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Abstract—Top-k pairs queries have received significant at-
tention by the research community. k-closest pairs queries, k-
furthest pairs queries and their variants are among the most
well studied special cases of the top-k pairs queries. In this
paper, we present the first approach to answer a broad class
of top-k pairs queries over sliding windows. Our framework
handles multiple top-k pairs queries and each query is allowed
to use a different scoring function, a different value of k and
a different size of the sliding window. Although the number of
possible pairs in the sliding window is quadratic to the number of
objects N in the sliding window, we efficiently answer the top-k
pairs query by maintaining a small subset of pairs called K-
skyband which is expected to consist of O(K log(N/K)) pairs.
For all the queries that use the same scoring function, we need to
maintain only one K-skyband. We present efficient techniques for
the K-skyband maintenance and query answering. We conduct
a detailed complexity analysis and show that the expected cost
of our approach is reasonably close to the lower bound cost. We
experimentally verify this by comparing our approach with a
specially designed supreme algorithm that assumes the existence
of an oracle and meets the lower bound cost.

I. INTRODUCTION

Given a scoring function s(oi, oj) that computes the score

of a pair of objects (oi, oj), a top-k pairs query returns k pairs

with the smallest scores among all possible pairs of objects. k
closest pairs queries, k furthest pairs queries and their variants

are some well studied examples of top-k pairs queries that rank

the pairs on distance functions. Due to the importance of the

top-k pairs queries, numerous algorithms have been proposed

to answer several variants of the top-k pairs queries [1], [2],

[3], [4], [5], [6]. However, to the best of our knowledge, we

are first to propose a framework to efficiently answer a broad

class of top-k pairs queries over sliding windows.

Top-k pairs queries over sliding windows have many inter-

esting applications in different areas such as wireless sensor

network, stock market, traffic monitoring and internet applica-

tions etc. For instance, top-k pairs queries can be used for pair-

trading [7]. Pair-trading is a market neutral strategy according

to which two correlated stocks that follow same day-to-day

price movement (e.g., Coca-Cola and Pepsi) may be used to

earn profit when the correlation between them weakens, i.e.,

one stock goes up and the other goes down. The profit can

be earned by buying the underperforming stock and selling it
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when the divergence between the two stocks returns to normal.

A top-k pairs query can be issued to obtain the pairs of stocks

that are correlated (e.g., they belong to the same business

sector and have similar fundamentals such as market caps,

dividends etc.) and display different trends. Pair-trading can be

profitable only if the trader is the first one to capitalize on the

opportunity [7]. Hence, the trader may want to continuously

monitor the top-k pairs from the most recent data (e.g., a

sliding window containing most recent n items).

Consider another example of an online auction website. A

user may be interested in finding the pairs of products that have

similar specifications but are sold at very different prices (i.e.,

different final bids). Such pairs may be used to understand the

users behavior and market trends, e.g., suitable bidding time

for buyers and suitable bidding closing time for sellers etc.

An analyst or a user may issue the following query to obtain

top-k pairs of such products sold during last 7 days.

Select a.id, b.id from auction a, auction b

where a.id < b.id

order by dist(a.spec,b.spec) - |a.bid - b.bid|

limit k

window [7 days]

Here dist(a.spec, b.spec) computes the distance (or differ-

ence) between their specifications and |a.bid− b.bid| denotes

the absolute difference between the final bids they receive.

Note that the query prefers the pairs of products that have

small difference between their specifications but have large dif-

ference between their selling prices. The condition a.id < b.id
ensures that a pair (a, b) is not repeated as (b, a).

While the above example shows a simple scoring function,

in real-world applications, the users may specify a more

sophisticated scoring function. Our framework allows the users

to define arbitrarily complex scoring functions. A query that

retrieves top-k pairs among the most recent n data items (i.e.,

sliding window of size n) and uses the scoring function s is

denoted as Q(k,n,s).

A. Contributions

Our framework has following features.

Unified framework. To the best of our knowledge, we are

the first to study top-k pairs queries over sliding windows.

We present a unified framework that efficiently solves the



top-k pairs queries involving any arbitrarily complex scoring

function. In our framework, the server maintains N most

recent objects where N indicates the size of the largest sliding

window any query is allowed to use. Each object has D
attributes and the users may define any scoring function that

uses d ≤ D of these attributes to compute the scores. Our

framework handles multiple top-k pairs queries where each

query is allowed to use a different scoring function, a different

size of sliding window n ≤ N and a different value of k.
Intuitively, it may be possible to improve the performance

if the scoring functions satisfy certain properties. We propose

optimizations to significantly enhance the performance for a

broad class of scoring functions called global scoring func-

tions [1]. We remark that k-closest pairs queries, k-furthest

pairs queries and their variants are among many of the popular

queries that use the global scoring functions.
Low storage requirement. Our system uses O(ND) space to

maintain the most recent N objects. The system may receive

different queries (issued by a single user or different users) and

several queries having different values of k and n may share

the same scoring function. For each unique scoring function,

our system maintains a small subset of candidate pairs called

K-skyband (to be formally introduced in Section III). All the

queries that use this scoring function are answered using only

the pairs in the K-skyband. We show that the expected size of

the K-skyband is O(K log(N/K)) where K is the maximum

value of k of the queries that use this scoring function and

N is the size of the largest sliding window any query is

allowed to use. Hence, in addition to O(ND) memory space,

our system uses O(K log(N/K)) memory for each unique

scoring function. Note that the total number of possible pairs

is O(N2) and O(K log(N/K)) is much smaller. Later, we

show that O(ND) is the lower bound storage requirement (see

Theorem 4).
Efficient skyband maintenance. As the new objects arrive

and the old objects expire, the skyband is needed to be

maintained. Based on a novel concept of K-staircase, we

present efficient techniques to maintain the K-skyband. We

show that O(N) is a lower bound cost for maintaining

the K-skyband for arbitrarily complex scoring functions or

when the system is unaware of the properties of the scoring

functions. For this case, the expected cost of our algorithm is

O(N · (log(log N)+ log K)) which is reasonably close to the

lower bound cost. Note that, in practice, K is usually small

(e.g., less than 1000) and log(log N) is less than 2 even for

a very large value of N (e.g., N = 1099).
Efficient query answering. We propose efficient techniques

to answer the top-k pairs queries using the K-skyband. Given

a K-skyband, the complexity of our technique to answer a top-

k pairs query is O(log|SKB| + k) in the worst case where

|SKB| is the size of the K-skyband. The expected cost of

our technique is O(log(log n) + log K + k) where n is the

size of the sliding window used by the query and K is the

largest value of k any query may use. Note that the lower

bound cost for query answering is O(k) and the expected cost

of our algorithm is reasonably close.
Extensive evaluation and analysis. As discussed above, we

conduct a detailed complexity analysis to evaluate our algo-

rithms and demonstrate that the cost of our proposed approach

is reasonably close to the lower bound cost. To experimentally

verify this, we design an algorithm called supreme algorithm

that assumes the existence of an oracle that can conduct

certain calculations without requiring any computation time.

The usage of oracle allows the supreme algorithm to meet the

lower bound. Our extensive experiments on real and synthetic

data demonstrate that our algorithm performs reasonably well

as compared to the supreme algorithm and is more than three

orders of magnitude faster than a naı̈ve algorithm.

II. BACKGROUND INFORMATION

A. Related Work

1) Top-k Query Processing: Given a set of objects and

a user defined scoring function, a top-k query retrieve the

k objects with the smallest scores. The problem has been

extensively studied [8], [9], [10]. Fagin’s algorithm (FA) [9],

threshold algorithm (TA) (independently proposed in [9], [10],

[11]) and no-random access (NRA) [9] propose some of the

top-k processing algorithms that combine multiple ranked lists

and return the top-k objects.

2) Data Stream Processing: Processing the top-k queries

and k nearest neighbor queries [8], [12], [13] on the data

stream has been extensively studied. Mouratidis et al. [8]

propose an efficient technique to compute top-k queries over

sliding windows. They make an interesting observation that

a top-k query can be answered from a small subset of the

objects called k-skyband [14]. Our algorithm is similar in

the sense that we also maintain the K-skyband to answer the

top-k pairs queries. However, we use a single K-skyband to

answer multiple queries having different values of k ≤ K
and different sizes of the sliding windows. Also, the previous

techniques [8], [12] to maintain K-skyband are not applicable

to our problem because the techniques rely on the fact that

the newly arrived objects cannot be dominated by any of

the existing objects. Hence, these techniques unconditionally

include the newly arrived objects in the K-skyband. On the

other hand, in our problem, the newly formed pairs may or

may not be dominated by the existing pairs, which make the

request of online maintenance technically more challenging.

3) Top-k Pairs Queries Processing: The database commu-

nity has devoted significant research attention to the processing

of k-closest pairs queries[2], [3], [5] and their variants [15],

[16], [6]. All of the above mentioned techniques are applicable

only to the k-closest pairs queries or their variants. Cheema

et al. [1] propose a unified framework to efficiently answer

a broad class of the top-k pairs queries including the queries

mentioned above. k-closest pairs queries on moving objects

are studied in [17], [15]. However, the extension of these

techniques to answer k-closest (or top-k) pairs queries over

sliding windows is either non-trivial or inefficient.

B. Preliminaries

Sliding windows. Consider a stream of objects. For a fixed

number N , a count-based sliding window contains the most

recent N objects of the data stream. Similarly, for a fixed value

T , a time-based sliding window contains the objects that arrive

within last T time units. For the ease of presentation, in the



rest of the paper, we consider only the count-based windows.

However, our techniques can also be applied to answer the

top-k pairs queries over the time-based sliding windows.

Age of a pair of objects. Let o be the ith most recent object.

We say that the age of the object o is i and we denote the age

of an object as o.age. Note that a sliding window of size N
consists of every object o for which o.age ≤ N . We say that

an object o has been expired if o.age > N .

A pair of objects (oi, oj) expires if at least one of the

objects oi and oj expire. Note that the age of a pair (oi, oj) is

max(oi.age, oj .age). For the simplicity of the notations, we

denote the age of a pair p as p.age. A sliding window of size

N contains every pair p for which p.age ≤ N .

Score of a pair. Given a scoring function s(·, ·), the score of

a pair (oi, oj) is s(oi, oj). For the simplicity of notations, the

score of a pair p is denoted as p.score.

Top-k pairs query. A top-k pairs query Q(k,n,s) takes three

parameters k, n and s and considers a set of pairs P that

consists of every pair x for which x.age ≤ n. The query

Q(k,n,s) returns an answer set from P that consists of k pairs

such that for every pair p in the answer set and for any other

pair p′ ∈ P , p.score ≤ p′.score (the scores are computed

using the scoring function s).

Snapshot vs continuous queries. Note that the set of objects

in the sliding window changes dynamically as the new objects

arrive and the old objects expire from the sliding window.

Hence, some users may be interested in continuous update

of the results. In contrast, some users may only be interested

in retrieving the top-k pairs from the current sliding window.

The queries that require continuous updates of the results are

called continuous queries and the queries that compute the

results only once are called snapshot queries.

III. SOLUTION OVERVIEW

Before we present our framework, we revisit the concept

of K-skyband [14]. Then, we prove that K-skyband is the

minimal set of pairs required to be maintained in order to

answer top-k pairs queries.

K-Skyband. Let x and y be two points in d dimensional

space. For any point x, x[i] denotes the value of x in

ith dimension. A point x dominates a point y if for every

dimension i, x[i] ≤ y[i] and for at least one dimension j,

x[j] < y[j]. Given a set of points P , a K-skyband consists of

every point x ∈ P that is dominated by at most (K−1) other

points of P .
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Fig. 1. K-skyband (K=2)

Consider the example of Fig. 1 that shows six points p1 to

p6 in a two-dimensional space. The point p6 is dominated by

two points p3 and p4. Hence, the K-skyband (K=2) does not

contain the point p6. The 2-skyband consists of the points p1,

p2, p3, p4 and p5 because each of these points is dominated

by at most one other point.

Given a pair of objects p = (oi, oj) and a scoring function

s, the pair can be mapped to a two dimensional age-score

space where score is p.score = s(oi, oj) and age is p.age =
max(oi.age, oj .age). Fig. 1 shows six pairs of objects shown

in the age-score space.

Theorem 1: Let P be the set of all possible pairs of most

recent N objects and each pair be mapped to the age-score

space using a scoring function s1. Let SKB(K,s1) be the K-

skyband of P in the age-score space. Every top-k pairs query

Q(k,n,s1) can be answered using the pairs in SKB(K,s1) if

k ≤ K and n ≤ N .

Proof: It is sufficient to show that a pair p′ /∈ SKB(K,s1)

cannot be among the top-k pairs of any query Q(k,n,s1). Since

p′ is not in the K-skyband, it implies that there are at least K
other pairs such that for each such pair p, p.score ≤ p′.score
and p.age ≤ p′.age. Hence, for any sliding window of size

n ≤ N that contains p′, there exist at least K other pairs that

are in the sliding window and have scores at most equal to the

score of p′. Hence, such top-k pairs query can be answered

without considering p′.
Consider the example of Fig. 1. Any top-k pairs query

Q(k,n,s) can be answered by considering only the pairs p1
to p5 where k ≤ (K = 2), n ≤ (N = 10) and s is the

scoring function used to map the pairs to the age-score space.

The next theorem shows that the K-skyband is a minimal set

of pairs required to be maintained in order to guarantee the

correctness.

Theorem 2: Let SKB(K,s1) be the K-skyband as defined

in Theorem 1. For any algorithm that does not maintain a pair

p ∈ SKB(K,s1), there exists a query Q(k,n,s1) that cannot be

answered correctly.

Proof: Consider a query Q(K,p.age,s1) (i.e., k = K and

n = p.age). Since p is a pair in the K-skyband, there exist at

most (K − 1) other pairs with age at most equal to p.age and

scores smaller than p.score. In other words, there are at most

(K − 1) pairs in the sliding window of size n = p.age that

have scores smaller than p.score. Hence, p must be among

the top-K pairs of the query1.

A. Expected size of K-skyband

Existing analysis to estimate the expected size of K-

skyband (e.g., [18]) assumes that i) the values of objects in

one dimension are independent of their values in the other

dimensions and ii) the values of the objects on each dimension

are unique. Unfortunately, the existing analysis cannot be

directly applied to our problem because the second assumption

does not hold in our problem settings. This is because many

pairs have the same value on the age dimension (i.e., have the

same age). Nevertheless, we conduct an analysis and show

1Note that the proof assumes that there does not exist any other pair p′

for which p′.age = p.age and p′.score = p.score. We remark that even if
such pairs exist, we can easily handle this case by assuming that the score of
one pair is slightly larger (larger by an infinitely small value) than the other
based on some criteria such as the IDs of the objects in the pairs.



that the expected size of the K-skyband we need to maintain

is O(K log(N/K)).
We assume that the scores of pairs are independent of their

ages. This is a reasonable assumption for the scoring functions

that do not use ages of the objects to determine the scores of

pairs.

Lemma 1: Let p be a pair with age x. Assuming that the

scores of pairs are independent of their ages, the probability

that p is in K-skyband is min(K/x2, 1).
Proof: Consider an object oi and assume that oi.age = x.

Every pair (oi, oj) for which oj .age < oi.age has age equal

to oi.age. Hence, the number of pairs with age equal to x is

(x − 1). Also, for any pair p with p.age = x, the number of

pairs that have age less than x is 1+2+· · ·+(x−2) = O(x2).
Let p′ be one of these O(x2) pairs. Note that the pair p is

dominated by p′ iff p′.score ≤ p.score. Hence, the probability

that a pair with age x is not dominated by any other pair in

the sliding window is 1/x2 assuming that every pair is equally

probable to have the smallest score. Similarly, the probability

that a pair with age x is dominated by at most K other pairs

is min(K/x2, 1).
Theorem 3: Assuming that the scores of pairs are indepen-

dent to the ages of the pairs, the expected size of the K-

skyband is O(K log(N/K)).
Proof: From Lemma 1, the probability that a pair p with

age x is dominated by at most K other pairs is min(K/x2, 1).
As stated in the proof of Lemma 1, the number of pairs with

age equal to x is (x−1). Hence, the expected number of pairs

that have age equal to x and are in K-skyband is (x − 1) ×
min(K/x2, 1). The expected total number of pairs that are

in K-skyband is approximately
∑N

x=2 x ·min(K/x2, 1). Let

y = ⌊
√
K⌋. This expression can be simplified as follows.

N∑

x=2

min(
K

x
, x) ≈

y∑

x=2

x+
N∑

x=y+1

K

x

≈ K +K
N∑

x=y+1

1

x

≈ K +K(HN −Hy)

where HN =
∑N

x=1 1/x and is called N th harmonic number.

For the case when y = 1 (i.e., K < 4) , the term
∑y

x=2 x
is considered zero and note that this does not affect our

complexity analysis.

It is well known that HN grows almost as fast as natural

log of N. More precisely, HN is known to be (e.g., see [19])

approximately equal to ln(N)+γ where γ ≈ 0.577 is Euler’s

constant. Hence, HN and Hy can be approximated to ln(N)
and ln(y), respectively . So, the expected number of pairs in

K-skyband is O(K · (ln(N)− ln(
√
K)) or O(K log(N/K)).

B. Framework

In real world scenarios, different users have different re-

quirements. Therefore, different users may choose different

scoring functions each involving a different set of attributes.

Similarly, different users (or even a single user) may issue

the top-k pairs queries with different values of k and n. We

present a framework that aims to handle all these different

queries efficiently. Our framework consists of the following

three modules:

1. Stream Manager. Assume that each object has D attributes

and every query issued on the system can use d ≤ D of

these attributes in its scoring function. Moreover, suppose that

N is the maximum size of the sliding window any query is

allowed to use. The stream manager maintains (D + 1) lists

each consisting of N elements. For every 0 < i ≤ D, the

i-th list stores the objects sorted in ascending order of i-th
attribute values of the objects. The (D+1)-th list is sorted in

ascending order of the ages of the objects. Clearly, the storage

requirement is O(ND). The theorem below shows that this is

the minimum amount of storage required to answer the top-k
pairs queries.

Theorem 4: To answer a top-k pairs query over the sliding

window of size N , the lower bound on storage requirement is

O(ND) where D is the number of attributes involved in the

scoring function.

Proof: Assume that an object o is deleted such that

o.age ≤ N . Since the values of the newly arrived objects are

unknown, a new object o′ may arrive in the stream such that

s(o, o′) is minimum (i.e., the pair (o, o′) is one of the top-k
pairs). If the object o is deleted from the stream, this pair will

not be considered and the system will miss the correct answer.

Hence, the object o must not be deleted. Moreover, the system

must store all D attribute values of each object because the

scoring function s may involve d ≤ D attributes. Hence, the

lower bound on the storage requirement is O(ND).
2. Skyband Maintenance Module. Let S = {s1, · · · , sm} be

the set of unique scoring functions used by different queries.

For each scoring function si, the skyband maintenance module

maintains a set of skyband pairs SKB(Ki,si) where Ki is

the maximum value of k for any query that uses the scoring

function si (see Fig. 2).

Stream 

Manager 

{o1,�,oN}

Skyband1

for K1, s1

Data Stream Skyband2

for K2, s2

Skybandm

for  Km, sm

Queries 

using s1    

with k≤K1

Queries 

using s2  

with k≤K2

Queries 

using sm 

with k≤Km

New scoring 

functions

Fig. 2. Framework

If a user issues a query Q(k,n,si) that uses a scoring

function si not being used by any of the existing queries in

the system, the skyband maintenance module creates a new

skyband SKB(Ki,si) for this new scoring function. Upon

receiving the object updates and new queries, the skyband

maintenance module updates all the skybands in the system.

3. Query Answering Module. The query answering module

is responsible for answering the snapshot or continuous top-k
pairs queries. A query Q(k,n,si) is answered using the skyband

SKB(Ki,si).

In Section IV, we present the details of the query answering



module. The details of the skyband maintenance module is

presented in Section V. The techniques for stream manager

are simple and are omitted due to the space limitations.

IV. QUERY ANSWERING MODULE

In this section, we present our query answering technique.

As discussed earlier, to answer a query Q(k,n,si), the query

answering module uses the skyband SKB(Ki,si). For the

ease of presentation, we denote Ki as K and SKB(Ki,si)

as skyband in this section.

A. Snapshot Top-k Pairs Queries

A straight forward approach to answer a top-k query is

to scan the list of skyband pairs in increasing order of their

scores. Any pair p for which p.age > n is ignored. The

algorithm stops when k pairs with age at most equal to n
are retrieved. These k pairs are reported. Note that the cost of

this algorithm is O(|SKB|) in the worst case where |SKB|
is the size of the K-skyband. Next, we present an approach

that answers the top-k pairs query in O(log(|SKB|) + k) in

the worst case.

To enable efficient computation of the queries, the skyband

maintenance module indexes all the K-skyband pairs in a

priority search tree (PST) [20]. Algorithm 1 shows the PST

construction algorithm and Fig. 4 shows a PST constructed

using the pairs in 2-skyband of Fig. 3. The pairs are labeled

such that the age of a pair pi is i. The number inside each

node corresponds to its score. For each node, PST also stores

the median value used to split the left and right subtrees (see

line 3 of Algorithm 1). For example, the age of root node p1
is 1, its score is 6 and the left and right subtrees are decided

based on the median score 4 (shown under the dotted line).

Algorithm 1 PrioritySearchTree(P )

1: if P is empty then return NULL

2: Choose an element p with smallest age among P
3: median = median of score values of elements in P
4: PR = {elements in P with score greater than median}
5: PL = P − PR − {p}
6: p.right-subtree = PrioritySearchTree(PR)

7: p.left-subtree = PrioritySearchTree(PL)

8: return p

Before we describe the properties of PST, we define a few

terms. Ancestor of a node is its parent or (recursively) the

parent of its ancestor. For example, in Fig. 4, the nodes p1
and p2 are the ancestors of the node p3. Two nodes are called

cousins to each other if they have a common ancestor and

they do not have a child-ancestor relationship with each other.

For example, the nodes p4 and p6 are cousins to each other

because they have a common ancestor p1. A node x is called

a left cousin of a node y if they share a common ancestor e
and x is in the left subtree of e and y is in the right subtree

of e. Right cousins are defined similarly. In Fig. 4, the node

p6 is a left cousin of the node p4 and the node p4 is a right

cousin of the node p6.

The priority search tree has the following properties: 1) the

age of a node cannot be smaller than the age of its ancestor

(e.g., the age of p3 is larger than the ages of its ancestors
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p1 and p2), 2) the score of a node is always greater than the

scores of its left cousins and is always smaller than the scores

of its right cousins (e.g., the score of p6 is greater than the

scores of its left cousins (p7 and p8) and is smaller than the

scores of its right cousins (p2, p3 and p4). Note that the score

of a child may be smaller or larger than (or even equal to) the

score of its ancestor.

We utilize the above mentioned properties to efficiently

answer a top-k pairs query Q(k,n,s). Algorithm 2 shows

our query processing algorithm that traverses the PST in an

order very similar to the post-order traversal. In a post-order

traversal, for any node e, its left subtree is visited before its

right subtree and the node e is visited in the end. Our algorithm

traverses the PST in the post-order except the following two

differences: i) it only considers the nodes that lie in the sliding

window (see lines 9 and 10) and ii) the algorithm terminates

when k objects are visited in the post-order (line 3). It can

be proved that the top-k pairs are among the pairs that are

either visited or are among the marked nodes in the stack S
(line 11). Finally, the set of candidates is scanned and k pairs

with the smallest scores are obtained (line 12).

Algorithm 2 TopPairs(PST,k, n)

1: visitedSet = φ
2: if root.age ≤ n then insert root in a stack S
3: while visitedSet.size < k AND S is not empty do

4: e = top element of S
5: if e is a leaf OR is marked then

6: insert e in visitedSet and remove from S
7: else

8: mark e
9: if e.rightChild.age≤ n then push e.rightChild in S

10: if e.leftChild.age ≤ n then push e.leftChild in S
11: candidates = visitedSet ∪ marked nodes in stack S
12: visit candidates to obtain k pairs with smallest scores

Example 1: Consider the 2-skyband shown in Fig. 3 and the

PST shown in Fig. 4. Consider a query that wants to retrieve

top-2 pairs in the sliding window of size 7. The post-order

traversal returns two nodes p7 and p6 and the stack contains

the nodes p1, p5 and p2. The nodes p1 and p5 are the marked

nodes and p2 is not a marked node. The top-2 pairs are p7
and p5 which are selected from the candidates (p7, p6, p1 and

p5). Note that our algorithm does not consider the node p8
because it does not lie in the sliding window.

Proof of correctness. The algorithm returns k nodes in post-

order traversal. Let x be the node with the largest score among

these k nodes. Any other node y that has score smaller than



x.score must satisfy one of the followings: 1) y is one of the

left cousins of x; 2) y is a child of x or 3) y is an ancestor

of x. Since our algorithm visits the nodes in post-order, any

node that satisfies the condition 1 or 2 is either visited by

our algorithm or is not visited because it does not lie in the

sliding window (its age is greater than n). Hence, any node

that lies in the sliding window and may possibly have score

smaller than the score of x is one of its ancestors. Note that

the stack contains the unvisited ancestors of all the visited

nodes. Moreover, every ancestor of a visited node is a marked

node in the stack (see line 8) and our algorithm considers all

the marked nodes of the stack (see line 11 of Algorithm 2).

Hence, our algorithm correctly determines the top-k pairs.

Complexity analysis. Priority search tree is always a balanced

tree [20] because the left subtree and right subtree of a node are

determined based on the median score. Therefore, the height

of the tree in the worst case is O(log|SKB|) where |SKB|
is the number of pairs stored in PST. Hence, the number of

candidates at line 11 of Algorithm 2 is O(log|SKB| + k).
This is because the number of elements in stack at any time is

bounded by the height of the tree. To obtain the top-k pairs,

we use the the median of medians selection algorithm [21] to

obtain the k pairs in time linear to the number of candidates.

Hence the complexity of the algorithm is O(log|SKB| + k)
in the worst case.

As shown earlier, the expected size of K-skyband for a

sliding window of size N is O(K · log(N/K)) (Theorem 3).

Note that our algorithm does not access a node e and its

children if e does not lie in the sliding window of size n.

This means that we essentially consider only the pairs in

K-skyband that lie in the sliding window of size n. Hence,

the expected cost is O(log|SKBn| + k) where |SKBn| is

the size of K-skyband for the sliding window of size n.

Hence, the expected cost is O(log(K · log (n/K)) + k) =
O(log(log n) + log K + k). We remark that in the worst

case the expected cost is O(log(log N)+ log K+k) because

the maximum size of the stack in the worst case may still

be O(log|SKB|) even though we ignore the nodes with age

greater than n. This is because the PST is a balanced tree

with respect to the overall data set and may not necessarily

be balanced for a subset of the data.

B. Continuous Top-k Pairs Queries

The initial results of a continuous top-k pairs query are

computed using the algorithm presented earlier for computing

the snapshot queries. The results of a query Q(k,n,s) may

change if one of the top-k pairs expires or if a new pair has

a score smaller than the score of one of the existing top-k
pairs. We first handle the expired pairs and then handle the

new pairs.

Handling pairs expired from K-skyband. For each query

Q(k,n,s), we maintain two lists of top-k pairs one sorted on

their ages and the other sorted on their scores. We use the list

of top-k pairs that is sorted on the ages to determine when a

pair expires. Let p be an expired pair. We delete p from both

of the sorted lists.

Handling new pairs in K-skyband. The skyband mainte-

nance module provides a list of new pairs added to the K-

skyband. The list is provided sorted in ascending order of

the scores of the new pairs. We scan the list in ascending

order and every pair p is added to the answer of the query if

p.score < scorek where scorek is the largest score among the

scores of the top-k pairs. Whenever such a pair p is added to

the answer, the pair with the largest score in the top-k pairs is

deleted and the scorek is updated accordingly. The algorithm

stops scanning the sorted list when p.score ≥ scorek. This is

because all the remaining pairs are guaranteed to have scores

greater than scorek and are not needed to be considered.

Note that after handling the expired pairs and the newly

arrived pairs, the answer set of a query may contain less than

k pairs (e.g., when the number of deleted pairs is greater than

the number of pairs added in the answer set). In such cases,

we call Algorithm 2 to compute the top-k pairs from scratch

in O(log|SKB|+ k).
Complexity analysis. In the worst case, the complexity of

updating the results is O(log|SKB| + k) because we call

Algorithm 2 when the number of deleted pairs is greater than

the number of inserted pairs. This worst case may happen only

when one or more pairs are deleted from the top-k pairs. We

analyse the probability of this case to happen.

For any object oi, the number of pairs containing oi in the

sliding window of size n is O(n). The total number of possible

pairs in sliding window is O(n2). The probability that any of

the pairs related to an object oi has the smallest score among

all possible pairs is n/n2 = 1/n. The probability that any of

the pairs related to the object oi is one of the top-k pairs is k/n
. Hence, the probability that any of the expired pairs is among

the top-k pairs is k/n. Note that this probability is low since

k is usually much smaller than n. Therefore, the probability

of the worst case to happen is k/n and the expected amortized

complexity of updating the results is O(k/n(log|SKB|+ k))
per update.

V. SKYBAND MAINTENANCE MODULE

A. Handling arbitrarily complex scoring functions

In this section, we present the details of skyband mainte-

nance module (SMM) for arbitrarily complex scoring func-

tions. The K-skyband needs to be updated when an object

expires or when a new object arrives. Below, we describe how

to handle both of the cases.

Handling when an object expires. Handling an expired object

is easy because we only need to delete the relevant pairs from

the K-skyband. Note that the age of an expired object oi is the

largest among all the objects in the sliding window. Moreover,

every pair that is to be deleted has age equal to oi.age. We

keep a list of K-skyband pairs sorted on their ages and for

each pair in the list we store a pointer to the relevant node

in the PST. We use this list to delete every pair p for which

p.age = oi.age.

Handling when an object arrives. When a new object oi
arrives, we may need to update the K-skyband. For arbitrarily

complex scoring functions, we need to consider all valid pairs

of oi with the existing objects in the sliding window. The

number of pairs to be considered in this case is O(N). Note

that O(N) is the lower bound cost for handling a new object



because, for arbitrarily complex scoring functions, if we do not

consider a pair (oi, oj) then we may miss the correct result

because (oi, oj) may be one of the top-k pairs.

Algorithm 3 Handling new object (o)

1: Let S be the pairs in K-skyband sorted on scores

2: for each new pair p of the object o do

3: compute the score and age of p
4: if p is not dominated by K-skyband then

5: insert p in S in sorted order

6: UpdateSkybandAndStaircase(S)/* Algorithm 4 */

Algorithm 3 shows the details of handling a newly arrived

object o. We say that a pair p is dominated by a K-skyband

if there are at least K pairs in the K-skyband that dominate

p. For each new pair p, we first need to check whether it

is dominated by the existing K-skyband or not (line 4). The

pairs that are not dominated by the K-skyband are added to the

existing K-skyband which is kept sorted in ascending order of

the scores of pairs (line 5). After all the pairs are considered,

the algorithm updates the K-skyband (line 6).

As mentioned earlier, for each new pair p, we need to check

whether it is dominated by the existing K-skyband or not

(line 4). A naı̈ve approach to do so is to consider all the pairs

in the existing K-skyband and count the number of pairs that

dominate p. If the number of dominating pairs is less than K
then the pair p is not dominated by the K-skyband. Note that

the complexity of this approach is linear to the size of the

K-skyband, i.e., O(|SKB|). Next, we present an approach

that checks whether a pair p is dominated by the K-skyband

or not in O(log(|SKB|). First we introduce the concept of

K-staircase.
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Fig. 5. 2-staircase

1) K-staircase: Given a set of points P , the K-staircase

is a set of points SCase such that if a point p is dominated

by any point x ∈ SCase then there are at least K points in

P that dominate p. Moreover, for any point p′, if there does

not exist any point x ∈ SCase that dominates p′ then there

are at most K − 1 points in P that dominate p. Note that the

points in the K-staircase can be used to check whether a point

is dominated by the K-skyband or not. More specifically, a

point p is dominated by the K-skyband if and only if it is

dominated by at least one point of the K-staircase.

Fig. 5 shows a set of points P = {p1, · · · , p6}. The K-

staircase (K = 2) is also shown which consists of the points

p1, p5, s1 and s2 (shown as stars). Note that the points in

the staircase are not necessarily the points in the set P (see

s1 and s2). Before we show our algorithm to compute the

K-staircase, we present the intuition.

Consider a point p3 that is in K-skyband (K = 2) as shown

in Fig. 5. Among the points that have scores at most equal to

p3.score, we identify a point that has Kth smallest age. In

Fig. 5, the points that have scores at most equal to p3.score are

p3, p4 and p5 and the point p4 has the Kth (K = 2) smallest

age among these points. Based on p3 and p4, we determine

a K-staircase point s1 such that s1.score = p3.score and

s1.age = p4.age. Please note that such a point s1 is dominated

by at least K points of P . Hence, any point that is dominated

by s1 is dominated by at least K points of P . Moreover, any

point that dominates s1 is dominated by at most K− 1 points

of P . To construct K-staircase, we repeat the above procedure

for every point of the K-skyband and determine a relevant K-

staircase point. Below, we present the details.

2) Updating K-skyband and K-staircase: Recall that in

Algorithm 3, we need to update the K-skyband and K-

staircase after all the new pairs are added to the existing K-

skyband (see line 6). In this section, we present our technique

to efficiently update the K-skyband and K-staircase. In [22],

the authors presented an algorithm to construct the K-skyband

from a set of two-dimensional points P . Since our algorithm

to construct the K-staircase has a similar structure, we embed

the two algorithms to construct both the K-skyband and K-

staircase in parallel. If the points in the dataset P are sorted in

the ascending order of their scores, the algorithm constructs

the K-skyband and K-staircase in O(|P | · log K) where |P |
is the number of points in P .

Algorithm 4 UpdateSkybandAndStaircase(P , K)

1: Initialize a max-heap H with key set to age of elements

2: Let P be sorted in ascending order of scores

3: for each pair p in P do

4: if |H| < K then

5: add p to SKBK

6: insert p in H
7: if |H| = K then

8: insert (p.score,H.top().age) into K-staircase

9: else

10: if p.age ≥ H.top.age then

11: discard p
12: else

13: add p to SKBK

14: insert p in H
15: H.pop()/* delete top element of H */

16: insert (p.score,H.top().age) into K-staircase

17: output SKBK and K-staircase.

Algorithm 4 presents the details. The points in P are

accessed in ascending order of their scores (if two points have

the same score, the point with the smaller age is accessed

first). An accessed point p cannot be the K-skyband point if

the algorithm has accessed at least K other points with age

at most equal to p.age (line 10). This is because all of these

K points have scores at most equal to p.score (recall that the

points are being accessed in ascending order of scores).

If a point p is in K-skyband then we identify a K-staircase

point x such that x.score = p.score and x.age = H.top().age
where H.top().age is the maximum age of a pair in the heap



(line 16). Note that the heap stores K smallest ages and

H.top().age corresponds to the Kth smallest age among the

points that have been accessed (i.e., have scores smaller than

p.score).

Checking dominance using K-staircase. We say that a point

p is dominated by the K-staircase SCase if and only if there

exists a point x ∈ SCase that dominates the point p. As stated

earlier, a point p is dominated by K-skyband if and only if p
is dominated by the K-staircase. Next, we show that checking

whether a point p is dominated by the K-staircase can be done

in O(log|SKB|).
Note that the points of the K-staircase returned by Algo-

rithm 4 are sorted on their scores. To check whether a point p
is dominated by the K-staircase or not, we do a binary search

on the points in the K-staircase and retrieve a point x that

has score smaller than p.score and the point next to x in the

K-staircase has score greater than p.score. It can be proved

that if p is not dominated by x then the point is not dominated

by any point in the K-staircase. This is because all the points

of the K-staircase that have scores smaller than x have age

greater than x.age (see the K-staircase of Fig. 5). Since the

size of K-staircase is bounded by the size of K-skyband,

checking whether a point is dominated by K-staircase takes

O(log|SKB|).
3) Complexity analysis: The following lemma is important

in analysing the complexity.

Lemma 2: When a new object arrives, the expected number

of new pairs that are not dominated by the existing K-skyband

is O(K).
Proof: For a newly arrived object onew, there are O(N)

new pairs in the sliding window. Let px be a new pair with

age equal to x. The set of new pairs is {p2, p3, · · · , pN}. From

Lemma 1, a pair with age x has probability min(K/x2, 1) not

to be dominated by K-skyband. Hence,
∑N

x=2 min(K/x2, 1)
gives the number of new pairs that are not dominated by the

K-skyband. The summation can be approximated to
√
K+K ·∑N

x=
√
K+1 1/x

2. This is reduced to
√
K +K ·C where C is

a constant smaller than π2/6 (see Basel’s problem2). Hence,

the number of such pairs is O(K).
Cost of handling a new object. We analyse the complexity

of Algorithm 3.

lines 2 to 4: For a newly arrived object, Algorithm 3

considers O(N) new pairs (line 2). For each of these pairs, the

algorithm checks whether it is dominated by the K-staircase

or not. Hence, the total cost of these lines is O(N ·log|SKB|).
line 5: According to Lemma 2, the number of pairs that are

not dominated by the K-skyband is O(K). These O(K) pairs

are inserted in the K-skyband set S. The cost of each such

operation is logarithmic to the size of S. Hence, the cost of

line 5 is O(K · log(|SKB| +K)) where O(|SKB| +K) is

the expected size of S after all K pairs are added.

line 6: At line 6, Algorithm 4 is called. The cost of

Algorithm 4 to compute the K-skyband and the K-staircase

for a sorted dataset of size |S| is O(|S| · logK) [22]. Since

the size of S is O(|SKB| + K), the cost of computing the

K-skyband and the K-staircase (line 6 of Algorithm 3) is

2http://en.wikipedia.org/wiki/Basel problem

O((|SKB| + K) · logK). After the K-skyband is updated,

the new pairs inserted in the K-skyband are inserted in the

priority search tree (PST) and the pairs that are not among the

K-skyband pairs anymore are deleted from the PST. Since the

size of the K-skyband is expected to remain the same before

and after the update, the number of new pairs is equal to the

number of pairs deleted from the PST, i.e., O(K) according

to Lemma 2. The cost of inserting and deleting these pairs

from the PST is O(K · log|SKB|).
Overall cost of Algorithm 3: The above analysis demon-

strates that the overall complexity of Algorithm 3 is O(N ·
log|SKB| +K · log(|SKB| +K) + (|SKB| +K) · logK).
Since |SKB| is larger than K and N is larger than |SKB|
if K ≪ N (which is usually the case), the overall complexity

of Algorithm 3 is O(N · log(|SKB|)).
Cost of handling an expired object. When an object oi
expires, the number of pairs that are to be deleted from the K-

skyband is at most K. This is because the K-skyband contains

at most K pairs that have equal age (the K pairs with the

smallest scores). Recall that each deletion and insertion on

PST takes O(log|SKB|). In the worst case, K pairs are to be

deleted and the worst case cost is O(K · log|SKB|).
Overall cost. Note that the cost of handling a new object

dominates the cost of handling an expired object. Hence, the

overall cost is O(N · log(|SKB|). Since the expected size of

|SKB| is O(K · log (N/K)), the overall expected complexity

is O(N · (log(log N) + log K)).

B. Optimization for certain scoring functions

In the previous subsection, we showed that the skyband can

be maintained by considering O(N) new pairs when a new

object arrives in the data stream. In this section, we show

that for a broad class of scoring functions we can reduce the

number of considered pairs. We call these scoring functions

the global scoring functions. The global scoring functions are

based on monotonic and loose monotonic functions as defined

in [1]. To make the paper self contained, we give formal

definitions of these functions.

Monotonic function. A function f is called a monotonic func-

tion if it satisfies f(x1, · · · , xn) ≤ f(y1, · · · , yn) whenever

xi ≤ yi for every 1 ≤ i ≤ n.

Loose monotonic scoring function. Let ls(., .) be a scoring

function that takes two values as parameter and returns a score.

A function ls(., .) is a loose monotonic function if for every

value xi both of the following are true: i) for a fixed xi and

every xj > xi, ls(xi, xj) either monotonically increases or

monotonically decreases as xj increases, and ii) for a fixed xi

and every xk < xi, s(xi, xk) either monotonically increases

or monotonically decreases as xk decreases.

Note that the loose monotonic scoring functions are more

general than the monotonic scoring functions, i.e., every

monotonic function is a loose monotonic function but the

converse may not be true. The absolute difference of two

values (e.g., |xi − xj |) is a loose monotonic function but not

a monotonic function. The average of two values is a loose

monotonic function as well as a monotonic function.

Global scoring function. Let d be the number of attributes

used by the scoring function. For each attribute i, the user



specifies a loose monotonic scoring function lsi(., .) that

computes the score of a pair on the attribute i. Such scoring

function is called a local scoring function and the score

lsi(a, b) of a pair (a, b) is called its local score. The users

are allowed to define a different local scoring function for

each attribute. The user defines a global scoring function

gsf that takes d local scores as parameter and returns the

final score of a pair (a, b) as gsf(ls1(a, b), · · · , lsd(a, b)).
We require that such global scoring function must be a

monotonic function. Note that the global scoring functions

are more general than the monotonic scoring functions used

by many real world applications [1]. For instance, k-closest

pairs queries, k-furthest pairs queries and their variants can

be answered by using global scoring functions (see [1] for

details).
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Fig. 6. Optimization for global scoring functions

1) Technique: Let D be the total number of attributes of

the objects. As described in Section II and shown in Fig. 6(a),

the stream manager maintains (D + 1) sorted lists (D lists

each sorted on one of the attributes and one list sorted on the

ages). The global score (i.e., final score) of a pair is computed

by combining d ≤ D local scores where the i-th local score

corresponds to the score of a pair on the i-th attribute.

For a newly arrived object o and for an attribute i, we can

incrementally retrieve the pairs of objects related to the object

o in ascending order of their i-th local scores (see [1] for

details). Fig. 6(b) shows an example where, for a newly arrived

object o1, the lists can be used to incrementally retrieve the

pairs of o1 in sorted order of the scores. We iteratively retrieve

these pairs in ascending order of scores for each attribute i
and then apply an algorithm similar to the threshold algorithm

(TA) [9] to terminate the algorithm before visiting all O(N)
new pairs of the newly arrived object.

Algorithm 5 presents the details. The algorithm accesses the

pairs in round-robin fashion from the d+1 attributes where the

(d + 1)th attribute corresponds to the age of a pair (line 4).

Each accessed pair p is mapped to age-score space and is

inserted in S if it is not dominated by the K-staircase (line 6).

Let lsi be the local score of the last retrieved pair for the

ith attribute and age be the age of the last pair retrieved for

the age attribute. Note that lsi corresponds to the smallest

possible local score of any unseen pair for the ith attribute.

Hence, gsf(ls1, · · · , lsd) is the smallest possible final score

of any unseen pair where gsf() denotes the global scoring

function. Similarly, age is the smallest possible age of any

unseen pair. Hence, we map a dummy point (see line 10) to

the age-score space with the smallest possible age and the

Algorithm 5 handling new object o)

1: S = points in K-skyband sorted on scores

2: dummy point = (0, 0)
3: while dummy point not dominated by K-staircase do

4: for i = 1 to i = d+ 1 do

5: access next best pair p of o in ascending order of ith

local score

6: if p is not dominated by K-staircase then

7: insert p in S in sorted order of scores

8: Let lsi be the score of last pair seen for ith attribute

9: Let age be the age of last pair seen from the age list

10: dummy point = (age, gsf(ls1, · · · , lsd))
11: UpdateSkybandAndStaircase(S)

smallest possible score. If this dummy point is dominated by

the K-staircase then any unseen pair will also be dominated

by the K-staircase. For this reason, we do not need to consider

remaining unseen pairs (see line 3) if the dummy pair is

dominated by the K-staircase.

2) Complexity analysis: Note that the main difference

between Algorithm 3 and Algorithm 5 is that Algorithm 3

considers O(N) new pairs when a new object arrives whereas

Algorithm 5 considers fewer pairs by using the threshold

algorithm (TA). Let M be the number of the pairs considered

by Algorithm 5. We estimate the value of M and obtaining

the overall complexity is similar to that of the Algorithm 3.

We access the pairs in round robin fashion for the d + 1
attributes. Note that the algorithm may terminate if at least K
pairs have been seen for each of these d+1 attributes. This is

because for any unseen pair there would be at least K pairs

that have both the score and age less than it. Fagin showed

that the number of elements accessed from the d + 1 lists in

such case is M = (d+ 1) ·Nd/(d+1) ·K1/(d+1) [9].

VI. EXPERIMENTS

A. Experimental settings

Real data. We use a publicly available data set3 collected from

54 sensor nodes deployed in the Intel research lab in Berkeley

between February 28th and April 5th, 2004. Each node mea-

sures environment readings such as temperature, humidity and

light. The data set consists of 2.3 million records collected

from these sensors. We use the following scoring function.

s(ox, oy) =
|ox.time−oy.time|

|ox.temp−oy.temp||ox.humidity−oy.humidity|
The scoring function prefers the pairs of sensor readings

that are taken within small duration of time and report quite

different temperature and humidity. We remark that we tried

several other inherently different scoring functions and the

experimental results demonstrated similar trends.

Synthetic data. We generate synthetic data following uniform,

correlated and anti-correlated [23] distributions and each data

set consists of 2 million objects. Let o[i] be the value of the

object o in ith dimension. For a scoring function that uses

d dimensions, we use the following four different scoring

functions.

s1(ox, oy) =
∑d

i=1 |ox[i]− oy[i]|
s2(ox, oy) = −∑d

i=1 |ox[i]− oy[i]|
3http://db.csail.mit.edu/labdata/labdata.html



s3(ox, oy) =
∏d

i=1 |ox[i]− oy[i]|
s4(ox, oy) = −∏d

i=1 |ox[i]− oy[i]|
Note that the scoring function s1 retrieves the k-closest pairs

and s2 retrieves the k-furthest pairs according to the Manhattan

distance between the pairs. Analogously, s3 and s4 retrieve

top-k similar pairs and top-k dissimilar pairs, respectively,

according to the product of the differences of the attributes.

We conducted experiments for several other scoring functions

and obtained results similar to the ones reported in this paper.

Parameter Range

Data distribution real, uniform, correlated, anticorrelated
# of attributes (d) 2, 3, 4, 5, 6
N (in thousands) 10, 50 100, 500, 1000
K 1, 5, 10, 20, 50, 100

TABLE I
EXPERIMENT PARAMETERS

Unless mentioned otherwise, for a fixed value of k and

n, we issue four queries Q(k,n,si), one for each of the four

scoring functions, and report the average query cost per object

update. The table I shows the different parameters used in our

experiments and the bold values are the default values used in

the experiments unless mentioned otherwise.

B. Evaluating Overall Cost

To the best of our knowledge, we are the first to study

the problem of top-k pairs over data stream. This problem

is inherently different from other related problems such as

k-closest pairs queries on moving objects [17], [15], static

top-k pairs queries [1] and incremental distance join [2]

etc. Although at first it may seem easy to extend previous

techniques, a careful analysis demonstrates that the extension

of these techniques to answer k-closest (or top-k) pairs queries

over sliding windows is either non-trivial or inefficient.

We evaluate our algorithm (Algorithm 3) that answers the

queries involving arbitrarily complex scoring function. Since it

uses a K-staircase to maintain the K-skyband, our algorithm is

called SCase. For an extensive evaluation of our algorithm, we

carefully design two competitors called Naı̈ve and Supreme.

Below, we present the details.

Naı̈ve Algorithm. A naı̈ve approach to answer continuous top-

k pairs query is to maintain all O(N2) pairs in sorted order

of their scores. However, this approach appeared to be too

slow. Another serious drawback is that the space complexity is

quadratic and is prohibitive for large sliding windows. There-

fore, we devised a better naı̈ve approach that uses O(KN)
space. For each newly arrived object, K pairs related to it

with the smallest scores are computed. All O(KN) pairs are

kept sorted on their scores. When an object oi expires, all the

pairs related to it are deleted. Note that the object oi may be

among the top-K pairs of an unexpired object oj . After we

delete the pairs related to oi, we need to update the top-k pairs

of every such object oj .

Supreme algorithm. We assume that there exists an oracle

that answers questions without requiring any computation

time. We use this oracle such that the supreme algorithm

meets the lower bound cost4. More specifically, for query

answering, we assume that the supreme algorithm requests

oracle to return, in sorted order of scores, only the pairs of K-

skyband that lie in the sliding window. The supreme algorithm

returns first k pairs and requests oracle to stop. Clearly, the

query answering cost of the supreme algorithm is O(k) that

meets the lower bound.

As implied by Theorem 2, every algorithm must maintain

the pairs in K-skyband for exact answering of top-k pairs

queries. To maintain K-skyband, the supreme algorithm uses

Algorithm 3 and computes only line 2 and line 3. The

remaining steps are answered by the oracle in no time. Note

that the skyband maintenance of the supreme algorithm meets

the lower bound of O(N).
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Fig. 7. Overall cost evaluation on the real data

In Fig. 7, we compare our algorithm with other algorithms

using the real sensor data set. We issue 100 top-k pairs queries

Q(k,n,s) where k ≤ K and n ≤ N are randomly chosen for

each query. Our algorithm demonstrates two to three orders of

magnitude improvement over the naı̈ve algorithm and performs

reasonably well as compared to the supreme algorithm. For

N ≥ 500, 000, the naı̈ve algorithm did not complete its

execution in 7 days and the estimated completion time was

around 2 months. Therefore, we do not show results for the

naı̈ve algorithm for the larger values of N .
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Fig. 8. Effect of K and N on synthetic data

In Fig. 8 and Fig. 9, we perform experiments on synthetic

data sets to conduct a more detailed evaluation. Since we also

want to observe the performance of the algorithms for varying

n and varying k, we decide not to randomly generate n and

k. Instead, in each experiment, we run four queries each using

a fixed value of n and k and using one of the four scoring

functions (s1, s2, s3 and s4) presented in Section VI-A. In

Fig. 8(a) and Fig. 8(b), we study the effect of K and N on

both algorithms. For each query, we set n = N (the largest

sliding window) and k = K (the largest possible value of k).

4Note that the performance of an algorithm also depends on the way it is
implemented. However, we remark that the supreme algorithm is a reasonable
benchmark to evaluate the scalability of our approach. Having said this, for a
fair evaluation, the supreme algorithm is implemented by using the code that
is a subset of the code used by our algorithm.



The results are similar to the results obtained using the real

data set.
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Fig. 9. Effect of k and n on synthetic data

In Fig. 9, we study the effect of k and n. As stated

earlier, our algorithm does not know the values of n and

k in advance hence maintains a K-skyband for most recent

N objects. In contrast, for a more strict evaluation of our

algorithm, we assume that both the naı̈ve and the supreme

algorithms know the values of n and k in advance. In effect,

the supreme algorithm maintains k-skyband (note that k ≤ K)

for most recent n objects only. The naı̈ve algorithm uses only

O(kn) memory instead of O(KN) memory. We call these

variations of the supreme and naı̈ve algorithms as supreme++

and naı̈ve++, respectively.

The results are reported in Fig. 9(a) and Fig. 9(b). In

Fig. 9(a), the naı̈ve++ algorithm performs better for k = 1
because it needs to maintain only O(n) pairs in total whereas

we need to maintain 20-skyband (K = 20) for most recent

N = 10, 000 objects.

Fig. 9(b) shows that our algorithm outperforms naı̈ve++

algorithm even for n = 1000 although it incurs maintenance

cost to maintain a K-skyband for a window size N of 10, 000.

Note that the complexity of supreme++ is O(n) and the

complexity of our algorithm is O(N · (log(log N) + log K).
Hence, the cost of supreme++ increases with increase in n
whereas the cost of our algorithm remains unaffected.

C. Evaluating Query Answering Module

In this section, we evaluate the performance of our query

answering module.

1) Snapshot Query Answering: We compare our query

answering algorithm with the supreme query answering al-

gorithm as well as another algorithm called linear algorithm.

The linear algorithm is the approach we discussed in the first

paragraph of Section IV-A and it takes time linear to the size of

K-skyband in the worst case. Our query answering algorithm

(Algorithm 2) is called snapshot. We study the effect of each

of the parameters K, N , k and n, separately.

In Fig. 10(a) and Fig. 10(b), we study the effect of varying

K and N , respectively. The default value of n is 1000 and

the default value of k is 20. As expected, the cost of supreme

algorithm is negligible. This is because, in all the experiments,

the supreme algorithm needs to iterate over a link list of size

k. The snapshot algorithm outperforms the linear algorithm

and scales better with the increase in the values of K or N .

The cost of linear algorithm increases because the size of K-

skyband increases with the increase in K or N .

In Fig. 10(c) and Fig. 10(d), we fix the values of K and

N and study the effect of k and n on both of the algorithms.

The default value of K is chosen to be 100 so that we can
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Fig. 10. Linear vs Snapshot Algorithm

answer the queries with any k ≤ 100. The snapshot algorithm

performs better than the linear algorithm for varying k.

Fig. 10(d) shows that the linear algorithm performs slightly

better than the snapshot algorithm when the value of n is close

to N . This is because the linear algorithm accesses the pairs in

K-skyband in ascending order of scores and terminates when

k pairs are found with age at most equal to n. The algorithm

is expected to terminate earlier when n is large. Note that

when n = N the cost of linear algorithm is O(k) which is

impossible to be outperformed.

Recall that our complexity analysis shows that the cost of

snapshot algorithm is O(log(log n) + log K + k). As antic-

ipated by our complexity analysis, the cost of our snapshot

algorithm increases with increase in k (see Fig. 10(c)) but is

not significantly affected by a moderate increase in K or n
(see Fig. 10(a) and Fig. 10(d)).

2) Continuous Query Answering: Next, we evaluate the

performance of our continuous query algorithm which is de-

noted as continuous in the figures. The supreme algorithm for

continuous query answering assumes that the oracle notifies

it whenever a pair is deleted or added to the existing answer

and the supreme algorithm updates the results accordingly. We

also choose the linear algorithm and the snapshot algorithm

as competitors such that these algorithms compute the results

from scratch whenever the results are to be updated.

In Fig. 11(a), we show the effect of K on the continuous

query algorithm for 1000 queries that randomly choose the

values of n and k. Fig. 11(a) shows the average cost per query

per object update. Clearly, our continuous query algorithm

outperforms the linear and snapshot algorithms and scales

better.
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Fig. 11. Evaluation of continuous queries algorithm

Fig. 11(b) shows the performance of the algorithms for

the increasing number of queries. Each query Q(k,n,s) uses a



randomly chosen value of k and n. Fig. 11(b) shows the total

cost for all the queries per object update. Our continuous query

algorithm outperforms the linear and snapshot approaches.

D. Evaluating Skyband Maintenance Module

In this section, we evaluate our skyband maintenance mod-

ule. We compare four algorithms. The SCase algorithm is the

Algorithm 3 which uses K-staircase and can be applied on

any arbitrarily complex scoring function. The basic algorithm

is the same as Algorithm 3 but does not use K-staircase. As

stated in Section II-A2, previous algorithms to maintain K-

skyband [8], [12] cannot be directly applied. Nevertheless,

we embedded all applicable optimizations (e.g., dominance

counter) of their techniques in the basic algorithm. The TA

algorithm is Algorithm 5 which is applicable only on the

queries using global scoring functions. The supreme algorithm

maintains the skyband as discussed in Section VI-B. Note that

TA has an advantage over all other algorithms (including the

supreme algorithm) that it knows that the scoring function is

a global scoring function and uses its properties.

In Fig. 12(a) and Fig. 12(b), we study the affect of K
and N , respectively. As expected, the TA algorithm always

outperforms the basic and SCase algorithms. This shows

the effectiveness of using optimizations for global scoring

functions. Also, note that SCase algorithm outperforms the

basic algorithm which shows the effectiveness of using the K-

staircase. TA outperforms even the supreme algorithm when

window size N is large. This is because TA utilizes the

properties of the global scoring function and does not compute

the score of all O(N) objects when a new object arrives.
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Fig. 12. Skyband Maintenance Techniques

In Fig. 12(c), we vary the number of attributes d used by

the scoring functions and study the effect on the algorithms.

The performance of TA degrades as the number of attributes

increases. This verifies our complexity analysis given in Sec-

tion V-B. The cost of supreme algorithm increases mainly

because the cost of computing the score of a pair increases

as the number of attributes increases. The basic and SCase

algorithms are not affected by the number of attributes because

the main cost in these two algorithms is not the cost of

computing the scores of the pairs.

In Fig. 12(d), we show the effect of data distribution on

the algorithms. TA consistently performs better than SCase

and the basic algorithm on each different data set. Also,

SCase algorithm performs significantly better than the basic

algorithm.

VII. CONCLUSION

We present efficient techniques to answer a broad class of

top-k pairs query over sliding windows. We provide a detailed

complexity analysis and show that the storage requirement

and the performance of our algorithms is reasonably close to

the lower bound. We verify this by an extensive experimental

evaluation and demonstrate the efficiency of our approach.
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