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Social Network - Attributed Graph 

ÅData becomes diverse and complex in real-life social 

networks, which not only consist of users and friendship 

but also have various attribute values on each user. 

Attributes: location, keyword, age, interest, major, ......  
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k-Core 

ÅGiven a graph G, the k-core of G is a maximal subgraph 

where each node has at least k neighbors (i.e., k 

adjacent nodes, or a degree of k).  

S. B. Seidman. Network structure and minimum degree. Social networks, 5(3):269ï287, 1983. 
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Applications: community detection, social contagion, user engagement, event detection, éé  
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k-Core on Attributed Graph 

ÅDoes not consider various kinds of attribute information 

on users. 

This network is a 3-core while contains dissimilar nodes. 
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k-Core on Attributed Graph 

ÅWhen the similarity of two users is measured by their  

distance. 

The group ╖ is a connected 3-core while contains  

users who are far away from others (dissimilar). 
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Similarity Graph 

Å The nodes in similarity graph and friendship graph are same.  

Å In similarity graph, there is an edge between two nodes if and only if 

they are similar. 

User Similarity 

User Engagement 
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(k,r)-Core on Attributed Graph 

Å (k,r)-Core: a subgraph where each node has at least k neighbors 

and is similar to every other node in the subgraph. 

 

Better Community 

High Similarity 

High Engagement 
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The (k,r)-Core Problems 

Problem Statement.  

Given an attributed graph G, an integer k and a similarity 

threshold r, we aim to develop efficient algorithms for the 

following two fundamental problems:  

(i) enumerate all maximal (k,r)-cores in G;  

(ii) find the maximum (k,r)-core in G. 

 

Both problems are NP-hard.  

Challenge.  
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The Clique-based Approach 
1. Delete every edge in G if its two endpoints are dissimilar. 

2. Compute k-core (S) on G. 

3. Enumerate maximal cliques in the similarity graph of S. 

4. Compute k-core on the induced subgraph in S for each maximal clique. 

G 
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The Clique-based Approach 
1. Delete every edge in G if its two endpoints are dissimilar. 

2. Compute k-core (S) on G. 

3. Enumerate maximal cliques in the similarity graph of S. 

4. Compute k-core on the induced subgraph in S for each maximal clique. 

Time-consuming for two reasons:  

 

1. Still too many maximal cliques. 

2. Isolated processing of k-core and clique computations.  
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Enumerate Maximal (k,r)-Cores 
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Enumerate Maximal (k,r)-Cores 

Pruning Rules.  

(1) Eliminate Candidates 

Structural based pruning.  

We can discard a node u in C if deg(u, M Ţ C) < k. 

Similarity based pruning.  

We can discard a node u in C if sim(u, v) < r for any v in M. 
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Enumerate Maximal (k,r)-Cores 

Pruning Rules.  

(2) Candidate Retaining 

A node u is similarity free w.r.t C if u is similar to all nodes in C. 

 

MŢC is a (k,r)-core if we have every node in C is similarity free w.r.t. C. 
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Enumerate Maximal (k,r)-Cores 

Pruning Rules.  

distance (similarity) 

constraint for ◊  

(3) Early Termination 

Terminate the current search if there is a node u ŗ E with deg(u,M) Ó k 

and similarity free w.r.t. MŢC ; 
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Enumerate Maximal (k,r)-Cores 

Pruning Rules.  

distance (similarity) 

constraint for ◊  

(4) Maximal Check 

Given a (k,r)-core R, we claim that R is a maximal (k,r)-core if there doesnôt 

exist a non-empty set U Ṗ E such that RŢU is a (k,r)-core. 
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Finding the Maximum (k,r)-Core 
Colour based Size Upper Bound of (k,r)-core 

Let cmin denote the minimum number of colors to color the nodes in the similarity 

graph Jô such that every two adjacent nodes in Jô have different colors.  

Since a k-clique needs k number of colors to be colored, we have s Ò cmin. 

s: (k,r)-core size 

k = 3 

 

We need at least 5 colors to color Jô, so the color based upper bound is 5. 
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Finding the Maximum (k,r)-Core 
k-core based Size Upper Bound of (k,r)-core 

Let kmax denote the maximum k value such that k-core of Jô is not empty.  

Since a k-clique is also a (k-1)-core, this implies that we have s Ò kmax + 1 

s: (k,r)-core size 

k = 3 

 

By core decomposition on similarity graph Jô, we get that the k-core based upper 

bound is 5 since kmax = 4 with 4-core {u2, u3, u4, u5, u6}. 
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Finding the Maximum (k,r)-Core 
(k,kô)-core based Size Upper Bound of (k,r)-core s: (k,r)-core size 

k = 3 

 

By core decomposition on similarity graph Jô, we get that the k-core based upper 

bound is 5 since kmax = 4 with 4-core {u2, u3, u4, u5, u6}. 

However, the induced subgraph of {u2, u3, u4, u5, u6} on friendship graph J  

is NOT a 3-core (degree of u4 < 3). 

   delete u4 

kmax = kmax ï 1 = 3 with 3-core {u2, u3, u5, u6}. The nodes also form a 3-core on J. 

(k,kô)-core based Size Upper Bound is 4 
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Search Orders 
(1) Node visiting order: the order of which node is chosen from candidate set C.  

 

(2) Branch visiting order: the order of which search branch (expand or shrink 

branch) goes first. 

 Measurements for a chosen node is extended to M or discarded: 

Mô and Cô denote  

the updated M and C 
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Search Orders 
 (1) Find the maximum (k,r)-core  

 a cautious greedy strategy: ɚæ1īæ2. where ɚ is to make a trade-off.  

 (2) Enumerate all maximal (k,r)-cores  

 we adopt the æ1-then-æ2 strategy; that is, we prefer the larger æ1, and the 

smaller æ2 is considered if there is a tie. 

 (3) Maximal Check 

 
we adopt a short-sighted greedy heuristic. In particular, we choose the 

vertex with the largest degree and the expand branch is always preferred. 

 

In this way, each candidate has two scores (for expand or shrink).  Then the 

vertex with the highest score will be chosen and its branch with higher score 

will be explored first. 
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Case Study on DBLP  

 

 

DBLP is a computer science bibliography website.  

1,566,919 nodes, 

6,461,300 edges. 

k=15, r=3ă 

For r, we used the thousandth of the pairwise similarity distribution in 

decreasing order which grows from top 1ă to top 15ă (i.e., the similarity 

threshold value drops). 

Each node is an author.  

 

Each edge represents there 

are at least 3 co-authored 

papers for two authors.  
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Case Study on Gowalla  

 

 

Gowalla is a location-based social network launched in 2007. 

196,591 nodes, 

456,830 edges. 

Two maximal (k,r)-cores  

When k=10, r=10 km Maximal (k,r)-cores when k=20 and r=3 km 


