

Efficient Unsupervised Community Search with Pre-trained Graph Transformer

Jianwei Wang, Kai Wang, Xuemin Lin, Wenjie Zhang, Ying Zhang

jianwei.wang1@unsw.edu.au, w.kai@sjtu.edu.cn, xuemin.lin@sjtu.edu.cn, wenjie.zhang@unsw.edu.au, ying.zhang@zjgsu.edu.cn

Outline

- Problem definition
- Motivations and Challenges
- Methods
- Experiments
- Summary

Problem Definition

- Community: Normally, a set of nodes that are densely connected.
- Community Search: Given a graph G(V, E), and a query q where q is a set of query nodes, the task of community search (CS) aims to find a query-dependent community where nodes in the found community are densely intra-connected.

Applications

- Fraud detection.
 - Friend recommendation.
 - Protein complex identification.

Existing works and Motivations

Existing Learning Frameworks

Two-stage framework: Offline training phase and Online search phase

Using labels for Community score learning and Community Identification

Our Method

Two-stage framework:

Offline pre-training and Online search

Unsupervised community score learning: Offline pre-training with CSGphormer && Online score computation via similarity

Unsupervised community identification: Identification with Expected Score Gain && Local Search && Global Search

Offline Pre-training

Figure 2: Illustration of the offline pre-training phase

Augmented subgraph Sampler && CSGphormer && Loss functions

Offline Pre-training: Augmented Subgraph Sampler

DEFINITION 2. (Conductance [6, 46]). Given a graph G(V, E) and a community C, the conductance of C is defined as:

$$\Phi(G,C) = \frac{|e(C,\overline{C})|}{\min(d_C,d_{\overline{C}})}$$
(1)

where $\overline{C} = V \setminus C$ is complement of C. $e(C, \overline{C})$ is the edges between nodes in C and nodes in \overline{C} . d_C is the sum of degrees of the nodes in C.

Conductance-based augmented subgraph sampler

K-hop subgraph with lowest conductance value

Offline Pre-training: CSGphormer

Algorithm 1: Forward Propagation of CSGphormer. **Input:** center node v, feature matrix X, adjacent matrix A, transformer layers L. **Output:** The node representation Z_n^{node} and community-level representation Z_n^{com} . $1 X_n \leftarrow \{ {}^0x_n, {}^1x_n, \cdots, {}^Kx_n \}$ $_{2} H_{n}^{(0)} \leftarrow X_{n}W$ // L-layers transformer encoder. **3** for $l = 0, \dots, L - 1$ do $P \leftarrow \text{Position Encoding Construction}$ $H_n^{(l)} \leftarrow H_n^{(l)} + P$ 5 6 $H_n^{(l+1)} = MHA(LN(H_n^{(l)})) + H_n^{(l)}$ $H_{n}^{(l+1)} = \text{FFN}(\text{LN}(H_{n}^{(l+1)})) + H_{n}^{(l+1)}$ // Readout layer. * $Z_n^{node} \leftarrow {}^0H_n^{(L)}; Z_n^{com} \leftarrow \text{Zero Tensor}$ 9 **for** $k = 1, \dots, K$ **do** $| \alpha_k = \frac{\exp(({}^{0}H_v^{(L)}||^k H_v^{(L)}) W_a^T)}{\sum_{i=1}^{K} \exp(({}^{0}H_v^{(L)}||^i H_n^{(L)}) W_a^T)}$ 10 $Z_n^{com} \leftarrow Z_n^{com} + \alpha_k {}^k H_v^{(L)}$ 12 return Z_n^{node}, Z_n^{com}

Offline Pre-training: Loss functions

Personalization loss: central node is similar to its community while different from other's community

$$\mathcal{L}_{p} = \frac{1}{|V|^{2}} \sum_{v \in V} \sum_{u \in V} \left(-\max\left(\sigma(Z_{v}^{node} Z_{v}^{com}) - \sigma(Z_{v}^{node} Z_{u}^{com}) + \epsilon, 0\right) \right)$$
Link loss: nodes that have a link should be close in the latent space
$$\mathcal{L}_{k} = \frac{1}{|V|^{2}} \sum_{v \in V} \sum_{u \in V} -A(u, v) (Z_{u}^{node} Z_{v}^{node})$$

$$+(1 - A(u, v)) (Z_{u}^{node} Z_{v}^{node})$$
Generative loss
$$\mathcal{L} = \mathcal{L}_{p} + \alpha \mathcal{L}_{k}$$

Online Search: Score Computation

Algorithm 3: Community Score Computation

Input: The query V_q , graph G, pre-trained network $f^{\theta}(\cdot)$. **Output:** The community score *S*.

1 Initialize
$$S \leftarrow \{s_v = 0 \text{ for } v \in V\}$$

2 for
$$\{v\} \in V$$
 do

6 return S

3 **for**
$$\{u\} \in V_q$$
 do
4 $\left| \begin{array}{c} s_v \leftarrow s_v + \frac{\sum_{i=0}^{d_m^{(L)}} f_i^{\theta}(v) f_i^{\theta}(u)}{\sqrt{\sum_{i=0}^{d_m^{(L)}} f_i^{\theta}(v) f_i^{\theta}(v)} \times \sqrt{\sum_{i=0}^{d_m^{(L)}} f_i^{\theta}(u) f_i^{\theta}(u)}} \right.$
5 $\left| \begin{array}{c} s_v \leftarrow \frac{s_v}{|V_q|}; \end{array} \right|$

for
$$\{u\} \in V_a$$
 do

$$\{u\} \in V_a$$
 do

Pairwise **Cosine Similarity**

Online Search: IESG

Identification with expected score gain

DEFINITION 4. (Identification with Expected Score Gain). Given a graph G(V, E), the query V_q , the community score S and a profit function $ESG(\cdot)$, IESG aims to select a community C of G, such that: (1) V_C contains nodes in V_q , and C is connected; (2) ESG(S, C, G) is maximized among all feasible choices for C. The problem of IESG is NP-hard

Online Search: IESG Solver

Experiments: Dataset and query generation

|V||E|d Datasets |C|Texas 325 1,703 183 5 Cornell 183 298 5 1,703 Wisconsin 251 515 1.703 5 Cora 2,708 10,556 7 1.433 Citeseer 3.327 9,104 3,703 6 Photo 7,650 238,162 8 745 DBLP 1,639 17,716 105,734 4 CoCS 18.333 163,788 15 6.805 Physics 5 8,415 34,493 495,924 Reddit 232,965 114,615,892 41 602

Table 3: Statistics of the datasets

• Metrics

F1-score

Jaccard similarity (JAC)

• **Ouery settings**

- Inductive (the ability for unseen community) Hybrid
 - Transductive

Experiments: F1-score results

Settings	Models	Texas	Cornell	Wisconsin Cora		Citeseer Photo		DBLP	CoCS	Physics	Reddit	Average +/-
Inductive	CST	0.1986	0.1975	0.2251	0.2111	0.1423	0.2019	0.2854	0.1252	0.2276	0.1463	-27.12%
	EquiTruss	0.3120	0.3168	0.3079	0.2384	0.2240	0.2166	0.3252	0.1225	0.2471	0.2163	-21.46%
	MkECS	0.3581	0.3177	0.3404	0.2364	0.2015	0.1975	0.2768	0.1152	0.2193	0.2068	-22.03%
	CTC	0.3211	0.3482	0.3327	0.2558	0.2418	0.2626	0.3417	0.1059	0.2511	0.2431	-19.69%
	QD-GNN	0.0821	0.0669	0.0683	0.0322	0.0536	0.0018	0.0372	0.0145	OOM	OOM	-41.50%
	COCLEP	0.4044	0.2960	0.1804	0.3094	0.3058	0.4413	0.3066	0.4253	0.3389	0.2696	-13.95%
	TransZero-LS	0.1801	0.1583	0.2074	0.5467	0.3906	0.5725	0.4407	0.4292	0.5075	0.4879	-7.52%
	TransZero-GS	0.4283	0.3716	0.3755	0.5764	0.4535	0.6018	0.4326	0.4374	0.5113	0.4848	-
Transductive	QD-GNN	0.6703	0.8408	0.6247	0.5062	0.4726	0.2205	0.4918	0.6356	OOM	OOM	+9.81%
	COCLEP	0.4020	0.3167	0.3206	0.3685	0.3331	0.5060	0.3763	0.3549	0.4388	0.3270	-9.29%
Hybrid	QD-GNN	0.3852	0.3644	0.5956	0.4789	0.4097	0.0833	0.3902	0.4969	OOM	OOM	-5.91%
	COCLEP	0.3883	0.3313	0.2938	0.3615	0.3067	0.4388	0.3733	0.4027	0.4693	0.3071	-10.01%

Table 4: F1-score results under different settings

* CST, EquiTruss, MkECS, CTC and TransZero have consistent results under three settings as they are label-free. TransZero with Local Search is denoted as TransZero-LS, and TransZero with Global Search is denoted as TransZero-GS. OOM indicates out-of-memory. The last column presents the average margin compared to TransZero-GS.

TransZero has an outstanding performance, especially under the inductive setting.

Experiments: NMI and JAC results

Figure 6: NMI and JAC results under different settings

TransZero has a competitive performance using NMI and JAC as metrics

16

Experiments: Efficiency

TransZero has a better efficiency in the offline training phase and can deal large graph

TransZero-GS has a better efficiency in the online search phase compared to learning methods.

Experiments-Hyperparameter

Experiments: Ablation study

Models	Texas	Cornell	Wisconsi	in Cora	Citeseer	Photo	DBLP	CoCS	Physics	Reddit	Average +/-
Full model	0.4283	0.3716	0.3755	0.5764	0.4535	0.6018	0.4326	0.4374	0.5113	0.4848	-
w/o \mathcal{L}_p	0.4215	0.3749	0.3773	0.5462	0.4259	0.5716	0.4501	0.3502	0.5183	0.2981	-3.19%
w/o $\hat{\mathcal{L}}_k$	0.3894	0.3576	0.3579	0.4203	0.3044	0.6116	0.4087	0.4532	0.3506	0.5076	-5.12%
w/o Conductance Aug	0.4212	0.3692	0.3848	0.4755	0.4019	0.5935	0.3708	0.3766	0.4738	0.4167	-3.89%
w/o CSGphormer	0.3317	0.2421	0.2169	0.4048	0.2780	0.4473	0.2708	0.3074	0.3435	0.3649	-14.65%

Table 5: Ablation study

All the designed components can enhance the performance

CSGphormer can bring the largest enhancement

Summary

• We propose a learning-based unsupervised community search framework, named TransZero.

• In the offline phase, an efficient graph transformer CSGphormer.

• In the online phase, we calculate the community score by similarity of learned similarity. We model the community identification as **Identification with Expected Score Gain (IESG)**. We propose **Local Search and Global Search** for IESG.

• Extensive experiments over 10 popular public datasets demonstrate the effectiveness of TransZero.

Q & A

Code and Data available in:

