OLAK: An Efficient Algorithm to Prevent Unraveling in Social Networks

Fan Zhang¹, Wenjie Zhang², Ying Zhang¹, Lu Qin¹, Xuemin Lin²

¹ University of Technology Sydney, ² University of New South Wales
Network Unraveling

The engagement of a user is influenced by the number of her friends.
Network Unraveling

An equilibrium: a group has the minimum degree of k

$k = 3$

Network Unraveling

An equilibrium: a group has the minimum degree of k.

$k = 3$

Network Unraveling

A social group tends to be a k-core in the network.

$\kappa = 3$

k-Core

- Given a graph G, the k-core of G is a maximal subgraph where each node has at least k neighbors (i.e., k adjacent nodes, or a degree of k).

Applications: community detection, social contagion, user engagement, event detection, ……
k-Core Decomposition

- **Core number** of a node v: the largest value of k such that there is a k-core containing v.
- Core decomposition: compute the **core number** of each node in G.

The Collapse of Friendster

• Founded in 2002.
• Popular at early 21st century, over 115 million users in 2011.
• Suspended in 2015 for lack of engagement by the online community.

The core number threshold steadily increased.
The Collapse of Friendster

- Founded in 2002.
- Popular at early 21st century, over 115 million users in 2011.
- Suspended in 2015 for lack of engagement by the online community.

The collapse started from the center of the core.
User Engagement

• Founded in 2002.
• Popular at early 21st century, over 115 million users in 2011.
• Suspended in 2015 for lack of engagement by the online community.

Social influence is tightly controlled by the number of friends in current subgraph, like k-core.
User Engagement

- Founded in 2002.
- Popular at early 21st century, over 115 million users in 2011.
- Suspended in 2015 for lack of engagement by the online community.

The degeneration property of k-core can be used to quantify engagement dynamics.
Prevent Network Unraveling

u_1 is called an anchor.

Prevent Network Unraveling

Anchor: if a node u is an anchor, u will never leave the k-core community (i.e., the degree of u is always $+\infty$).

Anchored k-Core: the k-core with some anchors.
Prevent Network Unraveling

Follower: a node v is a follower of an anchor u, if v is not in k-core but belongs to anchored k-core by anchoring u.

Anchored k-Core Problem: Given two integers k and b, find b anchors to maximize the number of followers (i.e., maximize the number of nodes in anchored k-core).

NP-Hard

When $k = 3$ and $b = 1$, u_1 is a best anchor with 3 followers for the anchored k-core problem.

Theorems for Anchoring One Node

k-Shell: the nodes in k-core but not in (k+1)-core.

- **Theorem 1:** if \(v \) is a follower of \(u \), \(v \) belongs to \((k-1)\)-shell.

- **Theorem 2:** if \(u \) has at least 1 follower, \(u \) belongs to \((k-1)\)-shell or \(u \) is a neighbor of a node in \((k-1)\)-shell.

\(k = 3 \)
OLAK Algorithm for Anchored \(k \)-Core Problem

A greedy algorithm: Computing anchored \(k \)-core for every candidate anchor node to find a best anchor (the one with most followers) in each iteration.

Onion Layers: a structure based on \((k-1)\)-shell and the neighbors of \((k-1)\)-shell nodes according to deletion order of these nodes in \(k \)-core computation.

We only need to explore a small portion of the Onion Layers to find all followers for an anchor.
Onion Layers in OLAK Algorithm

\(k = 3 \) in the following example

\(C_k(G) \) is the \(k \)-core of \(G \),
\(\text{deg}(u, N) \) is the degree of \(u \) in \(N \),
\(NB(L, G) \) is the neighbor set of \(L \) in \(G \)

Algorithm : OnionPeeling(\(G, k \))

1 \(N := C_{k-1}(G); i := 0; \)
2 \(P := \{ u \mid \text{deg}(u, N) < k \land u \in N \}; \)
3 \(\text{while } P \neq \emptyset \text{ do} \)
4 \(\quad i := i + 1; L_i := P; \)
5 \(\quad N := N \setminus P; \)
6 \(\quad P := \{ u \mid \text{deg}(u, N) < k \land u \in N \}; \)
7 \(L_0 := \{ u \mid u \in NB(L_1, G) \setminus \{ N \cup L_1 \} \}; \)
8 \(\text{return } L_0 \)
Onion Layers in OLAK Algorithm

$k = 3$ in the following example

$C_k(G)$ is the k-core of G, $\text{deg}(u, N)$ is the degree of u in N, $\text{NB}(L, G)$ is the neighbor set of L in G
Onion Layers in OLAK Algorithm

$k = 3$ in the following example

core: $C_k(G)$ is the k-core of G,
degree: $\text{deg}(u, N)$ is the degree of u in N,
neighbor set: $NB(L, G)$ is the neighbor set of L in G

Algorithm: OnionPeeling(G, k)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$N := C_{k-1}(G); i := 0;$</td>
</tr>
<tr>
<td>2</td>
<td>$P := {u \mid \text{deg}(u, N) < k & u \in N};$</td>
</tr>
<tr>
<td>3</td>
<td>while $P \neq \emptyset$ do</td>
</tr>
<tr>
<td>4</td>
<td>$i := i + 1; L_i := P;$</td>
</tr>
<tr>
<td>5</td>
<td>$N := N \setminus P;$</td>
</tr>
<tr>
<td>6</td>
<td>$P := {u \mid \text{deg}(u, N) < k & u \in N};$</td>
</tr>
<tr>
<td>7</td>
<td>$L_0 := {u \mid u \in NB(L_1^i, G) \setminus {N \cup L_1^i}};$</td>
</tr>
<tr>
<td>8</td>
<td>return L_0^i</td>
</tr>
</tbody>
</table>

Onion Layer Structure (L_0^3)
Onion Layers in OLAK Algorithm

$k = 3$ in the following example

$C_k(G)$ is the k-core of G, $deg(u, N)$ is the degree of u in N, $NB(L, G)$ is the neighbor set of L in G

Algorithm: OnionPeeling(G, k)

Input: G: a social network, k: degree constraint
Output: onion layers \mathcal{L} (i.e., L_0^k)

1. $N := C_{k-1}(G)$; $i := 0$;
2. $P := \{u \mid deg(u, N) < k \& u \in N\}$;
3. while $P \neq \emptyset$ do
 4. $i := i + 1$; $L_i := P$;
 5. $N := N \setminus P$;
 6. $P := \{u \mid deg(u, N) < k \& u \in N\}$;
7. $L_0 := \{u \mid u \in NB(L_1^i, G) \setminus \{N \cup L_1^i\}\}$;
8. return L_0^i
Onion Layers in OLAK Algorithm

$k = 3$ in the following example

$C_k(G)$ is the k-core of G, $\text{deg}(u,N)$ is the degree of u in N, $\text{NB}(L,G)$ is the neighbor set of L in G

Algorithm : OnionPeeling(G, k)

Input: G: a social network, k: degree constraint
Output: onion layers \mathcal{L} (i.e., L_k^0)

1. $N := C_{k-1}(G); i := 0$;
2. $P := \{u \mid \text{deg}(u,N) < k \land u \in N\}$;
3. while $P \neq \emptyset$ do
 4. $i := i + 1; L_i := P$;
 5. $N := N \setminus P$
 6. $P := \{u \mid \text{deg}(u,N) < k \land u \in N\}$;
7. $L_0 := \{u \mid u \in \text{NB}(L_i^1,G) \setminus \{N \cup L_i^1\}\}$;
8. return L_0
Onion Layers in OLAK Algorithm

\(k = 3 \) in the following example

\(C_k(G) \) is the \(k \)-core of \(G \),
\(\text{deg}(u, N) \) is the degree of \(u \) in \(N \),
\(NB(L, G) \) is the neighbor set of \(L \) in \(G \)

Algorithm: OnionPeeling\((G, k)\)

- **Input**: \(G \) : a social network, \(k \) : degree constraint
- **Output**: onion layers \(\mathcal{L} \) (i.e., \(L_0^k \))

1. \(N := C_{k-1}(G); i := 0 \);
2. \(P := \{ u | \text{deg}(u, N) < k \land u \in N \} \);
3. while \(P \neq \emptyset \) do
 4. \(i := i + 1; L_i := P \);
 5. \(N := N \setminus P \);
 6. \(P := \{ u | \text{deg}(u, N) < k \land u \in N \} \);
7. \(L_0 := \{ u | u \in NB(L_1^i, G) \setminus \{ N \cup L_1^i \} \} \);
8. return \(L_0^i \)
Onion Layers in OLAK Algorithm

$k = 3$ in the following example

$C_k(G)$ is the k-core of G, $\text{deg}(u, N)$ is the degree of u in N, $\text{NB}(L, G)$ is the neighbor set of L in G

```
Algorithm : OnionPeeling($G$, $k$)

Input : $G$ : a social network, $k$ : degree constraint
Output : onion layers $\mathcal{L}$ (i.e., $L_0^k$)

1. $N := C_{k-1}(G); i := 0$
2. $P := \{u \mid \text{deg}(u, N) < k \& u \in N\}$
3. while $P \neq \emptyset$ do
   4. $i := i + 1; L_i := P$
   5. $N := N \setminus P$
   6. $P := \{u \mid \text{deg}(u, N) < k \& u \in N\}$
7. $L_0 := \{u \mid u \in \text{NB}(L_1^i, G) \setminus \{N \cup L_1^i\}\}$
8. return $L_0$
```
Onion Layers in OLAK Algorithm

$k = 3$ in the following example

$C_k(G)$ is the k-core of G,
$\text{deg}(u, N)$ is the degree of u in N,
$\text{NB}(L, G)$ is the neighbor set of L in G

Algorithm: OnionPeeling(G, k)

```
Input : $G$: a social network, $k$: degree constraint
Output : onion layers $\mathcal{L}$ (i.e., $L^8$)
1 $N := C_{k-1}(G); i := 0$
2 $P := \{ u \mid \text{deg}(u, N) < k \& u \in N \}$
3 while $P \neq \emptyset$ do
4     $i := i + 1; L_i := P$
5     $N := N \setminus P$
6     $P := \{ u \mid \text{deg}(u, N) < k \& u \in N \}$
7 $L_0 := \{ u \mid u \in \text{NB}(L_1, G) \setminus \{ N \cup L_1 \} \}$
8 return $L_0$
```
Onion Layers in OLAK Algorithm

$k = 3$ in the following example

$C_k(G)$ is the k-core of G,
$\text{deg}(u,N)$ is the degree of u in N,
$NB(L,G)$ is the neighbor set of L in G

Algorithm: OnionPeeling(G, k)

1. $N := C_{k-1}(G)$; $i := 0$
2. $P := \{u \mid \text{deg}(u,N) < k & u \in N\}$
3. while $P \neq \emptyset$ do
 4. $i := i + 1$; $L_i := P$
 5. $N := N \setminus P$
 6. $P := \{u \mid \text{deg}(u,N) < k & u \in N\}$
7. $L_0 := \{u \mid u \in NB(L_1^i, G) \setminus \{N \cup L_1^i\}\}$
8. return L_0^i
Onion Layers in OLAK Algorithm

$k = 3$ in the following example

$C_k(G)$ is the k-core of G,
$\text{deg}(u, N)$ is the degree of u in N,
$\text{NB}(L, G)$ is the neighbor set of L in G

Algorithm : OnionPeeling(G, k)

<table>
<thead>
<tr>
<th>Input</th>
<th>G: a social network, k: degree constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>onion layers L (i.e., L^S_0)</td>
</tr>
<tr>
<td>1</td>
<td>$N := C_{k-1}(G); i := 0;$</td>
</tr>
<tr>
<td>2</td>
<td>$P := {u \mid \text{deg}(u, N) < k & u \in N};$</td>
</tr>
<tr>
<td>3</td>
<td>while $P \neq \emptyset$ do</td>
</tr>
<tr>
<td>4</td>
<td>$i := i + 1; L_i := P;$</td>
</tr>
<tr>
<td>5</td>
<td>$N := N \setminus P;$</td>
</tr>
<tr>
<td>6</td>
<td>$P := {u \mid \text{deg}(u, N) < k & u \in N};$</td>
</tr>
<tr>
<td>7</td>
<td>$L_0 := {u \mid u \in \text{NB}(L_1^i, G) \setminus {N \cup L_1^i}};$</td>
</tr>
<tr>
<td>8</td>
<td>return L_0^i</td>
</tr>
</tbody>
</table>

Onion Layer Structure (L^3_0)
Onion Layers in OLAK Algorithm

$k = 3$ in the following example

$C_k(G)$ is the k-core of G, $\text{deg}(u, N)$ is the degree of u in N, $\text{NB}(L, G)$ is the neighbor set of L in G.

Algorithm: OnionPeeling(G, k)

Input: G: a social network, k: degree constraint
Output: onion layers \mathcal{L} (i.e., L_0^k)

1. $N := C_{k-1}(G)$; $i := 0$
2. $P := \{u | \text{deg}(u, N) < k \land u \in N\}$;
3. while $P \neq \emptyset$ do
 4. $i := i + 1$; $L_i := P$
 5. $N := N \setminus P$
 6. $P := \{u | \text{deg}(u, N) < k \land u \in N\}$
7. $L_0 := \{u \mid u \in \text{NB}(L_i, G) \setminus \{N \cup L_i\}\}$
8. return L_0^i

After OnionPeeling algorithm, N is the k-core of G.
Theorems for Anchored k-Core

Support Path: there is a support path from \(u \) to \(v \) if \(u \) can downward spread to \(v \) in Onion Layers through neighboring edges. Horizontal or upward spreads are NOT allowed.

Theorem 3: if \(v \) is a follower of \(u \), there is a support path from \(u \) to \(v \).
Onion Layer Search to Find Followers

If we anchor the node v_1, only v_2 and v_3 become candidate followers, v_4 and v_7 cannot be followers of v_1.

Reason: v_4 and v_7 will still be deleted in the deletion order of producing onion layers (i.e., producing k-core), i.e., v_4 and v_7 cannot have larger degrees after anchoring v_1.

$k = 3$
Theorems for Anchored k-Core

Theorem 4: if the degree upperbound of \(u \) is less than \(k \) in the Onion Layer Search, we can early terminate the spread on \(u \).

Theorem 5: if \(v \) is a follower of \(u \), \(v \) cannot have more followers than \(u \).

\(v_2 \) or \(v_3 \) cannot have more followers than \(v_1 \).

\(k = 3 \)
Follower Number Upper Bound

Let $W(x)$ denote the neighbors of a vertex x in lower layers, i.e., $W(x) = \{u \mid u \in NB(x) \cap \mathcal{L} \text{ and } l(u) > l(x)\}$. We use $UB(x)$ to denote the upper bound of $|\mathcal{F}(x)|$, where

$$UB(x) = \begin{cases} \sum_{u \in W(x)} (UB(u) + 1) & \text{if } |W(x)| > 0; \\ 0 & \text{otherwise}. \end{cases} \quad (1)$$

L is the Onion Layers,
$l(u)$ is the layer number of u,
$NB(u)$ is the neighbor set of u,
$F(x)$ is the follower set of x,

$k = 3$

Theorem 6: An anchor x cannot have more followers than $UB(x)$.

Onion Layer Structure (L_0^3)
Follower Number Upper Bound

Let $W(x)$ denote the neighbors of a vertex x in lower layers, i.e., $W(x) = \{u \mid u \in NB(x) \cap \mathcal{L} \text{ and } l(u) > l(x)\}$. We use $UB(x)$ to denote the upper bound of $|\mathcal{F}(x)|$, where

$$UB(x) = \begin{cases} \sum_{u \in W(x)} (UB(u) + 1) & \text{if } |W(x)| > 0; \\ 0 & \text{otherwise.} \end{cases}$$

L is the Onion Layers,
$l(u)$ is the layer number of u,
$NB(u)$ is the neighbor set of u,
$F(x)$ is the follower set of x,

Theorem 6: An anchor x cannot have more followers than $UB(x)$.

$k = 3$
Follower Number Upper Bound

Let $W(x)$ denote the neighbors of a vertex x in lower layers, i.e., $W(x) = \{ u \mid u \in NB(x) \cap L$ and $l(u) > l(x) \}$. We use $UB(x)$ to denote the upper bound of $| \mathcal{F}(x) |$, where

$$UB(x) = \begin{cases} \sum_{u \in W(x)} (UB(u) + 1) & \text{if } |W(x)| > 0; \\ 0 & \text{otherwise.} \end{cases}$$ \hspace{1cm} (1)

L is the Onion Layers,
$l(u)$ is the layer number of u,
$NB(u)$ is the neighbor set of u,
$F(x)$ is the follower set of x,

Theorem 6: An anchor x cannot have more followers than $UB(x)$.
Follower Number Upper Bound

Let $W(x)$ denote the neighbors of a vertex x in lower layers, i.e., $W(x) = \{ u \mid u \in NB(x) \cap \mathcal{L} \text{ and } l(u) > l(x) \}$. We use $UB(x)$ to denote the upper bound of $|\mathcal{F}(x)|$, where

$$UB(x) = \begin{cases} \sum_{u \in W(x)} (UB(u) + 1) & \text{if } |W(x)| > 0; \\ 0 & \text{otherwise}. \end{cases}$$ \hspace{1cm} (1)$$

L is the Onion Layers, $l(u)$ is the layer number of u, $NB(u)$ is the neighbor set of u, $F(x)$ is the follower set of x.

Theorem 6: An anchor x cannot have more followers than $UB(x)$.

$k = 3$

Onion Layer Structure (L_0^3)
Follower Number Upper Bound

Let $W(x)$ denote the neighbors of a vertex x in lower layers, i.e., $W(x) = \{ u \mid u \in NB(x) \cap L \text{ and } l(u) > l(x) \}$. We use $UB(x)$ to denote the upper bound of $|\mathcal{F}(x)|$, where

$$UB(x) = \begin{cases} \sum_{u \in W(x)} (UB(u) + 1) & \text{if } |W(x)| > 0; \\ 0 & \text{otherwise.} \end{cases} \quad (1)$$

L is the Onion Layers,

$l(u)$ is the layer number of u,

$NB(u)$ is the neighbor set of u,

$F(x)$ is the follower set of x,

$\mathcal{F}(x)$ is the follower set of x,

$k = 3$ \hspace{1cm} \text{Onion Layer Structure} (L^3_0)

Theorem 6: An anchor x cannot have more followers than $UB(x)$.
Experimental Setting

- **Datasets:**
<table>
<thead>
<tr>
<th>Dataset</th>
<th>Nodes</th>
<th>Edges</th>
<th>d_{avg}</th>
<th>d_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facebook</td>
<td>4,039</td>
<td>88,234</td>
<td>43.7</td>
<td>1045</td>
</tr>
<tr>
<td>Brightkite</td>
<td>58,228</td>
<td>194,090</td>
<td>6.7</td>
<td>1098</td>
</tr>
<tr>
<td>Gowalla</td>
<td>196,591</td>
<td>456,830</td>
<td>4.7</td>
<td>9967</td>
</tr>
<tr>
<td>Yelp</td>
<td>552,339</td>
<td>1,781,908</td>
<td>6.5</td>
<td>3812</td>
</tr>
<tr>
<td>Flickr</td>
<td>105,938</td>
<td>2,316,948</td>
<td>43.7</td>
<td>5465</td>
</tr>
<tr>
<td>YouTube</td>
<td>1,134,890</td>
<td>2,987,624</td>
<td>5.3</td>
<td>28754</td>
</tr>
<tr>
<td>DBLP</td>
<td>1,566,919</td>
<td>6,461,300</td>
<td>8.3</td>
<td>2023</td>
</tr>
<tr>
<td>Pokec</td>
<td>1,632,803</td>
<td>8,320,605</td>
<td>10.2</td>
<td>7266</td>
</tr>
<tr>
<td>LiveJournal</td>
<td>3,997,962</td>
<td>34,681,189</td>
<td>17.4</td>
<td>14815</td>
</tr>
<tr>
<td>Orkut</td>
<td>3,072,441</td>
<td>117,185,083</td>
<td>76.3</td>
<td>33313</td>
</tr>
</tbody>
</table>

- **Environments:**
 - Intel Xeon 2.3GHz CPU and Redhat Linux System.
 - All algorithms are implemented in C++.
Case Studies

Yelp is a crowd-sourced local business review and social networking site.

DBLP is a computer science bibliography website.
Number of Followers

(a) 10 Datasets, k=20, b=20

(b) Pokec, k=20
(c) LiveJournal, k=20
(d) DBLP, b=20
(e) Gowalla, b=20
Efficiency

![Graph showing time cost (sec) for Baseline1, Baseline2, and OLAK across different datasets like Facebook, Brightkite, Gowalla, Yelp, Flickr, YouTube, DBLP, Pokec, and LiveJournal.]

- **Baseline1** △
- **Baseline2** □
- **OLAK** ○

(a) Brightkite, k=20
(b) Brightkite, b=20
(c) Orkut, k=20
(d) Orkut, b=20