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Applications

• Mining Biological Networks
• e.g., protein interactions, gene interactions

• Querying Hypergraph Databases
• e.g., AtomSpace, HyperGraphDB, TypeDB

• Pattern Learning in NLP
• e.g., semantic hypergraphs (each word is a vertex, and each sentence is a hyperedge)

• Q/A over Hypergraph Knowledge Base
• e.g., JF17K dataset (a subset of non-binary relations extracted from Freebase)
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Example Queries for JF17K Dataset

Which football players represented 
different teams in different matches? 

Which actors played the same 
character in a TV show on different 

seasons? 
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Strawman Approach

• Convert the hypergraph to a bipartite graph and apply existing subgraph 

matching algorithms 
• by taking the incidence matrix and treating this as the incidence matrix of a bipartite graph 

• Directly extend existing subgraph matching algorithms to the case of 

hypergraphs

• recursively expand the partial embedding vertex-by-vertex by mapping a query vertex to a 

data vertex following a given matching order and backtrack when necessary 
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Motivations

1. The match-by-vertex approach in the strawman approaches generally 

underutilise high-order information in hypergraphs

• hyperedges are used as a verification condition in the match-by-vertex framework, which can lead 

to a huge search space and large enumeration cost

2. It is difficult to compute subgraph matching on massive hypergraphs using 

sequential algorithms

• none of the existing subhypergraph matching algorithms supports parallel execution 
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Contributions

1. A match-by-hyperedge framework

• Match the query by hyperedges instead of vertices

• Use set operations to efficiently generate candidates

• Filter out false positives with set comparison

2. A highly optimised parallel execution engine

• Adopt the dataflow model for parallelisation

• Bounded memory consumption with our task-based scheduler

• Load balancing with dynamic work-stealing
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HGMatch Overview
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Hypergraph Data Layout

• Hypergraphs are stored as hyperedge tables with inverted hyperedge index

• Hyperedge Signature: a multiset of all vertex labels contained in a hyperedge

Hyperedges

Inverted 
Hyperedge 

Index

Hyperedge 
Signature
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Match-by-Hyperedge Framework
Suppose partial result 𝑚 = (𝑒!, 𝑒"), we want to 

match {𝑢#, 𝑢!, 𝑢", 𝑢$} the next data hyperedge 𝑒.
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Match-by-Hyperedge Framework
Suppose partial result 𝑚 = (𝑒!, 𝑒"), we want to 

match {𝑢#, 𝑢!, 𝑢", 𝑢$} the next data hyperedge 𝑒.

• e must have the same signature with the 

query hyperedge

• 𝑒 must be incident to 𝑣$ ∈ 𝑒! and 𝑣#, 𝑣! ∈ 𝑒"

⟹ 𝐶 𝑒 = 𝑒% ∩ 𝑒% ∩ 𝑒%, 𝑒& = 𝑒%
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Parallel Execution

• Dataflow Model

• We designed three operators: SCAN, EXPAND, SINK

• Task-based Scheduler

• Computation are broken down into tasks and 

scheduled in LIFO order to bound memory

• Dynamic Work Stealing

• Idle worker will steal tasks from others for load 

balancing

SCAN({u2,u4})

EXPAND1({u0,u1,u2})

EXPAND2({u0,u1,u3,u4})

SINK

M = {(e1), (e2)}

M = {(e1, e3), 
(e2, e4)}

M = {(e1, e3 , e5),  
(e2, e4, e6)}

1.TSCAN

2.TEXPAND1<- (e1) 5.TEXPAND1<- (e2)

3.TEXPAND2<- (e1, e3) 6.TEXPAND2<- (e1, e3)

4.TSINK<- (e1, e3 , e5) 7.TSINK<- (e2, e4, e6)

Example Dataflow Graph and Task Tree
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Experimental Setup

• Hardware: a server with two 20-core Xeon E5-2698 V4 CPU and 512G of 

memory

• Baselines: we propose a generic framework to extend existing subgraph 

matching algorithms to the case of hypergraphs

• We compared the extended version of CFL (SIGMOD16), DAF (SIGMOD19), CECI 

(SIGMOD19), and RapidMatch (VLDB20)

• Queries: randomly sample subhypergraphs from the data hypergraphs with 

given number of hyperedges and vertices
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Datasets

• Datasets: we use 10 real-world hypergraphs as data hypergraphs
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Index Building

Building Time and Size of Index
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Single-thread Comparisons

Execution Time for each Query Set
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Parallel Comparisons

Vary Number of Threads Task-based Scheduling

Work Stealing
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Thank you!


