When Engagement Meets Similarity:
Efficient \((k, r)\)-Core Computation on Social Networks

Fan Zhang\(^0,1\), Ying Zhang\(^1\), Lu Qin\(^1\), Wenjie Zhang\(^2\), Xuemin Lin\(^0,2\)

0 East China Normal University, 1 University of Technology Sydney, 2 University of New South Wales
Social Network - Attributed Graph

- Data becomes diverse and complex in real-life social networks, which not only consist of users and friendship but also have various attribute values on each user.

Attributes: location, keyword, age, interest, major,

![Diagram of a social network graph with attributed nodes and edges, illustrating the relationships between users with various attributes.](image)
k-Core

- Given a graph G, the k-core of G is a maximal subgraph where each node has at least k neighbors (i.e., k adjacent nodes, or a degree of k).

Applications: community detection, social contagion, user engagement, event detection, ……

k-Core on Attributed Graph

- Does not consider various kinds of attribute information on users.

This network is a 3-core while contains **dissimilar nodes**.
k-Core on Attributed Graph

- When the similarity of two users is measured by their distance.

The group G_1 is a connected 3-core while contains users who are far away from others (dissimilar).
Similarity Graph

• The nodes in similarity graph and friendship graph are same.
• In similarity graph, there is an edge between two nodes if and only if they are similar.

User Similarity

User Engagement
(k,r)-Core on Attributed Graph

• **(k,r)-Core**: a subgraph where each node has at least k neighbors and is similar to every other node in the subgraph.

Better Community

High Similarity

High Engagement
The \((k,r)\)-Core Problems

Problem Statement.
Given an attributed graph \(G\), an integer \(k\) and a similarity threshold \(r\), we aim to develop efficient algorithms for the following two fundamental problems:

(i) enumerate all maximal \((k,r)\)-cores in \(G\);
(ii) find the maximum \((k,r)\)-core in \(G\).

Challenge.
Both problems are NP-hard.
The Clique-based Approach

1. Delete every edge in G if its two endpoints are dissimilar.
2. Compute k-core (S) on G.
3. Enumerate maximal cliques in the similarity graph of S.
4. Compute k-core on the induced subgraph in S for each maximal clique.

![Diagram of similarity graph and friendship graph with $k = 3$.]
The Clique-based Approach

1. Delete every edge in G if its two endpoints are dissimilar.
2. Compute k-core (S) on G.
3. Enumerate maximal cliques in the similarity graph of S.
4. Compute k-core on the induced subgraph in S for each maximal clique.
The Clique-based Approach

1. Delete every edge in G if its two endpoints are dissimilar.
2. **Compute k-core (S) on G.**
3. Enumerate maximal cliques in the similarity graph of S.
4. Compute k-core on the induced subgraph in S for each maximal clique.
The Clique-based Approach

1. Delete every edge in G if its two endpoints are dissimilar.
2. Compute k-core (S) on G.
3. **Enumerate maximal cliques in the similarity graph of S.**
4. Compute k-core on the induced subgraph in S for each maximal clique.

Diagram:
- **Similarity Graph:**
- **Friendship Graph:**
- G
- S
- $k = 3$
The Clique-based Approach

1. Delete every edge in G if its two endpoints are dissimilar.
2. Compute k-core (S) on G.
3. Enumerate maximal cliques in the similarity graph of S.
4. Compute k-core on the induced subgraph in S for each maximal clique.
The Clique-based Approach

1. Delete every edge in G if its two endpoints are dissimilar.
2. Compute k-core (S) on G.
3. Enumerate maximal cliques in the similarity graph of S.
4. Compute k-core on the induced subgraph in S for each maximal clique.

Time-consuming for two reasons:

1. Still too many maximal cliques.
2. Isolated processing of k-core and clique computations.
Enumerate Maximal \((k,r)\)-Cores

\[M: \bullet \quad \text{Must in } (k,r)\text{-core} \]
\[C: \quad \text{Candidate node} \]
\[E: \circ \quad \text{Excluded node} \]

\[N_1: M = \emptyset, C = \{u_1, u_2, \ldots u_9, u_{10}\}, E = \emptyset \]
\[N_4: M = \{u_2\}, C = \{u_3, \ldots u_9, u_{10}\}, E = \{u_1\} \]
Enumerate Maximal \((k,r)\)-Cores

Pruning Rules.

(1) Eliminate Candidates

Structural based pruning.
We can discard a node \(u\) in \(C\) if \(\text{deg}(u, M \cup C) < k\).

Similarity based pruning.
We can discard a node \(u\) in \(C\) if \(\text{sim}(u, v) < r\) for any \(v\) in \(M\).

distance (similarity) constraint for \(u_7\)

\(k = 3\)

\(M\): Must in \((k,r)\)-core

\(C\): Candidate node

\(E\): Excluded node
Enumerate Maximal \((k,r)\)-Cores

Pruning Rules.

(1) Eliminate Candidates

Structural based pruning.
We can discard a node \(u\) in \(C\) if \(\text{deg}(u, M \cup C) < k\).

Similarity based pruning.
We can discard a node \(u\) in \(C\) if \(\text{sim}(u, v) < r\) for any \(v\) in \(M\).

distance (similarity) constraint for \(u_7\)

\(k = 3\)

\(M:\) Must in \((k,r)\)-core

\(C:\) Candidate node

\(E:\) Excluded node
Enumerate Maximal \((k,r)\)-Cores

Pruning Rules.

(1) Eliminate Candidates

- **Structural based pruning.**
 We can discard a node \(u\) in \(C\) if \(\text{deg}(u, M \cup C) < k\).

- **Similarity based pruning.**
 We can discard a node \(u\) in \(C\) if \(\text{sim}(u, v) < r\) for any \(v\) in \(M\).

distance (similarity) constraint for \(u_7\)

\(k = 3\)
Enumerate Maximal \((k,r)\)-Cores

Pruning Rules.

(2) Candidate Retaining

A node \(u\) is *similarity free* w.r.t \(C\) if \(u\) is similar to all nodes in \(C\).

\(M \cup C\) is a \((k,r)\)-core if we have every node in \(C\) is similarity free w.r.t. \(C\).

Diagram:

- **\(M\):** Must in \((k,r)\)-core
- **\(C\):** Candidate node
- **\(E\):** Excluded node

Distance (similarity) constraint for \(u_7\)

\((k,r)\)-core

Similarity Free
Enumerate Maximal \((k,r)\)-Cores

Pruning Rules.

(3) Early Termination

Terminate the current search if there is a node \(u \in E\) with \(\text{deg}(u,M) \geq k\) and similarity free w.r.t. \(M \cup C\);

distance (similarity) constraint for \(u_7\)

- \(u_9\) is similarity free and \(\text{deg}(u_9,M) \geq 3\)

\(M\): Must in \((k,r)\)-core

\(C\): Candidate node

\(E\): Excluded node
Enumerate Maximal \((k, r)\)-Cores

Pruning Rules.

(4) Maximal Check

Given a \((k, r)\)-core \(R\), we claim that \(R\) is a maximal \((k, r)\)-core if there doesn’t exist a non-empty set \(U \subseteq E\) such that \(R \cup U\) is a \((k, r)\)-core.

\[\{u_7, u_{10}\} \cup M \text{ is a } (k, r)\text{-core} \]

\(k = 3\)

\((k, r)\)-core, not maximal

distance (similarity) constraint for \(u_7\)

\(M:\) Must in \((k, r)\)-core

\(C:\) Candidate node

\(E:\) Excluded node
Finding the Maximum \((k,r)\)-Core

Colour based Size Upper Bound of \((k,r)\)-core

\[s: (k,r)\text{-core size} \]

Let \(c_{\text{min}}\) denote the minimum number of colors to color the nodes in the similarity graph \(J'\) such that every two adjacent nodes in \(J'\) have different colors. Since a \(k\)-clique needs \(k\) number of colors to be colored, we have \(s \leq c_{\text{min}}\).

\[k = 3 \]

We need at least 5 colors to color \(J'\), so the color based upper bound is 5.
Finding the Maximum \((k,r)\)-Core

k-core based Size Upper Bound of \((k,r)\)-core

Let \(k_{\text{max}}\) denote the maximum \(k\) value such that \(k\)-core of \(J’\) is not empty. Since a \(k\)-clique is also a \((k-1)\)-core, this implies that we have \(s \leq k_{\text{max}} + 1\).

\[k = 3 \]

By core decomposition on similarity graph \(J’\), we get that the \(k\)-core based upper bound is 5 since \(k_{\text{max}} = 4\) with 4-core \(\{u_2, u_3, u_4, u_5, u_6\}\).
Finding the Maximum \((k,r)\)-Core

\((k,k')\)-core based Size Upper Bound of \((k,r)\)-core

\[s: (k,r)\)-core size

By core decomposition on similarity graph \(J'\), we get that the \(k\)-core based upper bound is 5 since \(k_{\text{max}} = 4\) with 4-core \(\{u_2, u_3, u_4, u_5, u_6\}\).

However, the induced subgraph of \(\{u_2, u_3, u_4, u_5, u_6\}\) on friendship graph \(J\) is NOT a 3-core (degree of \(u_4 < 3\)).

\[k_{\text{max}} = k_{\text{max}} - 1 = 3 \]

\(k_{\text{max}} = 3\) with 3-core \(\{u_2, u_3, u_5, u_6\}\). The nodes also form a 3-core on \(J\).

\((k,k')\)-core based Size Upper Bound is 4

\(k = 3\)
Search Orders

(1) Node visiting order: the order of which node is chosen from candidate set C.

(2) Branch visiting order: the order of which search branch (expand or shrink branch) goes first.

Measurements for a chosen node is extended to M or discarded:

- Δ_1: the change of the number of dissimilar pairs, where
 \[
 \Delta_1 = \frac{DP(C) - DP(C')}{DP(C)}
 \]
 M' and C' denote the updated M and C

- Δ_2: the change of the number of edges, where
 \[
 \Delta_2 = \frac{|E(M \cup C)| - |E(M' \cup C')|}{|E(M \cup C)|}
 \]
Search Orders

(1) Find the maximum \((k,r)\)-core

a cautious greedy strategy: \(\lambda\Delta_1 - \Delta_2\). where \(\lambda\) is to make a trade-off.

In this way, each candidate has two scores (for expand or shrink). Then the vertex with the highest score will be chosen and its branch with higher score will be explored first.

(2) Enumerate all maximal \((k,r)\)-cores

we adopt the \(\Delta_1\text{-then-}\Delta_2\) strategy; that is, we prefer the larger \(\Delta_1\), and the smaller \(\Delta_2\) is considered if there is a tie.

(3) Maximal Check

we adopt a *short-sighted greedy heuristic*. In particular, we choose the vertex with the largest degree and the expand branch is always preferred.

\[\Delta_1 = \frac{DP(C) - DP(C')}{DP(C)} \]
\[\Delta_2 = \frac{|E(M \cup C) - E(M' \cup C')|}{|E(M \cup C)|} \]
Case Study on DBLP

DBLP is a computer science bibliography website.

$k=15, \ r=3\%$

For r, we used the thousandth of the pairwise similarity distribution in decreasing order which grows from top 1% to top 15% (i.e., the similarity threshold value drops).

Each node is an author.

Each edge represents there are at least 3 co-authored papers for two authors.

1,566,919 nodes, 6,461,300 edges.
Case Study on Gowalla

Gowalla is a location-based social network launched in 2007.

Two maximal (k,r)-cores
When $k=10$, $r=10$ km

Maximal (k,r)-cores when $k=20$ and $r=3$ km
\((k,r)\)-Core Statistics

![Graphs showing the number of \((k,r)\)-cores, maximum size, and average size for Gowalla and DBLP datasets.]

(a) Gowalla, k=5
(b) DBLP, r=top 3%

Efficiency of Baseline

![Graphs showing the time cost for different values of \(r\) for Gowalla and DBLP datasets.]

(a) Gowalla, k=5
(b) DBLP, r=top 3%
Efficiency

(a) Gowalla, r=100
(b) DBLP, k=15

(a) Gowalla, r=100
(b) DBLP, k=15
THANK YOU

Q&A