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Abstract. Being a fundamental problem in managing graph data,
subgraph exact all-matching enumerates all isomorphic matches of a
query graph q in a large data graph G. The existing techniques focus on
pruning non-promising data graph vertices against q. However, the re-
duction and sharing of intermediate matches have not received adequate
attention. These two issues become more critical on subgraph similar-
ity all-matching due to the (possibly) massive number of intermediate
matches. This paper studies the problem of efficient subgraph similarity
all-matching by developing a novel query processing framework. We pro-
pose to effectively decompose a query graph into a hierarchical structure
with the aim to minimize the number of intermediate matches and share
intermediate matches. Novel techniques are then developed to estimate
the number of intermediate matches, efficiently merge the intermedi-
ate matches, and generate efficient query execution plans. Experimental
on real and synthetic datasets show that our approach outperforms the
state-of-the-art approach for orders of magnitude.

1 Introduction

Graphs have been prevalently used in many applications for modeling complex
data such as protein interaction networks (i.e., Bio-informatics), chemical com-
pounds (i.e., Chem-informatics), social networks (i.e., Web), etc. Significant re-
search efforts have been made towards many fundamental problems in managing
graph data. The problem of subgraph exact all-matching is to enumerate all the
exact matches (subgraph isomorphism mappings) of a query graph q in a large
data graph G. This problem is of great importance in discovering graph struc-
tures and well studied in many previous works [16,18].

With the explosion of graph data, noisy or inconsistent data are unavoidable
in many applications, while query graphs may also be noisy due to erroneous
input. Consequently, subgraph exact all-matching may fail to find any exact
matches and subgraph similarity all-matching is thus strongly demanded in such
cases for approximate matches.

This paper studies efficient subgraph similarity all-matching; that is, to enu-
merate all similarity matches of a query graph q in a large data graph G by
allowing at most δ missing edges (to be formally defined in Section 2). This
problem stems from many applications. For example, in Bio-informatics, we can
model protein interaction networks as graphs with proteins and interactions as
vertices and edges, respectively. Given a noisy pathway query, our problem can
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return useful similarity matches in the network while no results can be found by
subgraph exact all-matching. More applications can be found in [17].

Among all previous works on subgraph similarity matching [7,6,1,8,11,12,17],
SAPPER [17] is the only one to enumerate all the similarity matches. It adopts
the enumerate-and-search paradigm, which firstly identify all feasible patterns p
(connected subgraphs of q missing at most δ edges of q) and then conducts sub-
graph exact all-matching to generate the final results. Although straight-forward
to implement, the performance of the paradigm drops drastically when the num-
ber of intermediate matches is large, which is not uncommon in enumerating all
matches. Hence, it is desirable to effectively (1) minimize the number of inter-
mediate matches; and (2) share the intermediate matches to avoid redundant
computation. We identify that (1) effective search order and (2) effective query
decomposition are the keys to above two issues.
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Fig. 1. Effective Search Order and Query Decomposition

Effective Search Order. Consider the query graph q in Figure 1(a) itself
as a feasible pattern p, SAPPER conducts subgraph exact all-matching on p
against the data graph G in Figure 1(b) by a depth-first search [3,9]. The two
search orders in Figure 1(a) will encounter 350 and 47 intermediate matches,
respectively. Hence, it is important to reduce the intermediate match number by
using effective search order.

Effective Query Decomposition. Regarding the feasible pattern p in
Figure 1(a) and its two decomposed fragments f1 and f2 in Figure 1(c)-(d). Ac-
cording to the search orders in Figure 1(c)-(d), enumerating the exact matches
of f1 and f2 in G yields a total of 8 intermediate matches for f1 (including 4
whole matches of f1) and 8 for f2 (including 4 whole matches of f2). In merging
the whole matches of f1 with those of f2, we only produce at most 16 more
intermediate matches for p. Hence, the query decomposition further reduce the
number to at most 32 intermediate matches. Moreover, we will show in Section 3
that we can also ‘share’ the computation cost of intermediate matches by query
decomposition.

To the best of our knowledge, this is the first work to propose reducing the
number of intermediate matches and sharing the computation of intermediate
matches. The main contributions of this paper can be summarized as follows.
1. We propose a novel hierarchical framework DecQ to efficiently conduct sub-

graph similarity all-matching by decomposing the query into a set of unit
sub-queries. We first compute the results of sub-queries (local matching) and
then combine them to obtain the final results (global matching).
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2. We propose a novel model to estimate the number of intermediate matches
produced in local matching and then develop effective search order for sub-
queries. In global matching, we develop an efficient merge-and-validation al-
gorithm to combine the results of sub-queries by exploiting the computation
sharing among overlapping feasible patterns.

3. We develop efficient heuristic algorithm to generate effective query decom-
position for the sharing of intermediate matches.

4. We conducts extensive experiments on both real and synthetic datasets,
which demonstrates that our approach outperforms the state-of-the-art ap-
proach by up to four orders of magnitude in terms of query response time.

Organizations. We organize the rest of this paper as follows. Section 2 presents
important definitions and formalizes the problem. Section 3 proposes our hier-
archical querying framework DecQ. Section 4 presents our local matching algo-
rithm, while our global matching algorithm and effective query decomposition
are studied in Section 5. Section 6 reports the experimental evaluation. Section 7
surveys related work and Section 8 concludes the paper.

2 Preliminaries

This paper studies connected, vertex-labeled simple graphs. A simple graph is
an undirected graph with neither self-loops nor multiple edges. Without loss of
generality, our approach can be easily extended to directed and/or edge-labeled
graphs. Given a set ΣV of labels, a graph g is defined as a triplet (V (g), E(g), l)
where V (g) and E(g) ⊆ V (g) × V (g) are the set of vertices and undirected
edges. If an edge is incident on u, v ∈ V (g), (u, v) ∈ E(g). The label function
l : V (g) → ΣV assigns a label l(v) to each vertex v ∈ V (g).

2.1 Problem Statement

Definition 1 (Subgraph Isomorphism Mapping). Given two graphs g =
(V,E, l) and g′ = (V ′, E′, l′), a subgraph isomorphism mapping from g to g′ is
an injective function f : V → V ′ such that (1) ∀v ∈ V , f(v) ∈ V ′, l(v) = l′(f(v));
(2) ∀(u, v) ∈ E, (f(u), f(v)) ∈ E′.

Given a subgraph isomorphism mapping from g to g′, g is a subgraph of g′ (g′ is
a supergraph of g), denoted by g ⊆ g′. We next define the graph edit distance.

Definition 2 (Graph Edit Distance). Given two graphs g1 and g2, the graph
edit distance GED(g1, g2) from g1 to g2 is the minimum number of inserted edges
required to transform g1 to g2.

Note that: (1) The edit distance model is not symmetric. If g1 cannot be trans-
formed to g2 by edge insertion, GED(g1, g2) = +∞. (2) To control the number
of similar graphs, we disallow label mismatch or vertex mismatch in the model.
From now on, we abbreviate a query graph to a query. We next define the feasible
pattern of q and similarity matches.
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Definition 3 (Feasible Pattern Under δ). Given a query q and a thresh-
old δ, a feasible pattern of q under δ is a connected subgraph p of q such that
GED(p, q) ≤ δ. The feasible pattern set FP (q, δ) consists of all the feasible
patterns of q under δ.

Definition 4 (Similarity Match). Given a query q, a data graph G and a
threshold δ, a similarity match of q in G is a subgraph isomorphism mapping
from a feasible pattern p of q to G.
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Fig. 2. Subgraph Similarity Matching

Example 1. Regarding Figure 2, assume δ = 1. p ∈ FP (q, 1) becauseGED(p, q)=
1.GED(q, p)=+∞ as we cannot transform q to p by edge insertion.GED(g, q) =
+∞ as the vertex v3 of q can not be mapped into g. FP (q, 1) contains 4 feasible
patterns (q and other 3 feasible patterns by deleting any bold edge in q). Both
the two bounded matches in G are similarity matches of q. The circled one is
also an exact match of q.

Problem Statement. Given a query q, a data graph G and a threshold δ,
subgraph similarity all-matching returns a set Sq consisting of all the similarity
matches of q in G.

Note that exact subgraph matching is a special case of subgraph similarity
matching where δ = 0. Let Mp denote the exact match set of each feasible
pattern p. It is immediate that Sq = {Mp|p ∈ FP (q, δ) }.

3 A Hierarchical Framework

In this section, we propose a novel, three-phase framework DecQ for efficiently
processing subgraph similarity all-matching. We summarize it as follows.

Phase 1: Query Decomposition. We decompose the query q into a hierarchi-
cal structure (Q, T ) which implies a query execution plan. Here, Q is a set of con-
nected, edge-disjoint subgraphs f of q called fragments and

⋃
f∈Q E(f) = E(q).

Here, Q is also called an edge-disjoint fragment cover of q. T is a binary decom-
position tree whose leaves correspond to all fragments in Q. Each internal node
N in T represents a connected subgraph g of q, which can be further decomposed
into two edge-disjoint subgraphs g1 and g2 residing on the two children. As to
the query q in Figure 1, we can decompose q into Q = { f1, f2 } and obtain the
decomposition tree as in Figure 3(a).

Phase 2: Local Matching. For each fragment f ∈ Q, we first compute its
local pattern set LP (f, δ) consists of all local patterns f ′ (subgraphs of f miss-
ing at most δ edges of f). By using depth-first search, we compute the exact
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matches Mf ′ , which are called local matches (similarity matches of f). For the
completeness of final results, we allow f ′ to be disconnected and compute the
exact matches of each component of f ′ in such case. In Figure 3(b), we have to
compute the exact matches for all local patterns including f1(0) and f1(1).

Phase 3 : Global Matching. To distinguish the terms used in local matching,
we call the feasible pattern p a global pattern and FP (g, δ) the global pattern
set, respectively. Given Q = { f1, ..., fm }, a global pattern p can be assembled
from a set of local patterns { f ′

1, ...f
′
m } such that each f ′

i ∈ LP (fi, δ). In global
matching, we merge these intermediate matches (local matches) Mf ′

1
, ...,Mf ′

n

to obtain the exact match set Mp of p. Such exact matches of p are similarity
matches of q and called global matches. Note that the query decomposition pro-
vides us an opportunity to share the computation cost of intermediate matches
among various global patterns. After all global patterns have been processed,
Sq = {Mp|p ∈ FP (q, δ) } of q is returned.

For the query q in Figure 1(a), let δ = 1. p1 = {f1(1), f2(0)} and p2 =
{f1(2), f2(0)} in Figure 3(c)-(d) are two global patterns of q assembled from
two local patterns. As p1 and p2 share f2(0), we only need to compute the local
matches Mf2(0) once and share them in the global matching of p1 and p2.

4 Local Matching Algorithm

In this section, we propose a model to estimate the number of intermediate
matches produced in local matching. We prove that problem of finding the op-
timal search order with minimized number of estimated intermediate matches
is NP-hard and then develop effective search order to reduce the number of
intermediate matches.

4.1 Estimating Intermediate Matches

Given a local pattern f ′ ∈ LP (f, δ) and the data graph G, assume a depth-
first search algorithm A iteratively searches mappings for each v ∈ V (f ′). The
number of intermediate matches |If ′ | produced in A varies greatly on different
search orders employed by A. Although we can not obtain either |If ′ | or |Mf ′ |
without applying A on f ′, we propose a novel model to estimate both of them.
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For each vertex v (edge e) in a local pattern f ′, let M(v) (M(e)) be the set
of its vertex (edge) mappings in G. For each edge (u, v) ∈ E(f ′), given any
u′ ∈ M(u) and v′ ∈ M(v), the probability that there is an edge (u′, v′) ∈ E(G)
can be captured by Equation(1).

θ(e) =

{ |M(e)|
|M(v)|×|M(u)| l(u) �= l(v)

|M(e)|
|M(v)|×(|M(u)|−1) l(u) = l(v)

(1)

Given a search order on V (f ′) according to which algorithm A searches vertex
mappings, let ig(f ′, k) be the subgraph of f ′ induced by the first k vertices in
V (f ′). We estimate |Mf ′ | and |If ′ | by Equation(2) and (3). Particularly, |If ′ | is
the summation of |Mig(f ′,k)| for each resulted induced subgraph ig(f ′, k) along
the search order.

E(Mf ′) =
∏

v∈V (f ′)

|M(v)| ×
∏

e∈E(f ′)

θ(e) (2)

E(If ′) =

|V (f ′)−1|∑

i=1

E(Mig(f ′,k)) (3)

Example 2. Consider the fragment f1 and data graph G in Figure 1(a)-(b), as-
sume we only consider vertex label for matching vertices and edges. Figure 4
summarizes Mv and θ(e) for each v ∈ V (f1) and e ∈ E(f1). Let the search
order on V (f1) be an ascending order on vertex ID. By Equation 2, E(Mf1) =
73×1×1×(17 )×(57 )×(2442 )

2 = 11.4. By Equation 3, E(If1 ) = 1+1+4+2.8 = 8.8.
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Fig. 4. Effective Search Order

Theorem 1. Given any fragment f , the problem of finding the optimal search
order with minimum estimated number of intermediate matches is NP-hard.

Proof Sketch. It is immediate that Theorem 1 can be proved by reduction from
maximum clique. Due to the interest of space, we omit the proof here.

4.2 Effective Search Order

Seeing the difficulty in finding the optimal search order, we proposes a heuristic
algorithm to obtain an effective search order. Given a local pattern f ′, we first
transform it into a weighted graph fw such that (1) ∀v ∈ V (fw), w(v) = |M(v)|;
(2) ∀e ∈ E(fw), w(e) = θ(e). For any subgraph g of fw, E(Mg) equals the produce
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of all vertex and edge weights on g. Our algorithm iteratively selects a vertex
v ∈ V (fw) into the current search order V , which results in a new subgraph g
of f ′ induced by V . In each iteration, we greedily select the vertex such that the
resulted g has minimum estimation E(Mg). Consequently, the algorithm aims to
to minimize E(Mg) for each resulted induced subgraph along the search order.
Our algorithm GenOrder is outlined in Algorithm 1.

Algorithm 1: GenOrder (fw)

Input : fw: a weighted graph;
Output : V : an ordered set of vertices, initially an empty set;

1 Pick any v′ ∈ V (fw) s.t. � v ∈ V (fw) ∧ w(v) < w(v′);
2 V := V

⋃{ v′ }, V (fw) := V (fw)− { v′ };
3 while V (fw) �= ∅ do
4 Pick any v ∈ V (fw) such that E(Mg) is minimized for the subgraph g of f ′

induced by V
⋃{ v };

5 V := V
⋃{ v′ }, V (fw) := V (fw)− { v′ };

6 return V ;

Complexity Analysis. Clearly, GenOrder needs O(|V (fw)|) iterations and runs
in O(|V (fw)||E(fw)|). The space requirement is O(|V (fw)|+ |E(fw)|).
Example 3. Regarding the weighted graph fw in Figure 4 transformed from f1
in Figure 1(c), we weight all the vertices and edges following the left table.
GenOrder will select Si as the i-th vertex in the search order.

4.3 Efficient Local Matching

Enumerating Local Patterns. To conduct local matching, we must compute
the local pattern set LP (f, δ) of each fragment f ∈ Q. Unlike the connected
global patterns, any subgraph f ′ (connected or disconnected) of f missing no
more than δ edges is a potential local pattern. This is because the connected
components of f ′ may be bridges by other local patterns to form a global pattern.
Given a total order on E(f), for a subgraph f ′ of f missing at most δ edges, key
of f ′ is defined as a set of ‘ordered edges’ missed in f ; that is, Key(f ′) = { e|e ∈
E(f) ∧ e �∈ E(f ′) }. Below, we define a lexicographic order on Key(f ′).

Definition 5 (Lexicographic Order). Assume Key(fa) = {ea1 , ..., eak} and
Key(fb) = {eb1, ..., ebl} represent two subgraphs fa, fb of a fragment f . Key(fa)
¡ Key(fb) if and only if, (1) Key(fa) = ∅; or (2) ∃j ∈ [1,min(k, l)] s.t. ∀i ∈
[0, j], eai = ebi ∧ eaj+1 < ebj+1; or (3) k < l and ∀i ∈ [1, k], ebi = ebi .

We enumerate all subgraphs f ′ in ascending order on Key(f ′) and insert f ′

into LP (f, δ) if Key(f ′) is not an edge cut of q. This is because f ′ can not
be combined with other local patterns to for a connected global pattern. For
disconnected local patterns f ′, we remove all isolated vertices from f ′ because
these vertices must be presented in other fragments in Q.

Computing Local Matches. We extend the subgraph isomorphism test al-
gorithm QuickSI [9] and adopt our effective search order to compute all local
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matches. For local matches, we maintain LP (f, δ) in a pattern table T (f) where
each record (Key(f ′),Mf ′) ∈ T (f) represents a local pattern f ′ and its ex-
act match set. If f ′ is disconnected into a set { ci|1 ≤ i ≤ n } of n connected
components, Mf ′ is replaced with the exact match sets Mci of each ci.
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Example 4. Regarding the fragment f1 in Figure 1, assume δ = 1. Figure 5(a)−
(e) show all 5 subgraphs of f1 missing at most one edge. Since Key(b) and
Key(c) are two edge cuts, LP (f1, δ) = { (a), (d), (e) }. Finally, we remove v4 and
v5 from (d) and (e) as they are single-vertex components.

5 Global Matching Algorithm

In this section, we propose an efficient merge-and-validation global matching
algorithm, which shares the computation cost of intermediate matches of various
global patterns. Then we develop effective query decomposition technique to
maximize the computation sharing.

5.1 Enumerating Global Patterns

Similar as in Section 4, we assign any subgraph q′ of q missing at most δ edges
with a key Key(q′) = { e|e �∈ E(q′)∧e ∈ E(q) } representing the ordered missing
edges. The lexicographic order on Key(q′) can be similar defined. We organize
all global patterns of q in a pattern lattice with with |E(q)| + 1 levels. Level-i
contains the keys Key(q′) of all q′ missing i edges in q. On the top and bottom
level, we put Key(q) = ∅ and E(q), respectively. Due to the error threshold δ,
we can safely discard all the levels below the δ-th level. For any two subgraphs
qa and qb from the i-th and i+ 1-th level, if qa is obtained by removing an edge
from qb, we call qa a child of qb (qb a parent of qa). We order all the subgraphs
q′ on level-i in ascending lexicographic order on Key(q′). Clearly, if Key(q′) is
an edge cut of q, q′ is disconnected and thus not a global pattern; otherwise, q′

is a global pattern which must fall in one of the following two categories.

– If Key(q′′) is an edge cut of q for all the children q′′ of q′, or q′ has no
children, we call such q′ a minimal pattern.

– If Key(q′′) is not an edge cut of q for some child q′′ of q′, we call such q′ a
non-minimal pattern.

Example 5. Regarding the query q in Figure 6, we depict its pattern lattice for
δ = 2 with all the subgraphs represented by their keys. We bound all subgraphs
q′ with rectangles if Key(q′) is an edge cut of q. All the minimal patterns are
circled, while all the global patterns above level-2 are non-minimal patterns.
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Our merge-and-validation matching algorithm is presented in Algorithm 2
which traverse the pattern lattice level by level, according to the order ofKey(q′).
The algorithm processes minimal patterns with sharing-aware merge, while effi-
cient edge validation is adopted to process non-minimal patterns. We give details
on the sharing-aware merge and edge validation in the following two subsections.

Algorithm 2: GlobalMatch (q,G, L, δ)

Input : q: a query; G: a data graph; L: the pattern lattice; δ: the threshold;
Output : Sq: similarity match set of q;

1 for i := δ to 0 do
2 for each q′ in ascending order on level-i do
3 if Key(q′) is an edge cut then continue;
4 if q′ is a minimal pattern then
5 Compute Mq′ by sharing-aware merge;
6 else
7 Compute Mq′ by edge validation;

8 Sq := Sq

⋃{Mq′ };
9 return Sq;

5.2 Matching Minimal Patterns

We compute the exact matches Mp of minimal patterns p by merging the in-
termediate matches under according to the decomposition tree T in the query
execution plan. Note that any internal node N in T indicates a connected sub-
graph g of q, which are further decomposed into two edge-disjoint subgraphs
residing on the two child nodes L and R of N . Let N.g be the subgraph rep-
resented by N . Let J = V (L.g)

⋂
V (R.g) be the common vertices of L.g and

R.g. We compute MN.g by equi-joining ML.g and MR.g on J . In practice, we
adopt hash join to perform the task. Generally, following (Q, T ), we first decom-
pose p along T in a top-down fashion to retrieve the decomposed local patterns
corresponding to fragments in Q and then recursively merge the intermediate
matches (local matches) to compute Mp.

Sharing Intermediate Matches. Given two minimal patterns p and p′, if
they share common intermediate patterns, we can share the merge cost of them.
Such intermediate patterns are either local patterns of the merge results of a
set of local patterns. We create an intermediate pattern table T (N) on each
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internal node N . For each newly encountered intermediate pattern N.g′ on N
merged from some local patterns, we insert a tuple (N.g′,MN.g′) into T (N).
Consequently, if two patterns p and p′ shareN.g′, we can share the pre-computed
MN.g′ to avoid redundant merge cost.

Maintain Disconnected Intermediate Matches. Due to the possibly dis-
connected local patterns, an intermediate pattern N.g′ may not be connected.
In such case, we maintain the exact matches for each of its component and delay
their merge until a ‘bridge’ intermediate pattern links them at a later stage.

5.3 Matching Non-minimal Patterns

For a non-minimal patterns p at level-i, any child pattern p′ of p at level-i+ 1
only miss one edge in p. According to Definition 2, any exact match of p must
be an exact match of p′. Thus, we only need to conduct edge validation on Mp′

for computing Mp. We pick the child p′ of p with minimum |Mp′ | and check each
exact match F ∈ Mp′ to see if the extra edge in p exists in F . If so, F is also an
exact match of Mp.

5.4 Effective Query Decomposition

Given a global pattern p decomposed into a set of local patterns, the computation
cost of Mp contains (1) the search cost of local patterns and (2) the merge cost
of intermediate patterns. The search cost of a local pattern f ′ can be evaluated
by E(Mf ′) + E(If ′ ), while the merge cost of an intermediate pattern g′ can also
be evaluated by E(Mg′ ). Equation(3) and (2) can be used to calculate the cost.

However, it is expensive to generate an optimal decomposition for each p ∈
FP (q, δ) is expensive as there are too many p and possible decompositions to
consider. Hence, we propose recursive bisection to generate a uniform decompo-
sition for all global patterns by considering q only.

Recursive Bisection. The recursive bisection works as follows. We initialize
an empty query cover Q and a decomposition tree T with only one root node R
representing q. The we recursively bisect q and its successive decomposed sub-
graphs to construct Q and T . For each newly decomposed subgraph g, we build
a new leaf node N in T to hold g as a fragment. Consequently, the computation
cost on N is simply the search cost of all local patterns g′ of g. We the attempt
to bisect g into g1 and g2, two smaller fragments to reduce the computation cost.
The new computation cost contains (1) the search cost of local patterns of g1
and g2 and (2) the merge cost of the local patterns of g1 and g2.

Equation (4) and (5) estimate computation cost on N before and after the
bisection, respectively. Note that we approximate the search cost of all local
patterns by the search cost of their corresponding fragments. According to Def-

inition 2, the number of possible local patterns of g is αg = Σδ
i=0

(|E(g)|
i

)
. Recall

that we use E(Mg) to estimate the merge cost. Similarly, if we decompose g,
there are at most αg intermediate patterns to be merged. Equation 6 gives the
cost gain of the bisection.



Efficient Subgraph Similarity All-Matching 465

Ca = αg(E(Ig) + E(Mg)) (4)

Cb = αg1(E(Mg1) + E(Ig1 )) + αg2(E(Mg2) + E(Ig2 )) + α(g)(E(Mg)) (5)

Cg = αgE(Ig)− αg1(E(Mg1) + E(Ig1 ))− αg2(E(Mg2 ) + E(Ig2 )) (6)

Since E(Ig) is fixed with a pre-given search order before bisection, we aim to
reduce the search cost of g1 and g2. Note that a good bisection should be balanced
since both E(Mg1) and E(Ig2 ) has an exponential growth with the increase of
graph size. Hence, our bisection always aims to bisect g into two connected
subgraphs with approximately the same size. In experiments, we only bisect g
when it yields a positive cost gain. The minimum fragment size is δ + 1.

6 Performance Evaluation

In this section, we report our experimental results and analyses. We obtain the
binary code of SAPPER from its authors [17]. All our algorithms are imple-
mented in C++ and compiled with GCC 4.3.2 with -O3 flag. All experiments
are conducted on a PC with Intel Xeon 2.40GHz CPU and 4GB memory running
Debian 4.1.1-21.

Datasets.Our real dataset is the Human Protein Interaction Network, a popular
benchmark (http://www.hprd.org/download) for evaluating subgraph match-
ing and search techniques. The network, denoted GH , consists of 9, 460 vertices,
37, 081 edges and 307 distinct vertex labels. We adopt GH to study the efficiency
of our proposed algorithms. We generate synthetic data graphs and queries to
study the scalability of our proposed algorithms varying data graph settings.
Note that the queries are always generated by selecting induced data graphs
from the underlying data graphs and we randomly insert 1− 3 ‘noisy edges’. All
query set contains 100 queries. The synthetic queries are similarly generated as
the real queries. We summarize the default parameters of query and data graphs
in Table 1. Note that |V (G)|, deg(G), and |ΣV | are applicable for synthetic
datasets only. The default error threshold δ is 2 unless otherwise specified.

Table 1. Default Values of Parameters

Parameters |E(q)| avg. deg(q) |V (G)| avg. deg(G) |ΣV |
Default Values 40 4 5,000 12 100

Evaluated Algorithms.We evaluate the following algorithms in this paper: (1)
RO-ND The basic subgraph similarity all-matching algorithm which enumerates
feasible patterns of q and searches the exact matches of feasible patterns with
random search order; (2) EO-ND The modified RO-ND algorithm equipped with
effective search order. (3) DecQ Our proposed algorithm with effective search
order and effective query decomposition. (4) SAPPER The algorithm developed
in [17]. In order to facilitate the local matching, the indexing technique in [17]
is applied on all algorithms to efficiently identify candidate data graph vertices.

http://www.hprd.org/download
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6.1 Varying Error Threshold and Query Settings
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Fig. 7. Varying Error Threshold and Query Settings

Varying Error Threshold δ. We compare 3 algorithms RO-ND, EO-ND, DecQ
on GH to study the effect of our effective search order and query decomposition.
We plot the averaged number of intermediate matches and query response time
in Figure 7(a) and 7(b). Clearly, the intermediate matches of RO-ND and EO-
ND grow the fastest, while DecQ have decent growths. Thanks to the effective
search order, EO-ND produces only up to 1/19 as many intermediate matches
as RO-ND does. DecQ outperforms the other algorithms on all δ settings.

The trend of query response time confirms the effectiveness and efficiency of
our proposed techniques. All algorithms costs more time for larger δ, while DecQ
is the most efficient among the four. When δ = 3, EO-ND is 21 times faster than
RO-ND, while DecQ has an additional speed-up over EO-ND for up to 840 times.
The gaps between DecQ and other algorithms increase when δ increases because
more computation on overlapping global patterns can be shared.

Varying Query Size |E(q)|. We next evaluate the effect of query size on GH .
The intermediate matches and the query response time are plotted in Figure 7(c)
and 7(d). The intermediate matches and the response time both increases with
the query size. The reason is that we have to go deeper in the depth-first search
for RO-ND and EO-ND, or decompose q into more fragments for DecQ; yet both
our search order and query decomposition are effective over all |E(q)| settings.
Varying Average Query Density deg(q).We then evaluate the effect of query
density on GH and report the results in Figures 7(e) and 7(f). It is interesting
that all algorithms exhibit different trends. The response time of RO-ND first
decreases and then rebounds, while that of EO-ND almost levels over all density
settings. The response time of DecQ keeps decreases when q becomes denser.
Same trend is observed on the number of intermediate matches. There are two
counteracting factors that affect this result: (1) the number of global patterns
increases for denser queries; (2) dense global patterns are less likely to have
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matches due to the strict topological structure. For RO-ND, the second factor
is dominant for small degrees, while the first factor is more significant when
deg(q) > 4. For EO-ND, the effective search order makes it more efficient to
find matches and hence weakened the effect of the first factor. Thanks to the
shared intermediate matches, the matching is even faster for DecQ, and hence
the second factor dominates.

6.2 Varying Data Graph Settings
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Fig. 8. Varying Data Graph Settings

Varying Data Graph Size and Density. We firstly evaluate the effect of
data graph size and density on synthetic dataset. The results with varying data
graph size and density are reported in Figure 8(a) and 8(b). DecQ achieves 8
times speed-up against EO-ND and 118 times against RO-ND over all graph size
settings. DecQ and EO-ND exhibit lower growth rate because the effective search
order starts with the most selective vertex, whose number in G does not grow as
fast as |V (G)|. Similar trend is observed on all density settings which confirms
DecQ has better scalability than the other algorithms.

Varying Number of Vertex Labels.We report our results over different |ΣV |
settings in Figure 8(c). All algorithms consumes less time when |ΣV | increases.
This is because the vertices are rendered more selective and thus leads to few
intermediate matches. The response time almost levels for both EO-ND and
DecQ when the |ΣV | exceed 120. This is because the selectivity of the most label
selective vertices in the search order barely changes when we include more labels.

6.3 Comparison with SAPPER
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Fig. 9. Comparison with SAPPER
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We finally compare DecQ with SAPPER by varying δ, |E(q)| and deg(q) on GH .
The results are reported in Figure 9(a) to 9(c). When δ = 3, DecQ is faster than
SAPPER by 4 orders of magnitude. We do not report the results of SAPPER
on deg(q) = 2 since it runs out of all 4GB memory in storing intermediate
matches. The large gap on response time between two algorithms is witnessed
on all experiments. This is mainly due to our effective search order and query
decomposition. The reduction and sharing of intermediate matches significantly
save the cost for processing highly overlapping global patterns. Note that two
algorithm exhibits different trend on query density settings. The main reason is
that more global patterns are enumerated for denser queries, while they are more
selective and less likely to have matches. Since DecQ shares the computation
cost among global patterns, it is less sensitive to the effect of increasing global
patterns. Consider both factors, the decreased response time can be explained.

7 Related Work

Many fundamental problems in managing graph data has been extensively stud-
ied. These include subgraph exact and similarity all-matching, subgraph/super-
graph containment search and subgraph similarity search. On exact subgraph
all-matching, most studies propose to build efficient index to prune non-promising
data graph vertices against the query. [16] develops an indexing technique called
GADDI to index nearby discriminative subgraphs as signatures, while shortest
path are also adopted in [18] as unit index structure. To handle noisy graph data,
[11] studies subgraph similarity all-matching by developing neighborhood-based
index structure. [17] on the other hand, transform the problem to subgraph exact
all-matching by proposing the enumerate-and-search paradigm.

Subgraph containment search [4,5,9,10,13,14,19,20] and supergraph contain-
ment search. [2,15] also attract great research interests. On subgraph contain-
ment search, [10] proposes the first filtering-verification framework by indexing
path-features to filter false results before the expensive verification. [13] improves
the filtering power by indexing discriminative graph-features. To further reduce
filtering cost and index construction size, [19] and [14] independently propose
to adopt tree-features. [9] proposes efficient verification approach to accelerate
query processing. On supergraph containment search, [2] propose cIndex to se-
lect contrast features via query log, while [15] enhances the verification phase by
sharing search cost on common subgraphs of data graphs. On subgraph similarity
search, [12] follows the filtering-verification framework to remove false results
by counting the number of missing features. Most recently, [8] proposes efficient
verification algorithm and a novel filtering-validation-verification paradigm to
process the problem.

8 Conclusions

In this paper, we study the problem of efficient subgraph similarity all-matching.
We develop a hierarchical framework DecQ to firstly decompose the query into
a set of unit sub-queries and then combine the results of sub-queries for final
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results. We propose novel intermediate match estimation model and develop
heuristic algorithm to generate effective search order for the reduction of in-
termediate matches. We develop a merge-and-validation algorithm to combine
sub-query results by sharing the computation cost of intermediate matches. Our
experimental results demonstrate that our proposed approach outperforms the
state-of-the-art approaches by up to 4 orders of magnitude in terms of both
intermediate match number and query response time.
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