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ABSTRACT
Uncertainty is inherent in many important applications, such as
location-based services (LBS), sensor monitoring and radio-frequency
identification (RFID). Recently, considerable research efforts have
been put into the field of uncertainty-aware spatial query process-
ing. In this paper, we study the problem of finding top k most influ-
ential facilities over a set of uncertain objects, which is an impor-
tant spatial query in the above applications. Based on the maximal
utility principle, we propose a new ranking model to identify the
top k most influential facilities, which carefully captures influence
of facilities on the uncertain objects. By utilizing two uncertain
object indexing techniques, R-tree and U -Quadtree, effective and
efficient algorithms are proposed following the filtering and ver-
ification paradigm, which significantly improves the performance
of the algorithms in terms of CPU and I/O costs. Comprehensive
experiments on real datasets demonstrate the effectiveness and ef-
ficiency of our techniques.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Applications—
Spatial databases and GIS

General Terms
Algorithms, Performance

Keywords
Spatial, uncertain

1. INTRODUCTION
Bichromatic reverse nearest neighbor (BRNN) query has been

extensively studied as an important spatial operator ever since it
was introduced in [10] due to a wide spectrum of applications such
as decision support, profile-based marketing, resource allocation,
etc. Informally, given a set F of facilities (e.g., gas station, super-
market) and a set of O of objects (e.g., car, person), the influence of
a facility F can be evaluated by the number of objects whose near-
est neighbors are F . Intuitively, it is desirable to identify the most
influential facilities for various reasons such as resource allocation
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and decision making. Motivated by this, some existing work [20]
proposed efficient algorithms to identify the influential facilities,
in which they assume the location of an object or facility is pre-
cisely described by a spatial point. As shown in Figure 1(a), we
can calculate the influence score (e.g., the number of reverse near-
est neighbors ) for each facility, where F1, F2 and F3 have scores
1, 2 and 0 respectively. Nevertheless, in many applications the lo-
cation of an object may be uncertain due to various reasons such as
data randomness and incompleteness, the limitation of measuring
equipment, delay or loss of data updates and privacy preservation.
Following are two example applications.

In some warehouse management systems, the RFID tags are at-
tached to the items and their current locations can be obtained by
RFID readers. Since the RFID reading may be noisy due to the
sensitivity of the low cost readers to various environmental fac-
tors such as interference from nearby metal objects and contention
among tags, the location of an object may be modeled as an uncer-
tain object which is described by multiple instances. For instance,
in Figure 1(b), the item A may appear at two positions a1 and a2

with the same probability. The facilities in Figure 1(b) represent the
dispatching points for various items. Suppose an item will be deliv-
ered to the closest dispatch point. For a proper resource (e.g., labor,
truck) allocation, the manager may want to know the k dispatching
points with the highest influences (workload).

Another example application is the location based service (LBS).
The location of a mobile user can be described as an uncertain ob-
ject, since her/his location may be derived based on the nearest
contour lines of users possible location regarding the nearby tow-
ers. In Figure 1(b), the mobile users are uncertain objects and su-
permarkets correspond to the facilities. Suppose that users tend
to visit the nearby supermarket, it is meaningful to find the top k
most promising supermarkets, i.e., supermarkets which influence
the largest number of users.

Challenges. Motivated by the above examples, it is desirable to
study the problem of finding top k most influential facilities over
uncertain objects. The challenges are twofold.

Firstly, unlike the traditional spatial database in which an object
only contributes to the influence score of one facility1, it is non-
trivial to evaluate the influence of a facility because of the existence
of multiple instances. As shown in Figure 1(b), the uncertain object
A may be influenced by both F2 and F3. Therefore, when we rank
the influences of the facilities, it is desirable to propose new model
to capture the uncertainty of the uncertain objects.

In the paper, we follow the popular possible world semantics
(See Section 3.1 for a formal definition), and the influence of each
facility is modeled as a influence score distribution. The definition

1Suppose the ties are broken arbitrarily if there are multiple nearest
facilities for an object.
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Figure 1: Motivation Example

of influence score of a facility in each possible world is exactly
the same as the traditional BRNN query since only one instance
occurs for each uncertain object in a possible world. Then we apply
the maximal utility principle to rank the facilities. The maximal
utility principle [14] has been widely used in various applications
such as economic, finance and mathematics, and it selects the one
with highest expected score as the optimal solution among a set of
score distributions.

The second challenge is the efficiency of the algorithm. Com-
puting the top k most influential facilities over uncertain objects
is much more complicated than that of traditional objects (points).
Although in Section 3 we show that our new model can avoid enu-
merating all possible worlds, the computation cost is still expensive
if we conduct the calculation in a straightforward way due to the ex-
istence of multiple instances of uncertain objects. Therefore, in the
paper, assuming the uncertain regions of uncertain objects are orga-
nized by R-tree which is the most popular indexing technique used
for uncertain objects in the literature, we propose an efficient algo-
rithm following the synchronized R-tree traversal paradigm. More-
over, based on a recent uncertain indexing technique [24], namely
U -Quadtree, we further significantly improve the performance of
the algorithm in terms of CPU and I/O costs.

Contributions. Our contribution can be summarized as follows.

• Based on the maximal utility principle, we propose a new
model to evaluate the influences of the facilities over a set of
uncertain objects.

• Efficient R-tree and U -Quadtree based algorithms are pre-
sented following the filtering and verification paradigm. Novel
pruning techniques are proposed to significantly improve the
performance of the algorithms by reducing the number of un-
certain objects and facilities in the computation.

• Comprehensive experiments demonstrate the effectiveness and
efficiency of our techniques.

Organization of the paper. The remainder of the paper is orga-
nized as follows. Section 2 presents the related work in the pa-
per. Then, we formally define the problem of top k most influential
facilities over uncertain objects, and introduce some preliminary
work in Section 3. In Section 4, we propose our efficient algo-
rithms based on R-tree and U -Quadtree respectively. Results of
comprehensive performance studies are presented in Section 5. Fi-
nally, Section 6 concludes the paper.

2. RELATED WORK
In the last decade, a lot of work has been done in the field of

uncertain data processing and management. Since our work focus
on the top k query of influential facilities over uncertain data, we
briefly introduce the existing work on uncertain data processing and
influential facilities query.

2.1 Influential Facilities Computation
Bichromatic reverse nearest neighbor query is first introduced by

Korn et al. in [10]. Given a set F of facilities and a set O of objects,
the influence of a facility F can be measured by the number of ob-
jects whose nearest neighbors is F . As one of its natural extension,
the problem of finding top k influential facilities (TkIS), is pro-
posed in [20]. Instead of computing the set of BRNNs for a given
set of facilities, it returns the top k facilities with highest number
BRNNs (influences). They provide novel pruning techniques based
on a new metric called minExistDNN , and found the top k most
influential facilities by browsing trees once systematically. Further-
more, [9] found k locations from a set of candidate locations with
the largest influence values according to a set of customers. On the
other hand, the problem of optimal-location is studied in [21, 19] ,
aiming to find optimal area or location to set up a new facility such
that it can attract the greatest number of facilities.

2.2 Uncertain Data Processing
With the emergence of many recent important and novel appli-

cations involving uncertain data, there has been a great deal of re-
search attention dedicated to this field. Particularly, top k queries
are important in analyzing uncertain data. Unlike a top k query
over certain data which returns the k best alternatives according to
a ranking function, a top k query against uncertain data has inher-
ently more sophisticated semantics. Soliman et al [16] first relate
top k queries with uncertain data. They define two types of impor-
tant queries - U-Topk and U-kRank, regarding discrete cases. The
first one returns a set of k records which as a whole have the high-
est probability to be the top k results in all possible worlds, while
the second one retrieves k ordered records where the i-th record
has the highest probability of ranking in the i-th position among all
possible worlds. Following, a large amount of work has been ded-
icated to top k queries with different semantics such as PT-k [8],
Global-top k [22], expected rank top k [5] and unified top k [11]
semantics.

Meanwhile, many spatial query techniques have been extended
to solve uncertain problem. Nearest neighbor (NN) query over un-
certain data is one of the most flourishing topic. Cheng et al. [4]



is the first to tackle the probabilistic nearest neighbor (PNN) query.
whose aim is to determine probabilistic candidates for the near-
est neighbor of a given target along with corresponding probability
values. Zhang et al. [23] employ a rank based approach to pro-
cess probabilistic kNN query, where k closest objects are returned
according to their expected ranks. Cheema et al. [3] formalize
PRNN query that is to retrieve the objects from the uncertain data
that have higher probability than a given threshold to be the RNN
of an uncertain query object. [12], [1] also propose techniques to
solve PRNN queries over uncertain data. Moreover, some index-
ing techniques are proposed for uncertain data such as R-tree [15],
U -tree [17] and U -Quadtree [24].

2.3 Influential Facilities over Uncertain data
To our best knowledge, Zheng et al. [25] is the only existing

work which studies the problem of finding top k most influential
facilities over uncertain objects. They assume that each object is
characterized by multiple instances, and the facilities remain de-
terministic, and adopt the expected rank as the ranking function to
define the order of the facilities with probabilistic influences. The
definition is that given a set of facilities S, a set of uncertain objects
U , a query region Q, and a natural number k, the uncertain top k
influential facility query returns the top k facilities in Q according
to the expected rank semantics [5]. Based on attribute-uncertain
model, an uncertain object may be influenced by multiple facili-
ties instead of one as the deterministic case, so they use PRNN
search to get the probability mass function (pmf) of the influence
of a facility, and then compute expected rank of a facility across all
possible worlds. They propose a general filter-refine style approach
which includes efficient PRNN search, effective pruning schemes
and divide-and-conquer based refinement to obtain the query result.

3. BACKGROUND
We present problem definition and necessary preliminaries in

this section. For references, notations frequently used in the pa-
per are summarized in Table 1.

Notation Definition
U an uncertain object
F the facility or facility entry
u instance of the uncertain object
n number of uncertain objects
m number of instances per uncertain object

I+ (I−) upper(lower) bound of expected score
E entry of R-tree

NND Nearest Neighbor Distance
nnd_min(R1, R2) the minimal NND between rectangles

R1 and R2

nnd_max(R1, R2) the maximal NND between rectangles
R1 and R2

T, t object tuple
T.e entry associated with T
T.F the facilities which may influence

the object associated with T
λ pruning threshold for expected score

Table 1: The summary of notations.

3.1 Problem Definition
A point (instance) x referred in the paper, by default, is in a

d-dimensional numerical space. Given two points x and y, the dis-
tance between them is denoted by d(x, y). Euclidian distance met-
ric is employed in the paper, and the techniques developed in the

paper can be easily extended to other metric distances. In the paper,
we focus on the bichromatic nearest neighbor search. Given a set
F of facilities (points) and the nearest neighbor of an object point
x (x is not a facility ) is its nearest facility, denoted by NN(x);
that is, d(x,NN(x)) = min{d(x, F )|F ∈ F)}. Without loss of
generality, we assume the nearest neighbor of a point x (NN(x))
is unique.

Uncertain Objects. An uncertain object can be described either
continuously or discretely. In this paper, we focus on discrete case.
Note that we can discretize a continuous probability density func-
tion (PDF) of an uncertain object by sampling methods. In the dis-
crete cases, an uncertain object consists of a set {u1, u2, . . . , um}
of instances (points) where for 1 ≤ i ≤ m, ui occurs with the
probability pui (pui > 0), and

∑m
i=1 pui = 1. For an uncertain

object U , Umbr denotes the minimal bounding rectangle (MBR) of
the instances of U .

Note that, in the paper, we assume the facilities are represented
by points because usually their locations can be obtained precisely.

The possible world semantics. Given a set of uncertain objects
{U1, U2, . . . , Un}, a possible world W = {u1, u2, . . . , un} is a
set of instances sequentially sampled from each object. Assume the
uncertain objects are independent to each other, and the probability
of W to appear is Pr(W ) =

∏n
i=1 pui . Let W denote the set of

all possible worlds, then
∑

W∈W Pr(W ) = 1.0.

EXAMPLE 1. In Figure 2(a), F consists of three facilities F1,
F2 and F3, and there are three uncertain objects A, B and C. Both
A and B have two instances with the same occurrence probability
(0.5), while C has only one single instance c1 with pc1 = 1.0. Con-
sequently, there are totally 4 possible worlds in this example, where
W1 = {a1, b1, c1}, W2 = {a1, b2, c1}, W3 = {a2, b1, c1}, W4 =
{a2, b2, c1} and the probability of each possible world is 0.25. Par-
ticularly, the possible world W1 is illustrated in Figure 2(b).

For each possible world W , let s(F,W ) denote the influence
score of the facility F regarding W , which is the number of reverse
nearest neighbors of F in W ; In the paper, for each facility F , we
use SF to represent the influence score distribution of F , where
Pr(SF = v) =

∑
W∈W∧s(F,W )=v Pr(W ).

EXAMPLE 2. In Figure 2(b), we have s(F1,W ) = 1 , s(F2

,W ) = 2 and s(F3,W ) = 0. Figure 2(c) illustrates the score
distributions of F1, F2 and F3. For facility F1, we have Pr(SF1 =
1) = 0.5, Pr(SF1 = 2) = 0.5. Similarly, Pr(SF2 = 0) = 0.25,
Pr(SF2 = 1) = 0.5, Pr(SF2 = 2) = 0.25,Pr(SF3 = 0) = 0.5
and Pr(SF3 = 1) = 0.5.

The influence score distribution of a facility F (SF ) is a random
variable, and hence we can apply the maximal utility principle
to rank the facilities. The maximal utility principle [14] is one of
the most popular models to select the one with highest expected
score as the optimal solution among a set of score distributions. In
the paper, the expected influence score of a facility F , denoted by
I(F ), is defined as follows.

I(F ) =
∑

W∈W
s(F,W )× Pr(W ) (1)

As the number of possible worlds grows exponentially regarding
the number of uncertain objects in U and the number of instances
in each uncertain objects, it is cost-inhibitive to apply Equation 1
straightforwardly by enumerating all possible worlds. Therefore,
we will find an alternative of Equation 1 which can be derived with
reasonable computational cost.
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Figure 2: Example for the Problem Definition

Let NN(U,W ) denote the nearest neighbor (facility) of U in
the possible world W , and σ(NN(U,W ) = F ) = 1 if the facil-
ity F is the nearest neighbor of U in the possible world W , and
σ(NN(U,W ) = F ) = 0 otherwise. Since we assume the un-
certain objects are independent to each other, Equation 1 can be
rewritten as follows.

I(F ) =
∑

W∈W
(
∑

U∈U
σ(NN(U,W ) = F ))× Pr(W ) (2)

=
∑

U∈U
Pr(NN(U) = F ) (3)

=
∑

U∈U

∑

u∈U∧NN(u)=F

pu (4)

, where Pr(NN(U) = F ) is the probability that F is the nearest
neighbor of U , i.e., Pr(NN(U) = F ) =

∑
u∈U∧NN(u)=F pu

and NN(u) is the nearest neighbor of the instance (point) u.
Equation 4 implies that we can avoid enumerating all possible

worlds since we can independently compute Pr(NN(U) = F )
(i.e., nearest neighbor probability) for each uncertain objects. Our
empirical study shows that even a naive implementation of the Equa-
tion 4 can outperform the existing work which follows the expected
rank model.

In the light of maximal utility principle, we aim to find the k
facilities with highest expected influence scores, which is formally
described below.

Problem Statement. Given a set of uncertain object O and a set of
facility F , find the k facilities with the highest expected influence
scores. We assume the number of facilities |F| ≥ k, and ties are
broken arbitrarily.

3.2 Expected Score vs Expected Rank
In [25], Zheng et al. propose the expected rank based ranking

model to evaluate the influence of the uncertain objects. For a given
facility F , its expected rank, denoted by er(F ), is calculated as
follows.

er(F ) =
∑

W∈W
r(F,W )× Pr(W ) (5)

, where r(F,W ) is the rank of F in the possible world W . Then
the k facilities with highest ranks are retrieved.

Given a possible world W , the rank of a facility (r(F,W )), is
calculated based on its influence score (i.e., s(F,W )) as well as
influence scores of other facilities, while the expected score com-
putation is independent to other facilities. This implies that the
expected rank based ranking model is much more complicate than
the expected score based model. As shown in [25], we may have

to enumerate all possible worlds in the worse case, which is cost-
inhibitive in practise. Therefore, although novel pruning techniques
are proposed to significantly improve the performance, the com-
putational cost of the algorithm is still expensive due to the high
complexity of the ranking model.

As mentioned in [5], the expected score based ranking approach
does not satisfy the value invariance property, which implies that
the ranking results of the expected rank model and the expected
score model may be different if there are some inconsistent extreme
scores in the possible worlds. For instance, a facility F has ex-
tremely high score in a few of the possible worlds such that its rank
is boosted by this extreme value. Nevertheless, under our prob-
lem setting, for each possible world we have

∑
F∈F s(F,W ) = n

where n is the number of uncertain objects, and hence it is unlikely
to have facilities with inconsistent extreme scores. This is con-
firmed in our empirical study which shows that two models have
almost the same top k results but new algorithms proposed in the
paper are much more efficient (up to one order of magnitude faster)
due to the simplicity of our new ranking model and efficiency of
pruning techniques.

3.3 Preliminaries
Various indexing techniques have been proposed to organize un-

certain objects. In the paper, we apply R-tree and U -Quadtree
based indexing techniques to facilitate the expected influence score
computation. Note that the R-tree based indexing technique is the
most widely used approach in the literature to index uncertain ob-
jects [15], and U -Quadtree is the most recent indexing technique to
support range search on uncertain objects.

Indexing uncertain objects by R-tree
Given an uncertain object U , we use Umbr to denote the minimal
bounding rectangle (MBR) of the instances of U . Figure 4 illus-
trates the basic idea of the R-tree based indexing approach where
the MBRs of the uncertain objects are indexed by R-tree [7]. As to
each uncertain object, an aggregate R-tree is employed to organize
the instances where the aggregate value of each intermediate entry
is the probability mass of the instances in the entry.

Indexing Uncertain Objects by U-Quadtree
A quadtree [6] is a space partitioning tree data structure in which
a d-dimensional space is recursively subdivided into 2d regions
(cells). In [24], the instances of an uncertain object U are orga-
nized by a summary, denoted by SU , which consists of a set of
entries {e}, where each entry records the object id (e.oid), the cell
of the quadtree (e.cid) and the probability mass of instances al-
located on this cell (e.p). The entries of the uncertain objects are
organized by a B+ tree where the cell ids are key values, which are



A
B

1

3

2

4

7

5

6

8

9 10

11

12 13

1516

17 18

19

2021

11

cell id

3 8 14 19

)}4.0,,8( ),4.0,,6( ),2.0,,1{( AAAS A =

)}4.0,,15(B,0.2),(6, ),4.0,,2{( BBSB =

cell id

14 2 4 5 1 6

16 12 1513

7

(a) (b)

)2.0,,1( A )4.0,,2( B )4.0,,6( A )2.0,,6( B )4.0,,8( A )4.0,,15( B

109

P2 P3

Quadtree

Entry Index

Level

1

2

3

P1

Figure 3: U -Quadtree

MBRs of the uncertain objects

R-tree

Figure 4: R-tree based Indexing

generated based on Hilbert curve. Figure 3 illustrates an example
of the U -Quadtree.

EXAMPLE 3. In Figure 3(a), objects A and B have 5 instances
each and all instances have the same occurrence probability (0.2).
The height of the quadtree (h) is 3 and the ids of the cells are
labeled. We may have SA = {(1, A, 0.2), (6, A, 0.4), (8, A, 0.4)}
and SB = {(2, B, 0.4), (6, B, 0.2), (15, B, 0.4)}.

Note that the summary of an object is not unique as an instance
x can be assigned to any cell which contains x. In [24], a novel
indexing construction algorithm is proposed to effectively build U -
Quadtree based on the cost model. Moreover, the instances of each
uncertain object are also organized by an aggregate R-tree in [24].

4. APPROACH
In this section, we investigate efficient algorithms to compute

the top k most influential facilities based on their expected influ-
ence scores. Section 4.1 presents a straightforward implementation
of the algorithm. Assuming the uncertain objects are organized by
R-tree, Section 4.2 improves the performance of the algorithm fol-
lowing the filtering and verification paradigm. By taking advantage
of an enhanced uncertain object indexing technique, U -Quadtree,
Section 4.3 further improves the performance of the filtering and
the verification algorithms.

In the paper, we assume facilities are organized by R-tree since
it is one of the most popular index techniques in commercial spatial
databases. Nevertheless, our techniques developed in the paper can
be easily extended to other hierarchical spatial indexing techniques.

4.1 Naive Algorithm
Algorithm 1 illustrates a naive implementation of the algorithm

to compute the nearest neighbor probability of each instance re-
garding all facilities following Equation 4. For each instance of an
uncertain object, a nearest neighbor query [13] is issued to find its
nearest facility F and the expected score of F is increased by the
occurrence probability of the instance.

Algorithm 1: Naive Algorithm(SU , SF , k)

Input : k, Uncertain object set SU , Facility set SF

Output : Top k most influential facilities
for each U ∈ SU do1

for each instance u ∈ U do2

for find nearest facility F ∈ SF do3

I(F ) := I(F ) + pu;4

Return top k facilities with highest expected score;5

Although we do not need to explore all possible worlds following
the expected score semantics, the performance of the algorithm is
not scalable to the number of instances and facilities because the in-
stances of all objects are accessed in Algorithm 1 and the expected
scores are calculated for all facilities, which leads to high CPU and
I/O costs.

4.2 R-tree based Algorithm
To address the scalability issue in the above naive algorithm, in

this subsection, we propose the R-tree based algorithm following
the filtering and verification paradigm. More specifically, based on
the MBRs of the uncertain objects, which are organized by R-tree,
we can come up with the lower and upper bounds of the expected
influence scores of the facilities in the filtering phase. Then some
facilities can be pruned based on the widely used top k filtering
conditions; that is, a facility F will be eliminated from candidate
set if there are a set Q of k other facilities such that I+(F ) <
I−(F ′) for any facility F ′ in Q, where I+(F ) (I−(F )) denotes
the upper (lower) bound of expected score for the facility F . In
the refinement phase, we only need to explore the instances of the
uncertain objects which may contribute to the expected scores of
the facilities in the candidate set.

In the paper, we assume the MBRs of the uncertain objects and
facilities are organized by an aggregate R-tree RO and a R-treeRF
respectively. We first introduce some notations used in the paper.

DEFINITION 1. Nearest Neighbor Distance (NND). Given a set
of facilitiesF , the distance between a point x and its nearest neigh-
bor F is the nearest neighbor distance of x regarding F , denoted
by nnd(x,F). In [20], effective method is proposed to compute
the minimal and maximal nearest neighbor distances between two
rectangles. In the paper, we use nndmin(R1, R2) to denote the
minimal nearest neighbor distance between two rectangles R1 and
R2; that is, for any point x in R1, its nearest neighbor distance
regarding a set of facilities F contained by R2 is not smaller than
nndmin(R1, R2), i.e., nnd(x,F) ≥ nndmin(R1, R2). With the
same rationale, we have nndmax(R1, R2) where nnd(x,F) ≤
nndmax(R1, R2).
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To enable computing the expected scores of the facilities in a
level by level fashion, we introduce the concept of object tuple and
facility tuple so that the expected score of a group of facilities or
uncertain objects can be updated or pruned at the same time.

DEFINITION 2. Object Tuple (T ). An object tuple T is em-
ployed to maintain the information used for the NND computation
of a set of uncertain objects in an entry e. Particularly, T.e is the
object R-tree entry ( intermediate entry or data entry) associated
with T , and T.F is a set of facility R-tree entries (intermediate en-
try or data entry) which may contribute to the NND computation of
the objects in T.e.

EXAMPLE 4. In Figure 5, there are four uncertain objects U1,
U2, U3 and U4, and their MBRs are kept in data entries {e1, e2, e3, e4}.
Suppose the object tuple T refers to the entry E1, then we have
T.e = E1 and T.F = {F1, F2, F3} where F1, F2, F3 are facil-
ities entries which may contribute to the NND computation of the
object associated with T .

Whenever there is no ambiguity, we use F to denote an entry in
the facility R-tree. We use I−(F ) and I+(F ) to denote the lower
and upper bounds of the expected score of F . Note that F may
represent an intermediate entry which contains a set of facilities.

R-tree based Filtering

Motivation
The basic idea of the filtering algorithm is to conduct the NND

computation on the high level entries of RO and RF such that we
do not need to compute the NND regarding each individual object
and facility, and hence improve the performance of the algorithm
in terms of CPU and I/O costs.

In Figure 5, let T refer to the entry E1 and T.F = {F1, F2, F3}.
We can remove F2 and F3 from T.F since the maximal NND be-
tween E1 and F1 (nnd_max(E1, F1)) is smaller than the minimal
NND from E1 to F2 and F3 (nnd_min(E1, F1) and (nnd_min(
E1, F3))) , which implies that none of the facilities in F2 and F3

can contribute to the NND computation of the objects in E1 and
hence T.F = {F1}. Similarly, we have T.F = {F2, F3} when
T.e refers to E2. Moreover, let λ be the k-th largest lower bounds
of the expected scores for the facility entries seen so far, we do not
need to further explore the entries since none of the facilities in
the entry can be top k influential facilities. In the paper, we say a
facility entry F is disabled if I+(F ) < λ.

Besides the facility entries, we can also prune object entries
in the paper. In Figure 6(a), we have T.e = E1 and T.F =
{F1, F2, F3}. Suppose F1 is a data entry, i.e., F1 corresponds to a
single facility, and the maximal NND between F1 and E1 is smaller
than the minimal NND from E1 to F2 and F3, then we can increase
I−(F1) by agg(E1) where agg(E1) is the number of uncertain
objects in E1. Clearly, we do not need to further explore the un-
certain objects in E1 and E1 is marked as disabled. On the other
hand, as shown in Figure 6(b), suppose all facility entries in T.F

are disabled (shown as grey rectangles in the example), we can also
prune E1 since objects in E1 only contribute to the expected scores
of the non-promising facilities.

Algorithm 2: R-tree based Filtering(RO, RF , k)
Input : RO : the aggregate R-tree for uncertain objects,

RF : the R-tree for facilities, k
Output : C : a set of candidate facilities,

S : objects need to be further explored
C := ∅; S := ∅; Q := ∅; λ = 0;1
generate a new tuple T ;2
T.e← the root of RO ;3
ef ← the root of RF ;4

T.F ← ef ; I−(ef ) := 0 ; I+(ef ) := # objects in RO ;5
push T into FIFO queue Q ;6
while Q is not empty do7

T ← pop the head of Q ;8
if T.e is data entry and all facility entries in T.F are data9
entries then
S := S ∪ T ;10

else11
for each child entry e′ of T.e do12

generate a new object tuple t for e′ where t.e := e′ ;13
for each facility entry F in T.F do14

if F is not disabled then15
for each child entry ef of F do16

t.F := t.F ∪ ef ;17

I−(ef ) := I−(F ); I+(ef ) := I+(F ) ;18

dmax := min{nnd_max(t.e, ef ) } for all ef in t.F ;19
for each facility entry ef in t.F do20

if nnd_min(t.e, ef ) > dmax then21
t.F := t.F − ef ;22

I+(ef ) := I+(ef )− agg(t.e) ;23

if I+(ef ) < λ then24
Disable F ;25

if t.F contains exactly one data entry ef then26
I−(ef ) := I−(ef ) + agg(t.e) ;27
Update λ; Disable t;28

if all facilities in t.F are disabled then29
Disable t ;30

if t is not disabled then31
Push t to the tail of Q ;32

C ← facilities with I+(F ) ≥ λ ;33
return S, C34

Algorithm
Algorithm 2 illustrates the details of the R-tree based filtering

algorithm on RO and RF , which follows the synchronized R-tree
traversal paradigm used in spatial joins. A FIFO queue (Q) is em-
ployed to keep object tuples, and the first object tuple is initialized
by the roots of RO and RF (Lines 2-5). For each object tuple T
popped from Q, Line 10 puts the object tuple T to S which keeps
the objects need to be further explored in the refinement phase if
all entries in T.e and T.F are data entries. Otherwise, Line 13
generates an object tuple t for each child entry of T.e 2. Then
for each facility entry in T.F , we put all of its child entries {ef}
to t.F if it is not marked as disabled. Meanwhile, I−(ef ) and
I+(ef ) are set by its parent entry in Line 18. Line 19 calculates
the maximal NND from T.e to facility entries in t.F , denoted by
dmax. For each facility entry ef in t.F , we exclude ef from t.F
if nnd_min(t.e, ef ) > dmax and decrease I+(ef ) by agg(t.e)

2In the case that T.e is a data entry, we simply set t.e = T.e at
Line 13. The same strategy goes for facilities in Line 16.
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(Line 20-23). Recall that agg(t.e) is the number of uncertain ob-
jects in t.e. The facility entry ef will be pruned in Line 25 if its
upper bound of the expected score is smaller than λ. In Line 26-28,
we increase I−(ef ) by agg(t.e) and do not further explore uncer-
tain objects in t.e (i.e., prune t) if ef is the only data entry in e.F .
In Line 29-30, we prune the object tuple t if all of the facilities in
t.F are non-promising facilities. Line 32 pushes the object tuple t
to Q if it is not disabled. Finally, Algorithm 2 terminates when Q
is empty, and the facilities surviving the filtering phase (C) will be
returned as well as the object tuples in S .

R-tree based Refinement
After the filtering phase, we need to explore the instances of the
uncertain objects in S such that we can come up with the top k in-
fluential facilities in the refinement phase. Algorithm 3 illustrates
the framework of the refinement procedure. For each object tuple
T in S , we apply the function Refinement to refine the expected
scores of the facilities in the candidate set. Note that we do not
need to process T if all facilities in T.F are marked as disabled.
Finally we have I(F ) = I−(F ), and the k facilities with the high-
est expected scores are retrieved.

Algorithm 3: R-tree based Refinement(C, S , k )
Input : C : the candidate facilities,

S : the objects tuples,
k

Output : I : the top k influential facilities
I := ∅; ;1
for each object tuple T in S do2

if all facilities in T.F are disabled then3
Goto Line 2;4

U ← the uncertain object associated with T.e ;5
Refinement( root of RU , T.F );6

I ← k facilities with the highest I−(F ) values ;7
return I8

In the following, we first discuss the access orders at Line 2 of
Algorithm 3 , then present the function Refinement at Line 6.

Access Order. Intuitively, we should put high priority to the ob-
jects which contribute to the facilities with large upper bounds of
the expected scores since they are more likely to be the top k influ-
ential facilities, and hence leads to a tighter expected score thresh-
old λ, i.e., better pruning power. In the paper, an object tuple T
is sorted by the largest upper bounds of expected scores for facili-
ties in T.F . Our empirical study shows this strategy outperforms
others alternatives such as the random order and ordering by the
size of T.F , i.e., the number of facilities which may influence the
uncertain objects associated with T.e.

Refinement Algorithm. Algorithm 4 is used to update the ex-

Algorithm 4: Refinement(e, F )
Input : e : the R-tree entry,

F : a set of facilities
Output : Updated F
Q := ∅; T.e := e ; T.F := F ;1
push T to Q;2
while Q is not empty do3

T ← pop the head of Q ;4
if T.e is a data entry then5

Find the nearest facility F in T.F ;6

I−(F ) := I−(F ) + p(T.e) ;7
Update λ ;8
for other facility F ′ in T.F do9

I+(F ′) := I+(F ′)− p(T.e) ;10

Disable F ′ if I+(F ′) < λ ;11

else12
for each child entry e′ of T.e do13

t.e← e′ ;14
t.F := T.F ;15
dmax := min{nnd_max(T.e, F ) | F ∈ T.F} ;16
for facility F in t.F with nnd_min(T.e, F ) > dmax17
do

I+(F ) := I+(F )− p(t.e);18
remove F from t.F ;19

Disable F if I+(F ) < λ ;20

if There is only one facility F in t.F then21
I−(F ) := I−(F ) + p(t.e) ;22
Update λ ;23

else24
Push t on the tail of Q ;25

return F , λ26

pected scores of the facilities by exploring the instances kept in an
aggregate R-tree entry e. It is similar to the R-tree based filtering
algorithm (Algorithm 2) except that: (i) In Algorithm 2, both object
entry and facility entry are drilled down in a level by level fashion,
while in Algorithm 4 only the object entries are expanded since we
already reach the bottom of the facility R-tree in the filtering phase.
(ii) At Line 7, 10, 18 and 22 of Algorithm 4, p(e) represents the
probability mass of the instances in the aggregate R-tree entry e.

4.3 U-Quadtree based Algorithm
Observe that the performance of R-tree technique is poor when

the sizes of the MBRs of the uncertain objects are not very small
because it is not effective to capture the instance distribution of an
uncertain object by a single MBR. In [24], Zhang et al. propose
a novel indexing structure based on the quadtree such that a good
tradeoff can be achieved between the filtering cost and refinement
cost.
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Suppose the uncertain objects are organized by U -Quadtree and
the instances of each uncertain object are kept in an aggregate R-
tree, in this subsection, we present efficient U -Quadtree based al-
gorithm to identify the top k influential facilities.

U-Quadtree based Filtering
As the U -Quadtree is also a hierarchical spatial tree structure, Al-
gorithm 2 can be modified to support the filtering procedure. Re-
call that the MBR of an uncertain object U is kept for R-tree in-
dex, while an uncertain object U is described by a summary SU

in U -Quadtree which consists of a set of entries where each en-
try is represented by its corresponding cell in the quadtree and the
probability mass of the instances assigned to the cell. Therefore, in
Line 10 of Algorithm 2, an object tuple is kept in S if it is a cell at
the lowest level and all facilities in T.F are data entries. Moreover,
for an object tuple T , T.e corresponds to a cell c which maintains
the entries of the uncertain object summaries assigned to c, and
T.F records the facility entries which may influence the instances
of the uncertain objects associated with c. When I−(ef ) ( I+(ef ) )
is increased (decreased), instead of agg(T.e) the probabilities sum
of all entries on c (i.e., T.e) will be used.

U-Quadtree based Refinement
We first introduce the containment relationship between a cell c
and an entry E in our algorithm description. The cell c fully con-
tains the entry E if all points in the MBR of E are contained by
the boundary of c. If c does not fully contain E but some points
in the MBR of E are contained by the boundary of c, then c par-
tially contains E. Otherwise, there is no containment relationship
between c and E. For instance, in Figure 7, E2 is fully contained
by c and E1 is partially contained by c.

Algorithm 5 illustrates the details of the U -Quadtree based re-
finement algorithm. For each uncertain object U survived in the
filtering phase, we issue a set of window queries to update the ex-
pected scores of the facilities inF . More specifically, a FIFO queue
Q is employed to keep entries in the aggregate R-tree of the uncer-
tain object U (RU ), which is initialized by the root of RU . For an
entry e in the RU , we will invoke the function Refinement if it is
fully contained by c. Otherwise, the child entries of e are pushed
to Q if e is partially contained by c. Note that a data entry will
either be fully contained by c or have no containment relationship
with c. Finally, we have I(F ) = I−(F ), and the k facilities with
the highest expected scores are returned.

5. EXPERIMENT
In this section, we present results of a comprehensive perfor-

mance study to evaluate the efficiency and scalability of the pro-
posed techniques in the paper. Following algorithms are evaluated.

• Naive The naive implementation proposed in Section 4.1.

• RTKIS The technique based on R-tree proposed in Section 4.2.

• UQuadTKIS The technique based on U -Quadtree proposed
in Section 4.3.

Algorithm 5: U -Quadtree based Refinement (C, S , k , λ )
Input : C : the candidate facilities,

S : the objects need to further explore,
k

Output : I : the top k influential facilities
I := ∅; ;1
for each uncertain object U in S do2

for each cell c associated with U do3
Q := ∅; Q← root of RU ;4
while Q is not empty do5

e← pop the head of Q ;6
if MBR of e is fully contained by the cell c then7

Refinement( e , F ) ;8

else if MBR of e is partially contained by the cell c9
then

for each entry e′ of e do10
Push e′ to the tail of Q ;11

I ← k facilities with the highest I−(F ) ;12
return I13

• UTKIS The technique presented in [25].

Datasets. Three real spatial datasets, namely CA, USA and RT,
are used to evaluate our techniques. CA and USA contain 62K
and 200K 2-dimensional points representing locations in the Los
Angeles and the United States respectively which are available at
[2]. The two datasets are separated into several groups of data re-
spectively, and we choose one group of data with 996 points as the
facilities and the other group of data with 21, 050 points to rep-
resent the centers of uncertain objects from CA as default dateset,
whose distributions are showed in Figure 8. RT is obtained from the
R-tree-Portal [18] with cultural landmarks and populated places in
North America. The number of uncertain objects in USA and RT
are 20, 287 and 24, 493 respectively. By default, around 1000 fa-
cilities are chosen from corresponding datasets. In our experiment,
all dimensions are normalized to domain [0, 10000], and the uncer-
tain region of the uncertain object is a circle with expected radius
ru varying from 20 to 300 with default value 60. There are m in-
stances for each uncertain object and the expected m varies from
100 to 500 with default value 200. Therefore, the total number
of instances in default dataset is 4, 210, 000. The instances of an
uncertain object follow popular distributions Normal(N) and Uni-
form(U) where Normal(N) distribution serves as default instance
distribution.
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Figure 8: Data distribution

All algorithms proposed in this paper are implemented in stan-
dard C++ with STL library support and compiled with GNU GCC.
Experiments are run on a PC with Intel Xeon 2.40GHz dual CPU
and 4G memory running Debian Linux. The disk page size is fixed
to 4096 bytes and the capacity of the entry page (f ) is set to 512.
In the paper, we evaluate the I/O performance of the algorithms
by measuring the number of uncertain objects explored, i.e., uncer-
tain objects whose aggregate R-tree are loaded in main memory.



Query response time is recorded to evaluate the efficiency of the
algorithms, which contains the CPU time and the I/O latency.

Table 2 lists parameters which may have an impact on our perfor-
mance study. In our experiments, all parameters use default values
unless otherwise specified.

Notation Definition (Default Values)
h height of U -Quadtree (9)
ru radius of uncertain object region (60)
n number of uncertain objects (20K)
m number of instances per object (200)
f number of facility (1K)

Table 2: Parameter settings

5.1 Performance Tuning
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Figure 9: Diff. U -Quadtree Height

The performance of UQuadTKIS is effected by the height (h)
of the U -Quadtree. As expected, Figure 9(a) shows that number
of objects visited in the refinement phase drops when h increases
due to the larger size of uncertain object summaries. Nevertheless,
UQuadTKIS becomes less efficient for larger h when h > 9, which
implies that the algorithm cannot pay-off the larger index size when
h > 9. In the following experiments, h is set to 9.
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Figure 10 reports the effectiveness of different access order strate-
gies in R-tree based refinement algorithm where the sizes of the ra-
dius grow from 20 to 100. Particularly, “by fac” denotes the facili-
ties expected score based access order strategy used in Algorithm 2,
and “by obj” stands for the object based strategy, i.e., accessing in
decreasing order of the number of facilities associated with each
object. It is shown that our facility based strategy always outper-
form the object based strategy.

We evaluate the filtering effectiveness of RTKIS and UQuadTKIS
in Figure 11 by measuring the number of candidates (facilities) af-
ter filtering phase. The performance of both algorithms degrade
against the growth of ru. UQuadTKIS significantly outperforms
RTKIS since more resources are allocated to the U -Quadtree to
capture the distribution of the instances of the uncertain objects.

5.2 Performance Evaluation
Comparing Different Ranking models. Figure 12 evaluates the
similarity of different ranking models ( expected rank and expected
score) on three datasets CA, USA and RT respectively, which shows
the scatter-plot of the ranks of 100 facilities. Particularly, each
point in the scatter-plot represents a facility where x-axis and y-
axis record the rank of objects based on expected rank model and
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Figure 12: Result comparison

expected score model respectively. It is shown that all points line
up along the diagonal, and the maximal difference of the ranks for
a facility is only 2 in Figure 12 , which indicates that the results of
two models are almost the same.
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Impact of Data Distribution. Figure 13 reports the response time
and the number of uncertain objects accessed of the algorithms
against different data distributions where CAN represent the dataset
in which the centers of uncertain objects are from CA and the in-
stances of each uncertain object follow the Normal(N) distribution.
It is reported that UQuadTKIS significantly outperforms other al-
gorithms under all data distributions, and UTKIS ranks the last due
to the high complexity of the expected rank model. Particularly, on
CAN dataset, The response times of four algorithms (UQuadTKIS,
RTKIS, Naive and UTKIS) are 17.8, 44.28, 84 and 140 seconds re-
spectively. They are 20.14, 52.85, 103 and 166.2 seconds respec-
tively on RTU dataset.
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Impact of the number of instances (m). We evaluate the response
time of the algorithms as a function of the number of instances (m)
in each uncertain object which varies from 100 to 500. Clearly,
the refinement cost increases in refinement phase when m grows.
Figure 14 shows that UQuadTKIS has the best scalability against
m, followed by RTKIS, Naive and UTKIS.

Impact of the radius(ru). Figure 15 investigates the performance
of four algorithms as a function of the radius size which various
from 20 to 300. It is shown that the scalability of UQuadTKIS is
better than that of RTKIS regarding the growth of ru.

Impact of the number of facilities and objects. We also evaluate
the impact of the number of facilities as well as the number of ob-
jects against four algorithms, where the number of facilities grows
from 200 to 1000, and the number of objects varies from 10,000 to
50,000. Figure 16 and Figure 17 show that UQuadTKIS have the
best scalability among four algorithms.

Impact of k . In the last set of experiments, we evaluate the re-
sponse time and the number of I/O accesses against various k val-
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ues in Figure 18, which indicates that the performance of all algo-
rithms are not very sensitive to the k value.
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Summary. As a short summary, our comprehensive performance
study shows that our ranking model has very similar ranking re-
sult with that of expected rank model, while the efficiency of the
algorithms under our ranking model is much better. Even a naive
implementation can outperform UTKIS Algorithm which follows
the expected rank model. The experiments also show the effec-
tiveness and efficiency of the filtering and refinement algorithms
proposed in the paper based on R-tree and U -Quadtree. The over-
all performance of the U -Quadtree based algorithm (UQuadTKIS)
always outperforms the R-tree based one (RTKIS) under various
experiment settings because more sophisticated indexing structure
is employed in UQuadTKIS.

6. CONCLUSION
In this paper, we investigate the problem of finding top k most

influential facilities over a set of uncertain objects. Based on a new
ranking model, we develop two effective and efficient algorithms
by utilizing two uncertain objects indexing techniques, R-tree and
U -Quadtree respectively. A set of pruning techniques are proposed
in the paper to significantly improve the performance of the filtering
and refinement algorithms. Our experiments convincingly demon-
strate the effectiveness and efficiency of our techniques.
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