Problems of RDD Computation Model

❖ The compute function (or computation) is opaque to Spark

➢ Whether you are performing a join, filter, select, or aggregation,

Spark only sees it as a lambda expression

❖ Spark has no way to optimize the expression, because it’s unable to

inspect the computation or expression in the function.

❖ Spark has no knowledge of the specific data type in RDD

➢ To Spark it’s an opaque object; it has no idea if you are accessing

a column of a certain type within an object

dataRDD.map(x=> (x._1, (x._2, 1)))

5.7

Spark’s Structured APIs

❖ Spark 2.x introduced a few key schemes for structuring Spark,

❖ This specificity is further narrowed through the use of a set of common

operators in a DSL (domain specific language), including the Dataset

APIs and DataFrame APIs

➢ These operators let you tell Spark what you wish to compute with

your data

➢ It can construct an efficient query plan for execution.

❖ Structure yields a number of benefits, including better performance

and space efficiency across Spark components

5.8

Spark’s Structured APIs

❖ E.g, for the average age problem, using the DataFrame APIs:

❖ Spark now knows exactly what we wish to do: group people by their

names, aggregate their ages, and then compute the average age of all

people with the same name.

❖ Spark can inspect or parse this query and understand our intention,

and thus it can optimize or arrange the operations for efficient

execution.

import spark.implicits._

val data_df = List(("Brooke", 20), ("Denny",
31), ("Jules", 30),("TD", 35), ("Brooke",
25)).toDF("name", "age")

data_df.groupBy("name").agg(avg("age")).show()

5.9

Datasets and DataFrames

❖ A Dataset is a distributed collection of data

➢ provides the benefits of RDDs (e.g., strong typing) with the

benefits of Spark SQL’s optimized execution engine

➢ A Dataset can be constructed from JVM objects and then

manipulated using functional transformations (map, flatMap, etc.)

❖ A DataFrame is a Dataset organized into named columns

➢ It is conceptually equivalent to a table in a relational database or a

data frame in R/Python, but with richer optimizations

➢ An abstraction for selecting, filtering, aggregating and plotting

structured data

➢ A DataFrame can be represented by a Dataset of Rows

 Scala: DataFrame is simply a type alias of Dataset[Row]

 Java: use Dataset<Row> to represent a DataFrame

5.10

DataFrame API

❖ Spark DataFrames are like distributed in-memory tables with named

columns and schemas, where each column has a specific data type.

❖ When data is visualized as a structured table, it’s not only easy to

digest but also easy to work with

The table-like format of a DataFrame

5.11

Difference between DataFrame and RDD

❖ DataFrame more like a traditional database of two-dimensional form,

in addition to data, but also to grasp the structural information of the

data, that is, schema

➢ RDD[Person] although with Person for type parameters, but the

Spark framework itself does not understand internal structure of

Person class

➢ DataFrame has provided a detailed structural information, making

Spark SQL can clearly know what columns are included in the

dataset, and what is the name and type of each column. Thus,

Spark SQL query optimizer can target optimization

5.12

DataFrame Data Sources

❖ Spark SQL’s Data Source API can read and write DataFrames using a

variety of formats.

➢ E.g., structured data files, tables in Hive, external databases, or

existing RDDs

➢ In the Scala API, DataFrame is simply a type alias

of Dataset[Row]

5.13

Create DataFrames

❖ We first need to import “spark.implicits._”. The implicits object gives

implicit conversions for converting Scala objects (incl. RDDs) into a

Dataset or DataFrame

❖ You can also convert an RDD into a DataFrame

import spark.implicits._

// Given a list of pairs including names and ages
val data = List(("Brooke", 20), ("Denny", 31), ("Jules",
30),("TD", 35), ("Brooke", 25))

// Create DataFrame' from ‘RDD’ and the schema
val dataDF = spark.createDataFrame(data)

import spark.implicits._

// Given a list of pairs including name and age
val data = sc.parallelize(Seq(("Brooke", 20), ("Denny", 31),
("Jules", 30),("TD", 35), ("Brooke", 25)))

// Create DataFrame' from ‘RDD’ and the schema
val dataDF = spark.createDataFrame(data)

5.14

Create DataFrames

❖ Using the above method, we can get the DataFrame as below:

❖ We can see that the schema is not defined, and the columns have no

meaningful names. To define the names for columns, we can use the

the toDF() method

❖ We can also write (data could be a list or an RDD):

val dataDF = spark.createDataFrame(data).toDF("name", "age")

val dataDF = data.toDF("name", "age")

5.15

Schemas in Spark

❖ A schema in Spark defines the column names and associated data

types for a DataFrame

❖ Defining a schema up front offers three benefits

➢ You relieve Spark from the onus of inferring data types.

➢ You prevent Spark from creating a separate job just to read a

large portion of your file to ascertain the schema, which for a large

data file can be expensive and time-consuming.

➢ You can detect errors early if data doesn’t match the schema.

❖ Define a DataFrame programmatically with three named columns,

author, title, and pages

import org.apache.spark.sql.types._
val schema = StructType(Array(StructField("author", StringType, false),
StructField("title", StringType, false),
StructField("pages", IntegerType, false)))

5.16

Spark’s Basic Data Types

❖ Spark supports basic internal data types, which can be declared in

your Spark application or defined in your schema

Data type Value assigned in Scala API to instantiate

ByteType Byte DataTypes.ByteType

ShortType Short DataTypes.ShortType

IntegerType Int DataTypes.IntegerType

LongType Long DataTypes.LongType

FloatType Float DataTypes.FloatType

DoubleType Double DataTypes.DoubleType

StringType String DataTypes.StringType

BooleanType Boolean DataTypes.BooleanType

DecimalType java.math.BigDecimal DecimalType

5.17

Spark’s Structured and Complex Data Types

❖ For complex data analytics, you’ll need Spark to handle complex data

types, such as maps, arrays, structs, dates, timestamps, fields, etc.

Data type Value assigned in Scala API to instantiate

BinaryType Array[Byte] DataTypes.BinaryType

Timestamp

Type

java.sql.Timestamp DataTypes.TimestampType

DateType java.sql.Date DataTypes.DateType

ArrayType scala.collection.Seq DataTypes.createArrayType(E

lementType)

MapType scala.collection.Map DataTypes.createMapType(ke

yType, valueType)

StructType org.apache.spark.sql.Row StructType(ArrayType[fieldTyp

es])

StructField A value type corresponding

to the type of this field

StructField(name, dataType,

[nullable])

5.18

Create DataFrames with Schema

❖ We can use spark.createDataFrame(data, schema) to create

DataFrame, after the schema is defined for the data.

➢ The first argument data must be of type RDD[Row]

➢ The second argument schema must of type StructType

import org.apache.spark.sql.types._
import org.apache.spark.sql._
// Create the schema
val schema = StructType(Array(StructField("name", StringType,
false), StructField("age", IntegerType, false)))

// Given a list of pairs including names and ages
val data = List(("Brooke", 20), ("Denny", 31), ("Jules",
30),("TD", 35), ("Brooke", 25))

// Create 'Row' from 'Seq'
val row = Row.fromSeq(data)

// Create 'RDD' from 'Row'
val rdd = spark.sparkContext.makeRDD(List(row))

// Create DataFrame' from ‘RDD’ and the schema
val dataDF = spark.createDataFrame(rdd, schema)

5.19

Create DataFrames with Schema

❖ In order to convert the List to RDD[Row], you can also do as below

❖ You can also create a DataFrame from a json file:

import org.apache.spark.sql.types._
import org.apache.spark.sql._

// Create the schema
val schema = StructType(Array(StructField("name", StringType,
false), StructField("age", IntegerType, false)))

// Given a list of pairs including names and ages
val data = List(("Brooke", 20), ("Denny", 31), ("Jules",
30),("TD", 35), ("Brooke", 25))

// Create 'RDD' from ‘List'
val rdd = spark.sparkContext.parallelize(data)

// Transform the pair (String, Integer) to a Row object
val rddRow = rdd.map(x => Row(x._1, x._2))

// Create DataFrame' from ‘RDD’ and the schema
val dataDF = spark.createDataFrame(rddRow, schema)

val blogsDF = spark.read.schema(schema).json(jsonFile)

5.20

Columns

❖ Each column describe a type of field

❖ We can list all the columns by their names, and we can perform

operations on their values using relational or computational

expressions

➢ List all the columns

➢ Access a particular column with col and it returns a Column type

➢ We can also use logical or mathematical expressions on columns

5.21

Rows

❖ A row in Spark is a generic Row object, containing one or more

columns

❖ Row is an object in Spark and an ordered collection of fields, we can

access its fields by an index starting at 0

❖ Row objects can be used to create DataFrames

5.22

Transformations, Actions, and Lazy Evaluation

❖ Spark DataFrame operations can also be classified into two types:

transformations and actions.

➢ All transformations are evaluated lazily - their results are not

computed immediately, but they are recorded or remembered as a

lineage

➢ An action triggers the lazy evaluation of all the recorded

transformations

5.23

Narrow and Wide Transformations

❖ Transformations can be classified as having either narrow

dependencies or wide dependencies

➢ Any transformation where a single output partition can be

computed from a single input partition is a narrow transformation,

like filter()

➢ Any transformation where data from other partitions is read in,

combined, and written to disk is a wide transformation, like

groupBy()

5.24

WordCount using DataFrame

val fileRDD =
spark.sparkContext.textFile("file:///home/comp9313/inputText")
val wordsDF = fileRDD.flatMap(_.split(" ")).toDF

val countDF = wordsDF.groupBy("Value").count()

countDF.collect.foreach(println)

countDF.write.format(“csv”).save("file:///home/comp9313/output")

5.25

DataSet

❖ Spark 2.0 unified the DataFrame and Dataset APIs as Structured APIs

with similar interfaces

❖ Datasets take on two characteristics: typed and untyped APIs

❖ Conceptually, you can think of a DataFrame in Scala as an alias for

Dataset[Row]

5.26

WordCount using DataSet

val fileDS = spark.read.textFile("file:///home/comp9313/inputText")
val wordsDS = fileDS.flatMap(_.split(" "))

val countDF = wordsDS.groupBy("Value").count()

countDF.collect.foreach(println)

countDF.write.format(“csv”).save("file:///home/comp9313/output")

5.27

DataFrames Versus Datasets

❖ If you want to tell Spark what to do, not how to do it, use DataFrames

or Datasets.

❖ If you want rich semantics, high-level abstractions, and DSL

operators, use DataFrames or Datasets.

❖ If your processing demands high-level expressions, filters, maps,

aggregations, computing averages or sums, SQL queries, columnar

access, or use of relational operators on semi-structured data, use

DataFrames or Datasets.

❖ If your processing dictates relational transformations similar to SQL-

like queries, use DataFrames.

❖ If you want unification, code optimization, and simplification of APIs

across Spark components, use DataFrames.

❖ If you want space and speed efficiency, use DataFrames.

❖ More examples of DataFrame usage could be found at:

https://github.com/databricks/LearningSparkV2

https://github.com/databricks/LearningSparkV2

5.28

Part 1: Spark SQL

5.29

Spark SQL Overview

❖ Part of the core distribution since Spark 1.0, Transform RDDs using

SQL in early versions (April 2014)

❖ Tightly integrated way to work with structured data (tables with

rows/columns)

❖ Data source integration: Hive, Parquet, JSON, and more

❖ Spark SQL is not about SQL.

➢ Aims to Create and Run Spark Programs Faster:

5.30

Spark Programming Interface

5.31

Starting Point: SparkSession

❖ The entry point into all functionality in Spark is the SparkSession

class.

➢ SparkSession since Spark 2.0 provides built-in support for Hive

features including the ability to write queries using HiveQL, access

to Hive UDFs, and the ability to read data from Hive tables

import org.apache.spark.sql.SparkSession

val spark = SparkSession
.builder()
.appName("Spark SQL basic example")
.config("spark.some.config.option", "some-value")
.getOrCreate()

// For implicit conversions like converting RDDs to DataFrames
import spark.implicits._

5.32

Creating DataFrames

❖ With a SparkSession, applications can create DataFrames from an

existing RDD, from a Hive table, or from Spark data sources.

➢ creates a DataFrame based on the content of a JSON file:

val df =
spark.read.json("examples/src/main/resources/people.json")

// Displays the content of the DataFrame to stdout

df.show()
// +----+-------+
// | age| name|
// +----+-------+
// |null|Michael|
// | 30| Andy|
// | 19| Justin|
// +----+-------+

https://spark.apache.org/docs/latest/sql-data-sources.html

5.33

DataFrame Operations

❖ DataFrames are just Dataset of Rows in Scala and Java API.

➢ These operations are also referred as “untyped transformations” in

contrast to “typed transformations” come with strongly typed

Scala/Java Datasets

df.printSchema()
// root
// |-- age: long (nullable = true)
// |-- name: string (nullable = true)

// Select only the "name" column
df.select("name").show()
// +-------+
// | name|
// +-------+
// |Michael|
// | Andy|
// | Justin|
// +-------+

5.34

DataFrame Operations
// Select everybody, but increment the age by 1
df.select($"name", $"age" + 1).show()
// +-------+---------+
// | name|(age + 1)|
// +-------+---------+
// |Michael| null|
// | Andy| 31|
// | Justin| 20|
// +-------+---------+

// Select people older than 21
df.filter($"age" > 21).show()
// +---+----+
// |age|name|
// +---+----+
// | 30|Andy|
// +---+----+

// Count people by age
df.groupBy("age").count().show()
// +----+-----+
// | age|count|
// +----+-----+
// | 19| 1|
// |null| 1|
// | 30| 1|
// +----+-----+

5.35

Running SQL Queries Programmatically

❖ The sql function on a SparkSession enables applications to run SQL

queries programmatically and returns the result as a DataFrame.

// Register the DataFrame as a SQL temporary view
df.createOrReplaceTempView("people")

val sqlDF = spark.sql("SELECT * FROM people")
sqlDF.show()
// +----+-------+
// | age| name|
// +----+-------+
// |null|Michael|
// | 30| Andy|
// | 19| Justin|
// +----+-------+

5.36

Global Temporary View

❖ Temporary views in Spark SQL are session-scoped and will disappear

if the session that creates it terminates

❖ Global temporary view: a temporary view that is shared among all

sessions and keep alive until the Spark application terminates

❖ Global temporary view is tied to a system preserved database

global_temp, and we must use the qualified name to refer it, e.g.

SELECT * FROM global_temp.view1

5.37

Global Temporary View Example

// Register the DataFrame as a global temporary view
df.createGlobalTempView("people")

// Global temporary view is tied to a system preserved database `global_temp`
spark.sql("SELECT * FROM global_temp.people").show()
// +----+-------+
// | age| name|
// +----+-------+
// |null|Michael|
// | 30| Andy|
// | 19| Justin|
// +----+-------+

// Global temporary view is cross-session
spark.newSession().sql("SELECT * FROM global_temp.people").show()
// +----+-------+
// | age| name|
// +----+-------+
// |null|Michael|
// | 30| Andy|
// | 19| Justin|
// +----+-------+

Find full example code at

https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/sp

ark/examples/sql/SparkSQLExample.scala

https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/sql/SparkSQLExample.scala

5.38

Error Detection of Structured APIs

❖ If you want errors caught during compilation rather than at runtime,

choose the appropriate API

5.39

Part 2: Spark Streaming

5.40

Motivation

❖ Many important applications must process large streams of live data

and provide results in near-real-time

➢ Social network trends

➢ Website statistics

➢ Ad impressions

➢ … …

❖ Distributed stream processing framework is required to

➢ Scale to large clusters (100s of machines)

➢ Achieve low latency (few seconds)

5.41

What is Spark Streaming

❖ Spark Streaming is an extension of the core Spark API that enables

scalable, high-throughput, fault-tolerant stream processing of live

data streams

❖ Receive data streams from input sources, process them in a cluster,

push out to filesystems, databases, and live dashboards

➢ Data can be ingested from many sources like Kafka, Flume,

Kinesis, or TCP sockets

➢ Data can be processed using complex algorithms expressed with

high-level functions like map, reduce, join and window

➢ Processed data can be pushed out to filesystems, databases, and

live dashboards

5.42

How does Spark Streaming Work

❖ Run a streaming computation as a series of very small, deterministic

batch jobs

➢ Chop up the live stream into batches of X seconds

➢ Spark treats each batch of data as RDDs and processes them

using RDD operations

➢ Finally, the processed results of the RDD operations are returned

in batches

5.43

Spark Streaming Programming Model

❖ Spark Streaming provides a high-level abstraction called discretized

stream (Dstream)

➢ Represents a continuous stream of data.

➢ DStreams can be created either from input data streams from

sources such as Kafka, Flume, and Kinesis, or by applying high-

level operations on other DStreams.

➢ Internally, a DStream is represented as a sequence of RDDs.

❖ DStreams API very similar to RDD API

➢ Functional APIs in Scala, Java

➢ Create input DStreams from different sources

➢ Apply parallel operations

5.44

An Example: Streaming WordCount

❖ Use StreamingContext, rather then SparkContext

import org.apache.spark._
import org.apache.spark.streaming._

object NetworkWordCount {
val conf = new
SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(10))

val lines = ssc.socketTextStream("localhost", 9999)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()
ssc.start()
ssc.awaitTermination()

}

5.45

Streaming WordCount

❖ Linking with Apache Spark

➢ The first step is to explicitly import the required spark classes into

your Spark program

❖ Create a local StreamingContext with two working thread and batch

interval of 10 second.

➢ A StreamingContext object has to be created which is the main

entry point of all Spark Streaming functionality.

➢ At least two local threads must be used (two cores)

➢ Do the count for each 10 seconds

 The batch interval must be set based on the latency

requirements of your application and available cluster

resources

import org.apache.spark._
import org.apache.spark.streaming._

val conf = new
SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(10))

5.46

Streaming WordCount

❖ After a streaming context is defined, you have to do the following:

➢ Define the input sources by creating input DStreams.

➢ Define the streaming computations by applying transformation and

output operations to DStreams.

➢ Start receiving data and processing it

using streamingContext.start().

➢ Wait for the processing to be stopped (manually or due to any

error) using streamingContext.awaitTermination().

➢ The processing can be manually stopped

using streamingContext.stop().

5.47

Streaming WordCount

Using this context, we can create a DStream that represents

streaming data from a TCP source, specified as hostname

(e.g. localhost) and port (e.g. 9999).

➢ This lines DStream represents the stream of data that will be

received from the data server. Each record in this DStream is a

line of text.

❖ Split the lines by space characters into words and do the count

❖ No real processing has started yet now. To start the processing after

all the transformations have been setup, we finally call

❖ The complete code can be found in the Spark Streaming example

NetworkWordCount.

val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)

val lines = ssc.socketTextStream("localhost", 9999)

ssc.start()
ssc.awaitTermination()

https://github.com/apache/spark/blob/v3.1.2/examples/src/main/scala/org/apache/spark/examples/streaming/NetworkWordCount.scala

5.48

Linking the Application

❖ Add the following dependency to your SBT configuration:

➢ libraryDependencies += "org.apache.spark" %% "spark-

streaming_2.12" % “3.1.2"

❖ For data sources like Kafka, Flume, and Kinesis that are not present in

the Spark Streaming core API, you will have to add the corresponding

artifact spark-streaming-xyz_2.12 to the dependencies

Kafka spark-streaming-kafka-0-10_2.12

Kinesis spark-streaming-kinesis-asl_2.12 [Amazon Software License]

5.49

Run Streaming WordCount

❖ First need to run Netcat (a small utility found in most Unix-like

systems) as a data server by using:

$ nc -lk 9999

❖ sbt configuration file:

❖ Then, in a different terminal, you can start the example by using

$ spark-submit --class NetworkWordCount ~/sparkapp/target/scala-

2.12/network-wordcount_2.12-1.0.jar

name := “Network WordCount"

version := "1.0"

scalaVersion := "2.12.10"

libraryDependencies += "org.apache.spark" %% "spark-

streaming" % “3.1.2"

5.50

Results of Streaming WordCount

❖ The first 10 seconds, receives no data

❖ The next 10 seconds, receives one line

❖ The last 10 seconds, receives two lines

5.51

Get Streaming Data From Files

❖ Spark streaming can also get streaming data from a specified file

folder

❖ It can only ingest files that have been moved to the directory

❖ Create a local StreamingContext with two working thread and batch

interval of 10 second.

❖ Using this context, we can create a DStream that represents

streaming data from files in a folder

❖ Next do similarly as in NetworkWordCount

val conf = new
SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(10))

val lines = ssc.textFileStream(“file:///home/comp9313/logs”)

5.52

Get Streaming Data From Files

❖ The first 10 seconds, receives no

data

❖ The next 10 seconds, do:

echo “hello hello world” > log1

mv log1 ~/logs

❖ The next 10 seconds, do:

echo “hello world” > log2

echo “hello world” > log3

mv log2 log3 ~/logs

5.53

Discretized Streams (DStreams)

❖ A DStream is represented by a continuous series of RDDs

➢ Each RDD in a DStream contains data from a certain interval, as

shown in the following figure.

❖ Any operation applied on a DStream translates to operations on the

underlying RDDs.

➢ in the earlier example of converting a stream of lines to words,

the flatMap operation is applied on each RDD in

the lines DStream to generate the RDDs of the words DStream

5.54

Input DStreams and Receivers

❖ Input DStreams are DStreams representing the stream of input data

received from streaming sources.

➢ E.g., lines was an input DStream as it represented the stream of

data received from the netcat server

❖ Every input DStream is associated with a Receiver object which

receives the data from a source and stores it in Spark’s memory for

processing

❖ Spark Streaming provides two categories of built-in streaming

sources.

➢ Basic sources: Sources directly available in the StreamingContext

API. Examples: file systems, and socket connections.

➢ Advanced sources: Sources like Kafka, Flume, Kinesis, etc. are

available through extra utility classes. These require linking

against extra dependencies

5.55

Input DStreams and Receivers

❖ When running a Spark Streaming program locally, do not use “local”

or “local[1]” as the master URL

➢ If you are using an input DStream based on a receiver (e.g.,

sockets), then the single thread will be used to run the receiver,

leaving no thread for processing the received data

➢ When running locally, always use “local[n]” as the master URL,

where n > number of receivers to run

❖ The number of cores allocated to the Spark Streaming application

must be more than the number of receivers. Otherwise the system will

only receive data, but not be able to process it

5.56

Example – Get hashtags from Twitter

DStream: a sequence of RDDs representing a stream of data

batch @ t+1batch @ t batch @ t+2

tweets DStream

stored in memory as an RDD
(immutable, distributed)

Twitter Streaming API

val ssc = new StreamingContext(conf, Seconds(10))

val tweets :DStream[Status] = TwitterUtils.createStream(ssc, None)

5.57

Example – Get hashtags from Twitter

flatMap flatMap flatMap

…

transformation: modify data in one DStream to create another
DStream

new DStream

new RDDs created
for every batch

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags Dstream
[#cat, #dog, …]

val hashTags = tweets.flatMap (status => getTags(status))

5.58

Example – Get hashtags from Twitter

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

output operation: to push data to external storage

flatMap flatMap flatMap

save save save

batch @ t+1batch @ t batch @ t+2
tweets DStream

hashTags DStream

every batch
saved to HDFS

5.59

Example – Get hashtags from Twitter

val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

foreach: do whatever you want with the processed data

flatMap flatMap flatMap

foreach foreach foreach

batch @ t+1batch @ t batch @ t+2
tweets DStream

hashTags DStream

Write to database, update analytics
UI, do whatever you want

5.60

Window Operations

❖ Spark Streaming also provides windowed computations, which allow

you to apply transformations over a sliding window of data

❖ Every time the window slides over a source DStream, the source

RDDs that fall within the window are combined and operated upon to

produce the RDDs of the windowed DStream.

➢ E.g., the operation is applied over the last 3 time units of data, and

slides by 2 time units

➢ Any window operation needs to specify two parameters

 window length - The duration of the window (3 in the figure).

 sliding interval - The interval at which the window operation is

performed (2 in the figure).

5.61

Window-based Transformations

DStream of data

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.window(Minutes(1), Seconds(5)).countByValue()

sliding window
operation

window length sliding interval

window length

sliding interval

5.62

Fault-tolerance: Worker

❖ RDDs remember the operations

that created them

❖ Batches of input data are

replicated in memory for fault-

tolerance

❖ Data lost due to worker failure,

can be recomputed from

replicated input data

❖ All transformed data is fault-

tolerant, and exactly-once

transformations

input data
replicated
in memory

flatMap

lost partitions
recomputed on
other workers

tweets
RDD

hashTags
RDD

5.63

Fault-tolerance: Master

❖ Master saves the state of the DStreams to a checkpoint file

➢ Checkpoint file saved to HDFS periodically

❖ If master fails, it can be restarted using the checkpoint file

❖ More information in the Spark Streaming guide

❖ Automated master fault recovery coming soon

5.64

Vision - one stack to rule them all

5.65

References

❖ http://spark.apache.org/docs/latest/index.html

❖ Spark SQL guide: http://spark.apache.org/docs/latest/sql-

programming-guide.html

❖ Spark Streaming guide: http://spark.apache.org/docs/latest/streaming-

programming-guide.html

❖ Learning Spark. 2nd edition

http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/sql-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
https://www.safaribooksonline.com/library/view/learning-spark/9781449359034/

End of Chapter 5.2

