
Quantile-Based KNN Over Multi-Valued Objects
Wenjie Zhang, Xuemin Lin, Muhammad Aamir Cheema, Ying Zhang, Wei Wang

University of New South Wales & NICTA
{zhangw, lxue, macheema, yingz, weiw}@cse.unsw.edu.au

Abstract— K Nearest Neighbor search has many applications
including data mining, multi-media, image processing, and mon-
itoring moving objects. In this paper, we study the problem of
KNN over multi-valued objects. We aim to provide effective
and efficient techniques to identify KNN sensitive to relative
distributions of objects. We propose to use quantiles to summarize
relative-distribution-sensitive K nearest neighbors. Given a query
Q and a quantile φ ∈ (0, 1], we firstly study the problem of
efficiently computing K nearest objects based on a φ-quantile
distance (e.g. median distance) from each object to Q. The second
problem is to retrieve the K nearest objects to Q based on overall
distances in the “best population” (with a given size specified by
φ-quantile) for each object. While the first problem can be solved
in polynomial time, we show that the 2nd problem is NP-hard. A
set of efficient, novel algorithms have been proposed to give an
exact solution for the first problem and an approximate solution
for the second problem with the approximation ratio 2. Extensive
experiment demonstrates that our techniques are very efficient
and effective.

I. INTRODUCTION

Given a set D of objects (points) in a d-dimensional metric
space and a d-dimensional query object (point) q, the K near-
est neighbor search retrieves the K closest objects to q from
D. The conventional KNN search has been extensively studied
[15], [22] with a wide spectrum of applications including data
mining, contents-based image retrieval, and location based
services. In this paper, we study the problem of K nearest
neighbor search over objects each of which has a collection
of values (instances) without temporal constraints specified;
that is, we do not deal with sequence databases [1], [18].

The existing model, probabilistic KNN, is to apply the
uncertain semantics to each object by treating the collection of
instances of each object mutually exclusive. It aims to catch
relative distributions among objects with multi-instances. The
two semantics of ranking top-k uncertain tuples are employed
in a probabilistic KNN model: 1) retrieving k tuples that
can co-exist in a possible world (e.g. U-topk) [23], and 2)
retrieving tuples according to the probability that a tuple is
top-k or at a specific rank in all possible worlds (e.g. U-
kRanks and PT-k) [23], [17] 1. While various probabilistic
NN models are proposed in [3], [5], [20], a probabilistic KNN
model over uncertain data has been proposed following U-topk
ranking semantics [6]. In these probabilistic KNN models,
the probability for an object to be KNN to a query object is
calculated to define the result of a KNN. Nevertheless, below
we show that the probabilistic KNN models may provide

1When k = 1, these two models are the same.

results insensitive to relative distributions of instances of
objects.

9.0
Score

10.0

 n/2 n n/2

Query Player A Player B

9.99

(a)

9.0
Score

10.0

l

l

9.99

(b)

9.0
Score

10.0

 n/2 n n/2

9.99

(c)

Fig. 1. Motivating Example

Motivating Example. Let k = 1. In gymnastics, suppose
that we want to select the “best” balance-beam player among
all candidates to participate a world championship. The
scores of two players A and B, based on the most recent
n games/attempts, are depicted in Figure 1(a), respectively.
Assume that the 2n scores of A and B (n for A and n for B)
are distributed from 9.99 to 9.0 as depicted in Figure 1(a).

Assume that we approximately treat each player as an
uncertain object and the score of an attempt as an instance
with the equal occurrence probability. It can be immediately
verified that based on the existing probabilistic NN models,
player A and player B have the same probability, 1

2 , to be
the nearest neighbor of the query point q (i.e. the score 10)
if |10 − score| is used as the distance metric. We permutate
the distribution in Figure 1(a) by swapping the two pairs of
instances of A and B as depicted in Figure 1(b). It is immediate
that A and B still have the same probability, 1

2 , to be the
nearest neighbor regarding the score distribution after these
two permutations. Choosing l = n

2 , the score distribution in
Figure 1(a) is eventually modified to the score distribution
in 1(c) after n

2 such pairs of permutations; consequently, the
nearest neighbor probabilities of A and B, respectively, remain
unchanged, 1

2 , regarding the distribution in Figure 1(c).

Quantile-Based KNN. The examples in Figures 1 (a)-(c)
demonstrate that the existing probabilistic KNN models may

be insensitive to relative distributions of object instances.
Very recently, in [10] a novel model based on the expected
rank for ranking top-k uncertain objects has been proposed.
Regarding the distributions and the permuted intermediate
distributions as depicted above in Figures 1 (a)-(c), player A
and B always have the same expected rank. Moreover, in the
above application we do not need to enforce the uncertain
semantics among multi-instances of each player by treating
them mutually exclusive. Motivated by these, we treat each
player as a multi-valued object.

Quantiles [25] may provide a succinct summary of data
distributions. In this paper, we investigate the KNN problem
over multi-valued objects based on a φ-quantile distance (φ ∈
(0, 1]) from a multi-valued object to a query Q; for example,
the median is the 0.5-quantile. We extend our investigation to
the KNN problem over multi-valued objects based on overall
distances in the “best population” (with a given size specified
by φ-quantile) regarding each object; such overall distances
are called a φ-quantile group-base distance.

Regarding the above example, our KNN problem based on
0.5-quantile distances is to rank players based on their median
performances, respectively. The KNN problem based on a 0.5-
quantile group-base distance is to rank players based on their
overall performances of the top-50% of scores, respectively.

The above example contains multi-valued objects in a 1-
dimensional space and the query is a single-valued point. Nev-
ertheless, our investigation covers the applications where data
objects consist of multiple instances in a d-dimensional space
and a query object may also consist of multiple instances in a
d-dimensional space. For instance, in NBA the performance of
a player per game may be measured by his statistics (scores,
assists, rebounds, steals, blocks) and may be treated as an
instance of the player; consequently, each player has a set of
instances. Suppose that a team wants to sign a contract with
player A and wants to find his market value. The team may
want to find out the top-k “similar” NBA players, with existing
contracts, to A against their recent game statistics. Then, the
team can use the salaries information of these k-players to
project the salary level of A.
Contributions. To the best of our knowledge, this is the first
paper to study KNN problems regarding quantiles over multi-
valued objects. Yiu et al [25] develop efficient techniques to
compute quantile-distances among data points; nevertheless
the techniques are not applicable to our problem due to the
following reasons. Firstly, the query object in our problem
setting may have multiple instances and we count all pair com-
binations between an object and a given query object, while the
computation of multi-source-based quantile-distances in [25]
is to compute the distance of an instance to its nearest given
source. Secondly, the quantile group-base distance problem
studied in this paper is NP-hard. Our contribution may be
summarized as follows.
• We make the first attempt to identify KNN sensitive to

the relative distributions among multi-valued objects.
• Efficient, novel techniques are proposed for computing

quantile distance based KNN against a set of multi-valued

objects and a given query object that is also multi-valued.
• We show that the problem of KNN against the quantile

group-base distance is NP-hard. Novel and efficient al-
gorithms are proposed with the approximation ratio 2.

As a byproduct, our techniques to compute a φ-quantile
distance is O(n) if single-valued object is involved while the
technique in [25] is O(n log n) where n is the number of
instances. Besides the theoretical analysis, an extensive perfor-
mance evaluation demonstrates that the proposed techniques
are both efficient and effective.

The rest of the paper is organized as follows. In Section
II, we formally define the problems and provide some neces-
sary background information. In Section III, we present the
framework of our algorithms to conduct KNN against these
2 quantile-based KNN problems. Section IV and Section V
present query processing techniques for these two KNN prob-
lems, respectively. In Section VI, we report our experiment
results. Related work is summarized in Section VII. This is
followed by conclusions.

II. BACKGROUND INFORMATION

We present problem definition and necessary preliminaries.
For reference, notions frequently used in the paper are sum-
marized in Table I.

Notation Definition
U set of of objects

U (Q) multi-valued (query) object
E entry of R-tree

u (q) instance of U (Q) - a point in d-dimensional space
w(u) (w(S)) (total) weight of u (the set S)

d(q, u) Euclidean distance between q and u

dlo(E, E′) distance lower-bound between E and E′

dup(E, E′) distance upper-bound between E and E′

dφ(Q, U) φ-quantile distance of Q and U
gbdφ(Q, U) φ-quantile group-base distance of Q and U

Q× U Cartesian product of instances from Q to U

TABLE I
THE SUMMARY OF NOTATIONS.

A. Problem Definition

Given a collection S of m elements, each element si has
a weight w(si) where 0 < w(si) ≤ 1 and

∑m
i=1 w(si) = 1.

Let S be sorted increasingly on a search key f - a function;
that is, f(si) ≤ f(sj) if i < j. Without loss of generality, in
this paper a sorted collection S of data elements, thereafter,
always means sorting S increasingly on a given search key
unless otherwise specified.

Definition 1 (φ-quantile of S): Given a φ (0 < φ ≤ 1), the
φ-quantile Sφ of S is the first element si in the sorted S on
the search key such that

∑i
j=1 w(sj) ≥ φ.

In our problem definition, an instance of an object U (or Q)
is weighted - weight gives the representativeness of an instance
in U . For instance, in the examples in Section I a game statistic
may appear multiple times; consequently a normalized weight

(the occurrence of an instance over the total occurrences of
all instances) may be used to indicate the representativeness
of an instance. Note that the total of such weights in U (or
Q) is 1.

A multi-valued object U is represented as {(ui, w(ui))|1 ≤
i ≤ m} where ui is a point in a d-dimensional space, 0 <
w(ui) ≤ 1 (1 ≤ i ≤ m), and

∑m
i=1 w(ui) = 1. A query object

Q is also a multi-valued object. We use U to denote a set of
multi-valued objects.

For a given Q and each U ∈ U , there are totally (|Q|×|U |)
pairs of instances in Q× U where each pair (qi, uj) (qi ∈ Q
and uj ∈ U) has the weight w(qi)×w(uj), namely w(qi, uj).
Clearly,

∑
qi∈Q,uj∈U w(qi) × w(uj) = 1. The Euclidean

distance d(qi, uj)2 between qi and uj is called the distance of
(qi, uj). Let Q× U = {((qi, uj), w(qi, uj)) | qi ∈ Q & uj ∈
U}.

Definition 2 (φ-quantile distance of Q and U): Given a
φ ∈ (0, 1], let Q×U be sorted increasingly on the search key
- the distance d(qi, uj) of each element (qi, uj). Then, the
distance of the φ-quantile of Q × U is called the φ-quantile
distance of Q× U , denoted by dφ(Q,U).

Definition 2 states that if (q, u) is the φ-quantile of Q×U
(i.e., (Q× U)φ = (q, u)) then d(q, u) is dφ(Q,U).

Q

U

q1

q2

q3

u1

u2

Fig. 2. Distances between 2 Multi-Valued Objects

Example 1: Regarding the example in Figure 2, |Q| = 3
and |U | = 2. Assume that w(q1) = 1

2 , w(q2) = w(q3) = 1
4 ;

w(u1) = w(u2) = 1
2 . Consequently, Q × U consists of the

following six pairs sorted on their distances increasingly:
Q × U = {((q2, u1), 1

8), ((q3, u1), 1
8), ((q3, u2), 1

8),
((q1, u1), 1

4), ((q2, u2), 1
8), ((q1, u2), 1

4)}.

Note that the 2.5
8 -quantile and the 3

8 -quantile of Q×U are
the same (q3, u2). The 0.2-quantile distance d0.2(Q,U) of Q
and U is d(q3, u1), d0.5(Q,U) is d(q1, u1), d0.6(Q,U) is also
d(q1, u1). ¤

Below, we specify a measure based on aggregates to define
the top/best quantile-population of S.

Definition 3 (φ-quantile population of S): Given a S and
a φ ∈ (0, 1], a φ-quantile population Sφ,P of S is a sub-
collection S′ of S such that the total weights of the elements
in S′ is not smaller than φ and removing any element from
S′ makes the total weights in the remaining sub-collection
smaller than φ.

2Note that our techniques developed in this paper is based on Euclidean
distance; nevertheless they can be immediately extended to cover other
distance metrics.

Definition 4 (φ-quantile group-base distance): Given a
φ ∈ (0, 1], the φ-quantile group-base distance of Q and U
is the minimum total weighted distance among φ-quantile
populations of Q × U ; that is, the minimum value of∑

(q,u)∈S′ w(q)w(u)d(q, u) with the constraint that S′ is a
φ-quantile population of Q× U .

The φ-quantile group-base distance between Q and U is
denoted by gbdφ(Q,U). Note that for a φ ∈ (0, 1], the example
below shows that gbdφ(Q,U) is not always defined on the set
of the “consecutive” smallest distances. In fact, we will show
in Section 5 that the computation of gbdφ(Q,U) is NP-hard.

Example 2: Regarding Example 1, let φ = 0.5.
gbd0.5(Q,U) = 1

8d(q2, u1) + 1
8d(q3, u1) + 1

8d(q3, u2) +
1
8d(q2, u2) instead of 1

8d(q2, u1) + 1
8d(q3, u1) + 1

8d(q3, u2) +
1
4d(q1, u1). Here, {((q2, u1), 1

8), ((q3, u1), 1
8), ((q3, u2), 1

8),
((q1, u1), 1

4)} is not even a 0.5-quantile population of Q×U .
In fact, there are several 0.5-quantile populations of

Q × U , including {((q3, u1), 1
8), ((q2, u2), 1

8), ((q1, u1), 1
4)},

{((q2, u1), 1
8), ((q2, u2), 1

8), ((q1, u1), 1
4)}, etc. ¤

Definition 5 (φ-Quantile KNN): Given a φ ∈ (0, 1], a set
U of multi-valued objects in a d-dimensional space, and a
multi-valued query object Q, the φ-quantile KNN problem is
to retrieve the set ΦK of K objects from U such that for each
U ∈ ΦK and each U ′ ∈ U − ΦK , dφ(Q,U) ≤ dφ(Q,U ′).

Definition 6 (φ-Quantile Group-base KNN): Given a φ ∈
(0, 1], a set U of multi-valued objects in a d-dimensional space,
and a multi-valued query object Q, the φ-quantile group-base
KNN problem is to retrieve the set ΦK of K objects from
U such that for each U ∈ ΦK and each U ′ ∈ U − ΦK ,
gbdφ(Q,U) ≤ gbdφ(Q,U ′).

Problem Statement. In this paper, for a given φ ∈ (0, 1], we
study the problems of efficiently computing the φ-Quantile
KNN and the φ-Quantile Group-base KNN.

B. Preliminaries

Given a collection S of m elements, each element si has
a weight w(si) where 0 < w(si) ≤ 1 and

∑m
i=1 w(si) ≤ 1.

A naive way to compute the φ-quantile is to firstly sort S
regarding a given search key f , and then scan the sorted list
to obtain the φ-quantile of S. Clearly, the naive algorithm runs
in O(m log m).

In [8], an efficient and effective partitioning technique
PARTITIONING (S) is proposed to find an element s ∈ S to
divide S into two sub-collections S1 and S2 with the following
properties:

1) for each s′ ∈ S1, f(s′) ≤ f(s); and for each s′ ∈ S2,
f(s′) ≥ f(s).

2) |S1| ≥ 3
10m− 6 and |S2| ≥ 3

10m− 6.
Using the partitioning technique, in Algorithm 1 we present
an iteration-based algorithm to compute a φ-quantile when S
is not sorted.

In Algorithm 1, w(S1) denotes the total weights of the
elements in S1. When S has only one element, S1 = S2 = ∅.

It is shown in [8] that the time complexity of PARTI-
TIONING (S) is linear - O(|S|). Consequently, each iteration

Algorithm 1: QUANTILE (S, φ)
Input : S: a collection of m elements; φ: 0 < φ ≤ ∑m

i=1 w(si);
f : specify a search key;

Output : φ-quantile of S
(s, S1, S2) ←− PARTITIONING (S);1
if φ ≤ w(S1) then2

call QUANTILE (S1, φ);3

else4
if φ > w(S1) + w(s) then5

call QUANTILE (S2, φ− w(S1)− w(s));6

else7
return s;8

runs in linear time regarding the current sub-collection size.
Recall the property 2 above in PARTITIONING (S). It is
immediate that the sizes of sub-collections involved in the
iterations in Algorithm 1 are exponentially reduced - at the ith
iteration bounded by ((7

10)i−1m + c) where c is a constant;
consequently, the time complexity of Algorithm 1 is linear -
O(m). The correctness of Algorithm 1 immediately follows
from the property 1 of PARTITIONING (S).

III. FRAMEWORK OVERVIEW

Our techniques for solving the φ-quantile KNN and and the
φ-quantile group-base KNN for a given φ ∈ (0, 1] follow a
standard seeding-refinement paradigm outlined in Algorithm
2.

Algorithm 2: Framework
• Phase 1 - Seeding: Compute the φ-quantile (or

φ-quantile group-base) distance from each of the K
chosen objects to Q.

• Phase 2 - Refinement: Determine the final solution for
φ-quantile KNN (or φ-quantile group-base KNN).

In the seeding phase, we choose K objects and compute
their φ-quantile distances (or φ-quantile group-base distances);
assume that γk (λK) is the maximal of these K φ-quantile
distances (or the φ-quantile group-base distances). In the
refinement phase, we use γK (λK) and φ to effectively prune
objects and iteratively update γK (λK) (if necessary).

Selecting K Objects in the Seeding Phase. Any K multi-
valued objects from U could be used for the seeding phase.
Clearly, the smaller γK is, the more powerful γK may be
used in the refinement for pruning. In our algorithm, we use
the mean aU of the multiple instances for each multi-valued
object U , and we use the mean aQ of the multiple instances of
Q. Then we apply the KNN algorithm in [16] to obtain the K
nearest neighbors to aQ from {aU | U ∈ U}. Subsequently, we
use the K objects corresponding to these K nearest means to
aQ as the K objects in the seeding phase for both φ-quantile
KNN and φ-quantile group-base KNN, respectively.

Data Structures. Below are the data structures used in the
seeding and refinement phases in our techniques. For each

Q U

E
w(E)

E
w(E)

Fig. 3. Local aR-trees for Multi-Valued Objects

multi-valued object U ∈ U , a local aR-tree is built to organize
its multiple instances. The aggregate information kept on each
intermediate entry is the sum of weights of instances indexed
by the entry. Namely, for every intermediate entry E in the
local aR-tree, we record the weight of E as the sum of weights
(total weights) of instances having E as an ancestor. Local
aR-trees will facilitate the efficient computation of φ-quantile
(or φ-quantile group-base) KNN and support effective pruning
techniques. Figure 3 shows the local aR-trees for Q and U
where each intermediate entry records w(E).

Besides, we maintain an R-tree on the MBBs of multiple
instances of objects. That is, for each object we first obtain
the MBB of its multiple instances. Then we build an R-tree
on these MBBs. This R-tree is called the global R-tree. Note
in the global R-tree, each leaf is an MBB of an object.

Distances between MBBs. Given two MBBs E and E′, we
compute the minimal and maximal distances dlo(E, E′) and
dup(E,E′) between them as follows. For each dimension i
(1 ≤ i ≤ d), let IE,i and IE′,i denote the intervals on
which E and E′ are projected, respectively. The minimum
distance mindisti(E, E′) between IE,i and IE′,i is defined as
follows. If IE,i overlaps with IE′,i then mindisti(E, E′) =
0 otherwise mindisti(E,E′) is the minimal value among
the distances of 4 pairs of the ends of IE,i and IE′,i.
maxdisti(E, E′) is the the maximal value among the dis-
tances of 4 pairs of the ends of IE,i and IE′,i.

dlo(E, E′) =

√√√√
d∑

i=1

(mindisti(E, E′))2

dup(E, E′) =

√√√√
d∑

i=1

(maxdisti(E, E′))2

Figure 4 below shows representative examples. Note that
we can immediately verify that for each pair of instances
(u, u′) where u is contained by E and u′ is contained by
E′, dlo(E, E′) ≤ d(u, u′) ≤ dup(E,E′). Thus, dlo(E, E′)
and dup(E, E′) can be used as a lower- and upper- bound of
the distance of any pair in E × E′. Immediately, computing
minimal/maximal distance between the two d-dimensional
MBBs requires O(d) time.

IV. φ-QUANTILE KNN

We present our techniques for conducting φ-quantile KNN
for a given φ ∈ (0, 1]. We first present an efficient algorithm to
compute a φ-quantile distance between Q and U instead of a

E1

E2
mindist(E1,E2)

maxdist(E1,E2)

E1

E2

mindist(E1,E2)

maxdist(E1,E2)

(a) (b)

Fig. 4. Minimal/Maximal Distance between 2 MBBs

brute-force computation; this will be used in the two phases.
Then, we present a set of novel pruning techniques in the
refinement phase, as well as the refinement algorithm.

A. Efficiently Computing φ-Quantile Distances.

Given Q, U , and a φ ∈ (0, 1], we present an efficient
algorithm to compute dφ(Q,U) in this section.

Naive Linear Algorithm. Firstly, for each (qi, uj) in Q×U ,
we calculate its distance d(qi, uj) and its weight w(qi, uj) (=
w(qi)w(uj)). Then call Algorithm 1 to produce the φ-quantile
(q, u) of Q × U regarding the search key value (distance) of
each (qi, uj) and the weight w(qi, uj) of each (qi, uj). Clearly,
dφ(Q,U) = d(q, u) and the naive algorithm runs in linear time
regarding |Q× U |; that is, O(|Q× U |).
Pruning-based Linear Algorithm. While it is costly to
enumerate all pairs of instances in Q × U , intuitively most
pairs in Q×U are possible to be removed without enumerating
them. This may be done by using the local aR-trees of Q
and U , respectively. Our algorithm is based on level-by-level
synchronous traversal on the local aR-trres of Q and U . The
example below gives the basic idea of the algorithm.

w =0.2 w =0.3 w =0.2

w =0.3

(E1, E1') (E1, E2') (E2, E2')

(E2, E1')

Fig. 5. Prune Entries at the Current Level

Basic Idea. Suppose that the root RQ of local aR-tree of Q has
2 entries (E1, E2), and the root RU of loca aR-tree of U has 2
entries (E′

1, E
′
2). Totally, the 4 pairs of entries are depicted in

Figure 5 where the two ends of each interval, corresponding
to (Ei, E

′
j), are dlo(Ei, E

′
j) and dup(Ei, E

′
j), respectively, and

w(Ei, E
′
j) is also shown as w. Assume that a lower-bound dlo

φ

and an upper-bound dup
φ of dφ(Q,U) are as what are depicted

in Figure 5, respectively.
Since dup(E1, E

′
1) is smaller than dlo

φ , (E1, E
′
1) can be

removed. The pair of (E2, E
′
2) can also be removed because

dlo(E2, E
′
2) is larger than dup

φ . Consequently, we only focus
on 2 pairs of entries, (E1, E

′
2) and (E2, E′

1), in the next level
iteration. As the distance of any pair of instances in (E1, E

′
1)

is guaranteed to be smaller than dφ(Q,U) and the total weight
of (E1, E

′
1) is 0.2, from the next level we only need to find the

(φ−0.2)-quantile distances in the remaining pairs of instances.
This is the basic idea of our algorithm.

Algorithm Description. We outline our algorithm in Algorithm
3 below in a recursive fashion. Note that the input of the
algorithm is a collection of pairs of entries - initially, RQ×RU

where RQ (RU) is the set of the entries in the root of the local
aR-tree of Q (U).

Algorithm 3: QUANTILE-DISTANCE (RQ ×RU , φ)
Input : RQ ×RU ; φ: 0 < φ ≤ 1;
Output : dφ(Q, U)
θ := 0; T1 := ∅; T2 := ∅;1
if RQ ×RU only contains leaf entries then2

call Algorithm 1 on RQ ×RU and φ3

else4
Calculating dlo

φ and dup
φ regarding RQ ×RU ;5

for each (E, E′) ∈ RQ ×RU do6
if dup(E, E′) ≥ dlo

φ and dlo(E, E′) ≤ dup
φ then7

T1 := {(E, E′)} ∪ T18

else if dup(E, E′) < dlo
φ then9

θ := θ + w(E)× w(E′)10

for each (E, E′) ∈ T1 do11
T2 := T2 ∪ ENUMERATING(E, E′)12

QUANTILE-DISTANCE (T2, φ− θ);13

In Algorithm 3, lines 7 and 8 remove the pairs, with their
maximum distances smaller than dlo

φ or minimum distances
larger than dup

φ , from T1 (i.e. no further exploring). Lines 9
and 10 cumulatively record the total weights θ of removed
pairs of entries with the maximum distance smaller than dlo

φ .
Lines 11 and 12 enumerate all the remaining pairs of entries in
the next level for the next iteration; this will be shown in the
example below. To ensure the correctness, in the next iteration,
we compute the (φ−θ)-quantile distance from remaining pairs
of instances.

Example 3: Continue the example (Figure 5) in the part of
Basic Idea. Using Algorithm 3, T1 = {(E1, E

′
2), (E2, E

′
1)} in

the 1st iteration and θ = 0.2.
Assume that the child node, NODE(E1), of RQ correspond-

ing to the entry E1 has two entries {E1,1, E1,2}, NODE(E2)
contains {E2,1, E2,2}, NODE(E′

1) contains {E′
1,1, E

′
1,2},

and NODE(E′
2) contains {E′

2,1, E
′
2,2}. In Algorithm 3,

ENUMERATING(E1, E
′
2) generates the 4 pairs of entries,

{(E1,1, E
′
2,1), (E1,1, E

′
2,2), (E1,2, E

′
2,1), (E1,2, E

′
2,2)}. Sim-

ilarly, ENUMERATING(E2, E
′
1) generates the 4 pairs of en-

tries, {(E2,1, E
′
1,1), (E2,1, E

′
1,2), (E2,2, E

′
1,1), (E2,2, E

′
1,2)}.

These 8 pairs (in T2) together with (φ − 0.2) are sent to the
next iteration - QUANTILE-DISTANCE (T2, φ− 0.2). ¤

Remark 1: If {E1, E2} are the leafs (i.e. points), then
they have no corresponding children nodes. In this case,
ENUMERATING(E1, E

′
2) and ENUMERATING(E2, E

′
1)

generate 4 pairs of entries in total: {(E1, E
′
2,1), (E1, E

′
2,2),

(E2, E
′
1,1), (E2, E

′
1,2)}. Similarly, if {E′

1, E
′
2} are the leafs,

then the following 4 pairs of entires are generated for the next
iteration: {(E1,1, E

′
2), (E1,2, E

′
2), (E2,1, E

′
1), (E2,2, E

′
1)}. ¤

Calculating dlo
φ and dup

φ . In Algorithm 3, at each iteration we
need to calculate dlo

φ and dup
φ (line 5) except that all entries

are at the leaf level. Assume that at the jth iteration, there
are l pairs of entries left; that is, T2 = {ti | 1 ≤ i ≤ l}
- each ti with the form (E,E′) where E is an entry from
the local aR-tree of Q and E′ is an entry from the local ar-
tree of U . Recall that the maximum distance dup(ti) and the
minimum distance dlo(ti) are defined on a pair ti of entries
in Section III. Suppose that in the current iteration, we want
to compute the φ′-quantile distance dφ′(T) in T where T
denotes the collection of pairs of instances each of which has
an element in T2 as the ancestor; that is, for each pair of
instances (q, u) ∈ T , ∃(E, E′) ∈ T2 such that E contains q
and E′ contains u.

Let the φ′-quantile of T2, regarding the search key dlo(ti),
be (EL,EL′), and the φ′-quantile of T2, regarding the search
key dup(ti), be denoted by (EU,EU ′).

Theorem 1: dlo(EL, EL′) ≤ dφ′(T) ≤ dup(EU,EU ′).
Proof: According to the definition of the φ′-quantile

distance, it is immediate that
∑

dlo(t)≤dφ′ (T),t∈T2
w(t) ≥ φ′;

consequently, dlo(EL, EL′) ≤ dφ′(T).
Similarly, according to the definition of φ′-quantile dis-

tance,
∑

dup(t)<dφ′ (T),t∈T2
w(t) < φ′. Therefore, dφ′(T) ≤

dup(EU,EU ′).
Theorem 1 implies that dlo(EL, EL′) and dup(EU,EU ′)

are a lower-bound and an upper-bound, respectively, of
dφ′(T). Thus, in line 5 of Algorithm 3, we calculate
dlo(EL, EL′) and dup(EU,EU ′). Clearly, this can be done
by Algorithm 1 in linear time.

Time Complexity. In each iteration, our algorithm is linear
regarding |T2|; that is, O(|T2|). Since the total entries in the
local aR-trees of Q and U are (|Q|) and O(|U |), respectively,
Algorithm 3 runes in linear time regarding |Q × U |; that is,
O(|Q× U |).
Correctness. The following theorem can be immediately ver-
ified based on the definition of φ-quantile distance.

Theorem 2: Let θ denote the total weights of the pairs of
entries so far pruned by dlo

φ at each iteration. Then, dφ−θ(T) =
dφ(Q,U) where T consists of all remaining pairs of instances
after the current iteration.

Theorem 1 and Theorem 2 imply that Algorithm 3 is correct;
that is, it can produce dφ(Q,U).

Filtering while Enumerating. Algorithm 3 can be im-
proved when enumerating children pairs in line 12 -
ENUMERATING(E, E′). For every enumerated pair t of
children entries, before adding to T2 we check if it can be
pruned by the current distance lower and upper bounds. Then
T2 keeps only the remaining pairs of children entries for the
next iteration. Note that in θ, we also include the total weights
of children pairs pruned by the current lower bound dlo

φ .
Example 4: Continue Example 3. The enumerated 8 pairs

are depicted in Figure 6. The pair (E2,1, E
′
1,1) with the weight

0.1 is pruned by the current dlo
φ . Consequently, the remaining

7 pairs (put in T2) and (φ − 0.2 − 0.1) are used to call
QUANTILE-DISTANCE () for the next iteration.

child entry pairsof(E1, E2')

child entry pairsof(E2, E1')

(E1,1, E2,1') (E1,1, E2,2')

(E1,2, E2,1') (E1,2, E2,2')

w =0.05 w =0.05

w =0.1 w =0.1

(E2,1, E1,1') (E2,1, E1,2')

w =0.1 w =0.05

(E2,2, E1,1')

w =0.1
(E2,2, E1,2')

w =0.05

Fig. 6. Filtering while Enumerating

Note that the time complexity of Algorithm 3, by adding
the technique “Filtering while Enumerating”, remains the same
O(|Q| × |U |).
B. Refinement Algorithm

In the seeding phase, after dφ(Q, U) is calculated for each
U of chosen K objects. A max heap maintains the K objects
based on their φ-quantile distances; γK is the maximum of
these K φ-quantile distances and sits on the top. Our refine-
ment algorithm for generating the final result for φ-quantile
KNN is outlined below in Algorithm 4. In the algorithm,
we effectively use γK and φ to prune as many entries, in
the global R-tree on MBBs of objects and local aR-trees, as
possible. Since “closer” objects have a better chance to be in
the final result of KNN (thus a better chance to reduce γK), we
traverse the global R-tree based on the priority that an entry
E with the smallest minimum distance to the MBB of Q will
be visited first. This can be done by maintaining a heap H on
the currently extended entries.

Algorithm 4: Refinement

while H 6= ∅ do1

E := deheap(H);2

if not PRUNED1(Q,E) then3

if E is an intermediate entry then4

add MBBs of the child entries to H5

else /* E corresponds to an object U */6

if not PRUNED2(Q,E) then7

call Algorithm 3 to compute dφ(E, Q);8

if dφ(Q,E) < γK then9

update current KNN10

11

In Algorithm 4, we initially load to H the entries MBBs in
the root node of the global R-tree. Then we iteratively apply

PRUNED1(E, Q) to the heap top E by using the pruning rules
below in Section IV-C for the global R-tree. If E cannot be
pruned (i.e. PRUNED1(Q,E) returns FALSE), then we add
to H the entries of the child node with E as the MBB when
E is an intermediate entry. When E cannot be pruned and E
is the MBB of an object U , we apply the pruning rules below
in Section IV-C on an individual object, PRUNED2(Q,E), to
prune U (PRUNED2(Q, E) returns TRUE if pruned) or “trim”
the entries in the local aR-tree of U .

C. Pruning Rules

Pruning Rules 1 and 2 attempt to prune an entry in the
global R-tree, while Pruning Rule 3 is to further examine the
“details” of a remaining object using its local aR-tree.

Pruning an Entry E of Global R-tree. Pruning Rules 1 and
2 below use Q to prune an entry E of the global R-tree. The
correctness of Pruning Rule 1 is immediate.

Pruning Rule 1. (Distance based:) If dlo(EQ, E) ≥ γK , then
E can be pruned where EQ is the MBB of Q and E is an
entry of the global R-tree. (E is pruned means that all objects
indexed by E can be pruned).

Note that the minimum distance between two MBBs is
defined in Section III and can be calculated in constant time.
Next, we present Pruning Rule 2.

Regarding the local aR-tree aRQ of Q, a set Γ of entries
in aRQ is a γK-cover of aRQ if 1) there are no 2 entries
in Γ with the descendent relationship, 2) for each Ei ∈ Γ,
dlo(Ei, E) ≤ γK , and 3) for each entry E′ which is not an
ancestor nor a descendent of any entry in Γ, dlo(E′, E) > γK .
The following theorem is immediate from the definition of φ-
quantile distance.

Theorem 3: Let Γ be a γK-cover of RQ. If∑
E′∈Γ w(E′) ≤ φ, then for each U ∈ E, dφ(Q, U) ≥ γK .
Clearly, if we can find a γK-cover satisfying the condition

in Theorem 3, then E can be pruned.

Pruning Rule 2. (Weights based:) If there is a γK-cover Γ with∑
E′∈Γ w(E′) ≤ φ, then E can be pruned.
Note that there could be many γK-covers as shown in

Example 5.

E1 E2E1,1

E1,2

E1,3

E2,1

E2,2

E2,3E

Fig. 7. γK -Cover

Example 5: As depicted in Figure 7, the γK-covers can be
{E1, E2}, {E1, E2,3}, {E1,3, E2}, {E1,3, E2,3}. If E1,3 and
E2,3 have child entries, more alternatives could be enumerated.
They possibly have different total weights.

A γK-cover Γ is minimum if
∑

E′∈Γ w(E′) is minimized. In
example 5, {E1,3, E2,3} has the smallest weight among those

4 covers. Clearly, the minimum γK has the maximal pruning
power since

∑
E′∈Γ w(E′) is minimized.

Executing Pruning Rule 2. Although a minimum γK-cover
can be computed by traversing aRQ level-by-level from the
root, we will not always try to get a minimum γK-cover if E
can be pruned earlier. We visit aRQ level-by-level from the
root. At each level i, we generate a todo list TDi (initially ∅),
and remove/trim the child entries E′ of the entries in TDi−1,
if dlo(E′, E) > γK . For each remaining child entry E′ (not
trimmed), E′ with dup(E′, E) ≤ γK will not be extended
at the next level since all its decedent entries always have
their minimum (and maximum) distances not greater that γK

- we cumulate w(E′) in ∆; E′ with dup(E′, E) > γK will
be extended in the next level for further trimming (thus, it is
put into TDi). E is pruned and we terminate the execution of
Pruning Rule 2 if the value of ∆ plus the total weights of the
entries in TDi is not greater than φ. Note that if E cannot be
pruned, then the execution terminates if either the the current
TDi is empty or at the leaf level. Moreover, at the root level
(i.e. i = 1), we assume that TD0 consists of the MBB EQ of
Q.

Clearly, the execution of Pruning Rule 2 terminates if E is
pruned or the minimum value of γK-cover is obtained (∆ +
the total weights in current TD). If E is the MBB of an object
U (i.e. corresponds to U) and U cannot be removed, then we
record the obtained total weights of the minimum γK-cover
in ∆Q and record its trimmed aR-local tree by aRQ,trim. ∆Q

will be used in the next pruning rule, and aRQ,trim will be
used in line 8 to call Algorithm 3 if U cannot be pruned by
the next pruning rule.

Example 6: Continue Example 5 regarding Figure 7. Sup-
pose that the root of aRQ contains entires E1 and E2. TD0 =
{EQ}. At the root level, we obtain TD1 = {E1, E2} regarding
the depicted γk. At the next level, E1,1, E1,2, E2,2, E2,1 are
trimmed; consequently, TD2 = {E1,3, E2,3} and ∆ = 0 if
dup(E1,3, E) > γK and dup(E2,3, E) > γK . If w(TD2) < φ,
then E will be pruned; otherwise we go to the next level for
further exploring.

In case that dup(E1,3, E) ≤ γK and dup(E2,3, E) ≤ γK ,
TD2 remains ∅ and ∆ = w(E1,3)+w(E2,3). If ∆ > φ then E
cannot be pruned. Since TD2 = ∅, the execution of Pruning
Rule 2 terminates. If E is an object, then we record ∆Q and
aRQ,trim. Here, ∆Q = w(E1,3) + w(E2,3), and in aRQ,trim,
E1,1, E1,2, E2,1, E2,3 are pruned/trimmed. ¤

Remark 2: When we trim/remove entries of R-trees, we do
a “logic” removal by commenting them out.

PRUNED1(Q,E). For each entry, we first check Pruning Rule
1 - PRUNED1(Q,E) returns TRUE if E is pruned. If E
cannot be pruned by Pruning Rule 1, then we invoke the above
execution of Pruning Rule 2; PRUNED1(Q,E) returns TRUE
if E is pruned.

Trimming the Local aR-Tree of U . Before conducting the
computation of φ-quantile distance by Algorithm 3, we first
trim the entries of the local aR-tree by γK . We conduct this

in a level-by-level fashion from the root of the local aR-tree
in the same way as the execution of Pruning Rule 2 except
that we swap the role Q with U ; that is, Q becomes E, and U
becomes Q in the execution of Pruning Rule 2. At each level
i of aR-tree of U , we check the flowing pruning rule.

Pruning Rule 3. (Using Local aR-tree:) If (∆ + w(TDi)) ×
∆Q ≤ φ, then U can be pruned. 3

Proof: From the definition of φ-quantile distance, it is
immediate that if (∆+w(TDi))×∆Q ≤ φ, then dφ(Q,U) ≥
γK .

PRUNED2(Q,E). As described above, the execution of Prun-
ing Rule 3 is the same as the execution of Pruning Rule 2
except that we swap the roles of Q and U and check Pruning
Rule 3 instead of Pruning 2 at each level. PRUNED2(Q,E)
terminates and returns TRUE if E is pruned; otherwise,
PRUNED2(Q, E) terminates at the leaf-level (or TDi = ∅)
and returns FALSE. When PRUNED1(Q,E) returns FALSE,
RQ,trim × RU,trim is used as the input of Algorithm 3 for
computing dφ(Q,U) instead of using RQ×RU . Here, RQ,trim

(RU,trim) consists of the untrimmed entries at the root of
aRQ,trim (aRU,trim). Note that in Algorithm 3, level-by-
level we use only untrimmed entries from both aRQ,trim and
aRU,trim. We can further speed-up the computation by visiting
only the intermediate nodes, in aRQ,trim and aRQ,trim,
respectively, with more than one child.

The correctness of Algorithm 4 immediately follows from
the theorems and pruning rules. Note that when Algorithm 3
is invoked, at each iteration we use the minimum value of γK

and the obtained upper-bound dup
φ as an upper-bound.

V. φ-QUANTILE GROUP-BASE KNN

Our algorithm for solving the φ-quantile group-base KNN
(φ ∈ (0, 1]) (defined in Section II-A) also follows the seeding-
refinement framework, Algorithm 2. For the seeding-phase,
firstly we show that computing a φ-quantile group-base dis-
tance gbdφ(Q,U) between Q and U is NP-hard, and then an
existing algorithm is employed with the approximation factor
2 to approximately compute gbdφ(Q,U). In the refinement
phase, 2 novel, effective pruning techniques are developed.

A. Computing φ-Quantile Group-base Distances

We first show that the Knapsack Problem can be converted
to a special case of our problem.

Knapsack Problem. It is NP-complete and can be formally
described below [11].

INSTANCE: Finite set S, for each element s ∈ S, an integer
size c(s), and an integer value v(s), and positive integers X
and Y .

QUESTION: Is there a subset S′ of S such that
∑

s∈S′ c(s) ≤
X and

∑
s∈S′ v(s) ≥ Y .

3Here, ∆Q is obtained as the weight of the minimum γK -cover of the
local aR-tree of Q. ∆ and TDi are recorded when execute the Pruning Rule
2 at level i and swap the roles of Q and U as described above.

NP-hardness. As defined in Section II-A, the problem of
computing gbdφ(Q,U) can be stated below. Find a subset
S′ from Q × U such that

∑
(q,u)∈S′ w(q, u) ≥ φ and∑

(q,u)∈S′ w(q, u)d(q, u) is minimized.
A special case of the problem of computing gbdφ(Q,U)

is that Q is a point with weight 1. In this case, each w(u)
(= w(Q,u)) may be arbitrarily assigned with the constraint∑

u∈U w(u) = 1, and the location of each u can be chosen
so that w(Q, u)d(Q,u) equals any integer.

If we normalize the above Knapsack Problem by normaliz-
ing each v(s) by v(s)∑

s′∈S v(s′) . Then the normalized version of
Knapsack is also NP-complete. The decision problem of the
above spacial case of computing gbdφ(Q, U) is the same as
the normalized Knapsack Problem. Consequently, the problem
of computing gbdφ(Q,U) is NP-hard.

Theorem 4: The problem of computing gbdφ(Q,U) is NP-
hard.

Approximately Computing gbdφ(Q,U). If we want to max-
imize

∑
s∈S′ v(s) with respect to a given X in the Knapsack

Problem, then there is PTAS; that is, a polynomial-time
approximation scheme giving an approximate factor arbitrarily
closer to 1. Nevertheless, there is no PTAS to approximately
minimize

∑
s∈S′ c(s) regarding a given Y .

We adopt the approximate algorithm in [13] for Knapsack
Problem. It runs in time O(m log m), where m is the num-
ber of elements in S, with the approximation factor 2 for
minimizing

∑
s∈S′ c(s) for a given Y . The algorithm can be

immediately used to approximately compute gbdφ(Q,U) if
we treat Q × U as S; and for each (q, u) ∈ Q × U , treat
w(q, u) as a v value and treat w(q, u)d(q, u) as a c value
in the Knapsack Problem. Let aproxgbdφ(Q,U) denote the
group distance output by the approximation algorithm. The
following theorem is shown [13].

Theorem 5: 1 ≤ aproxgbdφ(Q,U)
gbdφ(Q,U) ≤ 2.

We briefly present the basic idea of the algorithm in [13]
while applying it to computing gbdφ. It iteratively conducts
2 phases: Completion and Growing Seed-Set ST - initially
∅ (w(ST) is always smaller than φ). We firstly sort Q × U
increasingly based on d(q, u). In the Completion phase, for
each element (q, u) in the remaining Q × U with w(q, u) +
w(ST) ≥ φ, 1) replace the current feasible solution S′ if the
total weighted distance in ST ∪ {(q, u)} is smaller than that
in S′, and 2) remove (q, u) from Q × U . In Growing Seed-
Set ST , move the 1st element from the remaining Q × U to
ST . In each iteration, we first conduct Completion and then
Growing Seed-Set; the algorithm terminates and outputs the
total weighted distance in S′ if there is no element left in the
remaining Q× U .

Example 7: Suppose that φ = 0.5 and Q × U contains
4 elements. To simplify the presentation, we present these 4
elements only by its (distance, weight): {(1, 0.28), (2, 0.12),
(3, 0.48), (4, 0.12)}. In our algorithm, we first sort the list in-
creasingly based on the value of weight×distance

weight = distance.
In the 1st iteration, nothing is chosen in the Completion

phase since all elements with weight less than 0.5; ST

becomes {(1, 0.28)} and (1, 0.28) is removed from Q × U
in the Growing Seed-Set phase. In the 2nd iteration, S′ =
{(1, 0.28), (3, 0.48)} is chosen as a feasible solution and
(3, 0.48) is removed Q × U in the Completion phase; ST
grows to {(1, 0.28), (2, 0.12)} and (2, 0.12) is removed from
Q×U since (2, 0.12) was the 1st element. In the 3rd iteration,
regarding Completion phase, (4, 0.12) is removed from Q×U
as w(ST) + 0.13 = 0.52 > 0.5 and {(1, 0.28), (2, 0.12),
(4, 0.12)} becomes S′ as its total weighted distance (1) smaller
than that (1.72) in S′ = {(1, 0.28), (3, 0.48)}. Consequently,
1 is output as approxgbd0.5(Q,U); in this example it happens
approxgbd0.5(Q,U) = gbd(Q,U). ¤

Note that this approximate algorithm does not accommodate
a pruning-based level-by-level computation of gbdφ(Q,U)
because it requires to access all elements.

B. Refinement

In the seeding phase, we use the above approximate algo-
rithm to approximately compute gbdφ(Q,U) between Q and
each of the chosen K objects. The largest obtained aproxgbdφ

value is denoted as λK . The refinement algorithm follows the
similar framework outlined in Algorithm 4 in Section IV-B
except that:
• In PRUNDE1(Q,E) we will use the pruning rules below.
• remove line 7.
• call the above algorithm to (approximately) compute

gbdφ(Q,U) instead of Algorithm 3.
• use aproxgbdφ generated by the above approximate

algorithm and λK to replace dφ and γK , respectively.
In the group with its total weighted distance gbdφ(Q,U),

instances may be from many different entries of the local aR-
tree of U . Consequently, it is not always possible to trim many
entries (subtrees) from the local aR-tree as what we do for
computing φ-quantile KNN. Thus, in our refinement algorithm
we only develop pruning rules to prune entries in the global
R-tree.

Pruning Rule 4. Suppose that EQ is the MBB of Q. If φ ×
dL(EQ, E) ≥ λK , then E is pruned from the global R-tree.

The next pruning rule is used at each level. Suppose that
Lk = {Ei | 1 ≤ i ≤ l} consists of all the entries at the
level k of the local aR-tree of Q. Without loss of generality,
we assume that Lk is sorted in the increasing order based on
dL(Ei, E); that is, dL(Ei1, E) ≤ dL(Ei2, E) if i1 < i2. Let
Ej denote the φ-quantile of Lk according to the search key
dL(Ei, E) and the weight w(Ei) of each element Ei ∈ Lk.

Pruning Rule 5. E is pruned if:

(φ−
j−1∑

i=1

w(Ei))dL(Ej , E) +
j−1∑

i=1

(w(Ei)× dL(Ei, E)) ≥ λK .

Executing PRUNDE1(Q, E). For an E in the global R-tree,
we first check Pruning Rule 4; this is done by constant time.
If E cannot be pruned, then we traverse the local aR-tree of
Q level-by-level from the root to test Pruning Rule 5. To test
Pruning Rule 5 at each level k, we first need to sort Lk. The

total time complexity for traversing the local aR-tree of Q to
test Pruning Rule 5 is thus O(|Q|).
Accuracy Guarantee. Our algorithm for solving φ-quantile
group-base KNN has the following accuracy guarantee.

Theorem 6: Suppose that for 1 ≤ i ≤ k, Ui is ranked the
top-ith in the exact φ-quantile group-base KNN, and U ′

i is
ranked the top-ith by our algorithms. Then for 1 ≤ i ≤ k,
gbdφ(Q,Ui) ≤ aproxgbdφ(Q,U ′

i) ≤ 2gbdφ(Q,Ui).
Proof: First, it can be immediately verified that the object

U pruned (i.e., the entry E containing U is pruned) by Pruning
Rule 4 or Pruning 5 has the property that gbdφ(Q,U) ≥ λK .
From Theorem 6, it follows that for 1 ≤ i ≤ k, gbdφ(Q,Ui) ≤
aproxgbdφ(Q,U ′

i) ≤ 2gbdφ(Q,Ui).
Theorem 6 states that every ith group-base distance (i ∈

[1,K]) output by our algorithm is between gbdφ(Q,Ui) and
2gbdφ(Q,Ui). Our experiment, nevertheless, indicates the er-
ror could be much smaller in practice.

VI. EXPERIMENTAL STUDY

We report a thorough performance evaluation on the effi-
ciency and effectiveness of our algorithms. In particular, we
implement and evaluate the following techniques.

Q-KNN: Techniques presented in Section IV to compute
KNN based on a φ-quantile distance (φ ∈ (0, 1]).

Naive Q-KNN: Remove the pruning rules from Q-KNN.
G-KNN: Techniques in Section V to compute KNN based

on φ-quantile group-base distances.
Naive G-KNN: Remove the pruning rules from G-KNN.

All algorithms are implemented in C++ and compiled by
GNU GCC. Experiments are conducted on PCs with Intel
Xeon 2.4GHz dual CPU and 4G memory under Debian Linux.
Our experiments are conducted on both real and synthetic
datasets.

Real dataset is extracted from NBA players’ game-by-game
statistics (http://www.nba.com), containing 339,721 records of
1,313 players. Each player is treated as a multi-valued object
where the statistics (score, assistance, rebound) of a player
per game is treated as an instance with the equal weight
(normalized).

Synthetic datasets are generated using the methodologies
in [4] regarding the following parameters. Dimensionality d
varies from 2 to 5 with default value 3. Data domain in each
dimension is [0, 1]. Number n of objects varies from 10, 000
to 50, 000 with default value 10, 000. Number m of instances
per object follows a uniform distribution in [1, M] where M
varies from 400 to 2, 000 with the default value 400. The value
K varies among 5, 10, 20, 30 and 40 with default value 10. The
average length of object MBBs follows a uniform or normal
distribution. In normal distribution, the length of MBB lies in
the range [0, h] with the expectation value h/2 and standard
deviation 0.025; in uniform distribution, the length of MBBs
uniformly spreads over [0, h] where h varies from 0.05 to
0.25 with default value 0.05 (i.e., 5% of the edge length of the

whole data space). With the default setting, the total number
of instances is about 2 millions.

Centers of objects (objects’ MBBs) follow either uniform,
normal or anti-correlated distribution. Locations of instances
in an object follow uniform or normal distribution. Weights
assigned to each instance follow uniform or normal dis-
tribution. Table II summarizes the parameters used in our
experiment where the default values are in bold font. For each
experiment, we randomly choose 100 objects from datasets as
query objects and record the average performance. Note that
default values will be used in our experiment unless otherwise
specified.

dimensionality d 2, 3, 4, 5
number of objects N 10k, 20k, 30k, 40k, 50k

edge length h 0.05, 0.1, 0.15, 0.2, 0.25
number of instances m 400, 600, 800, 1k, 2k

K 5, 10, 15, 20, 30
φ 0.1, 0.3, 0.5, 0.7, 0.9

object location uniform, normal, anti-correlated
instance location uniform, normal

weight distribution uniform, normal
h distribution uniform, normal

TABLE II
PARAMETER VALUES.

 0

 0.2

 0.4

200 400 600 800 1000

P
ro

ce
ss

in
g

T
im

e
(s

) Algorithm 3
Naive

(a) Varying M

 0

 0.02

 0.04

 0.06

2 3 4 5

P
ro

ce
ss

in
g

T
im

e
(s

) Algorithm 3
Naive

(b) Varying d

Fig. 8. Time for Computing dφ

A. Computing φ-Quantile Distance

Figure 8 evaluates the efficiency of our technique, Algo-
rithm 3, for computing a φ-quantile distance, against the naive
algorithm described in Section IV-A. In our experiment, we
randomly select 1000 pairs of objects from the datasets to test
these 2 algorithms and report the average time by seconds.
Figure 8(a) shows that our technique has more advantages
when the number of instances increases. Figure 8(b) shows
that the advantage of using Algorithm 3 gets lower when
dimensionality increases. This is because that the pruning
costs in Algorithm 3 are proportional to the dimensionality.
When dimensionality increases, more pruning overheads are
involved. Nevertheless, Figure 8 indicates Algorithm 3 signifi-
cantly outperforms the naive algorithm. Therefore, we always
use Algorithm 3 in the remaining experiments. Note that we
did not evaluate the techniques in [25] since they are not
generally applicable to our problem.

B. Overall Performance
Figure 9 reports the results of the evaluation on processing

time of Q-KNN, Naive Q-KNN, G-KNN, Naive G-KNN over
real and synthetic datasets. As shown, Q-KNN and G-KNN
are much more efficient than their naive versions (i.e. without
using pruning techniques in the refinement phase) - upto 2
orders of magnitude. The improvement is less significant over
NBA data. This is because in NBA dataset, objects’ MBB
sizes are very large relative to the whole data space; this gives
very high overlapping degree among objects’ MBBs. Thus less
objects can be pruned during query processing.

 0

 400

 800

 1200

Synthetic data

P
ro

ce
ss

in
g

T
im

e
(s

)

1.1

588.4

2.8

1132.0Q-KNN
Naive Q-KNN

G-KNN
Naive G-KNN

(a)

 0

 200

 400

 600

NBA data

P
ro

ce
ss

in
g

T
im

e
(s

)

32.7

320.6

203.6

566.8

Q-KNN
Naive Q-KNN

G-KNN
Naive G-KNN

(b)

Fig. 9. Overall Performance

We further evaluate the pruning powers in the refinement
phase by conducting the following experiment. Regarding the
φ-quantile KNN, we examine the running time of Naive Q-
KNN, Naive Q-KNN with the Pruning Rule 1 (P1), Naive
Q-KNN with the Pruning Rules 1 and 2 (P1-2), and the Naive
Q-KNN with the Pruning Rules 1, 2, and 3 (P1-3, that is, Q-
KNN). Similarly, for φ-quantile group-base KNN, Naive G-
KNN, Naive G-KNN with the Pruning Rule 4 (P4), and Naive
G-KNN with the Pruning Rules 4 and 5 (P4-5, that is, G-KNN)
are examined. The evaluation results are depicted in Figure
10. It shows that all these pruning rules are very effective and
efficient. These 2 experiments indicate that Q-KNN and G-
KNN are much more efficient than Naive Q-KNN and Naive
G-KNN, respectively. Thus, in the rest of experiments we will
no longer evaluate Naive Q-KNN and Naive G-KNN.

100

101

102

103

Q-KNN G-KNN

P
ro

ce
ss

in
g

T
im

e
(s

)

29.9

3.6
1.1

1132.0

86.0

2.8P1

P1-2
P1-3

P4

P4-5

588.4

Fig. 10. Pruning Powers

C. Accuracy
To evaluate the accuracy of G-KNN, we use two error

measures. The first is the average distance error ratio. For
1 ≤ i ≤ K, approx(i) denotes the group-based distance of
the top-ith object output by G-KNN, and exact(i) denotes the
group-based distance of the top-ith object in the exact solution.

err ratio =

∑K
i=1

|approx(i)−exact(i)|
exact(i)

K

The second measure records the “misplaced” ratio. For 1 ≤
i ≤ K, if the ith object in the exact solution is not the same as
the ith object in the solution output by G-KNN, then mp(i) =
1.

mp ratio =
∑K

i=1 mp(i)
K

As the φ-quantile group-base KNN is NP-hard and no efficient
algorithm exists, we generate the exact solutions by a trivial
exhaustive search - it is exponential and very slow. We
conduct a very small scale experiment as follows. Each object,
including query object, has 4 instances; there are total 100
objects. Others all use the default settings in Table II. Table III
reports the evaluation results when object distribution varies,
while Table IV reports the results when the distribution of
weights varies. Both demonstrate G-KNN is highly accurate
and more accurate than the theoretical guarantee in Theorem
6; that is, err ratio is much smaller than 2.

err ratio mp ratio
anti 0.015 0.02
unif 0.013 0.02
norm 0.015 0.04

TABLE III
VARY OBJECTS DISTRIBUTION

err ratio mp ratio
unif 0 0

norm 0.015 0.02

TABLE IV
VARY WEIGHT DISTRIBUTION

D. Evaluating Impacts by Different Settings

Distributions. We evaluate possible impacts on algorithm
efficiency by distributions of centers of objects, locations of
instance, edge lengths of object MBBs, and weights. The
results (time in seconds) for Q-KNN and G-KNN are reported
in Table V, respectively. They demonstrate that Q-KNN is
not quite sensitive to various distributions but G-KNN is
quite sensitive towards different distributions. This is because
of the nature of φ-quantile group-base distance - group-
base. Note that it is only meaningful for object locations to
have anti-distributions; consequently, we do not evaluate other
distributions using anti. Moreover, the experiment shows anti
always leads to more computation time; this is the reason why
we use anti as a default setting for locations.

Q-KNN G-KNN
unif norm anti unif norm anti

object loc 0.9(s) 0.8(s) 1.1(s) 2.3(s) 2.0(s) 2.8(s)
MBB length 1.1(s) 1.2(s) * 2.8(s) 2.9(s) *
instance loc 1.1(s) 1.0(s) * 2.8(s) 2.3(s) *

weights 1.1(s) 1.1(s) * 2.0(s) 2.8(s) *

TABLE V
VARIOUS DISTRIBUTIONS

Impacts by Other Settings. In the next set of experiments,
we study the scalability of our algorithms regarding differ-
ent φ-values, number of objects, number of instances (M),
lengths of MBB edges (h), K, and the dimensionality d.
In our experiments, we record the average running time per

query for each algorithm. While Q-KNN and G-KNN are not
quite sensitive to different φ-values due to the nature of the
techniques developed, they are quite sensitive to the other
settings especially G-KNN. The techniques in G-KNN do not
have pruning rules for trimming object entries and the distance
computation techniques of G-KNN do not have any pruning
rules either. Thus, G-KNN is very sensitive to the increment
of number of objects, number of instances, MBB lengths, and
K. It is interesting to note that G-KNN runs faster when the
dimensionality d increases. This suggests that G-KNN prunes
more objects in the refinement phase when d increases. A
possible reason is that when we fix the MBB edge length, the
average area of MBBs gets smaller related to the whole data
space; consequently, Pruning Rules 4 and 5 are more effective
as they are group-based (thus, area based).

 1

 2

 3

 4

0.1 0.3 0.5 0.7 0.9

P
ro

ce
ss

in
g

T
im

e
(s

) Q-KNN G-KNN

(a) Varying φ

 2

 4

 6

 8

 10

10k 20k 30k 40k 50k

P
ro

ce
ss

in
g

T
im

e
(s

) Q-KNN G-KNN

(b) Varying # Objects

 0

 10

 20

 30

200 400 600 800 1000

P
ro

ce
ss

in
g

T
im

e
(s

) Q-KNN G-KNN

(c) Varying M

 0

 50

 100

0.05 0.10 0.15 0.20 0.25

P
ro

ce
ss

in
g

T
im

e
(s

) Q-KNN G-KNN

(d) Varying h

 2

 4

 6

 8

 10

5 10 20 30 40

P
ro

ce
ss

in
g

T
im

e
(s

) Q-KNN G-KNN

(e) Varying K

 5

 10

 15

2 3 4 5

P
ro

ce
ss

in
g

T
im

e
(s

) Q-KNN G-KNN

(f) Varying d

Fig. 11. Other Settings

E. Summary

Our performance evaluation indicates that Q-KNN is very
efficient and scalable. Although φ-quantile group-base KNN is
inherently more complex, our G-KNN techniques still perform
quite efficiently. Furthermore, G-KNN is highly accurate and
performs much more accurate than the theoretical bound.

VII. RELATED WORK

Conventional NN or KNN search in a multidimensional
space is fundamental in data analysis and information retrieval.
Most existing techniques for NN and KNN search have been
developed based on popular spatial access methods such as
R-trees. The depth first search algorithm on R-trees is first
proposed by Roussopoulos et al [22]. The best first search
algorithm is proposed by Henrich [14] and is subsequently

optimized by Hjaltason and Samet [15] with the I/O opti-
mal performance guarantee. Efficient sub-linear approximation
techniques (PTAS) have been proposed by Arya et al [2].
Many variations of KNN search have been studied in different
contexts, including road networks [21], moving objects [19],
continuous queries [24], etc. Conventional KNN treats every
object as a point in multidimensional space.

KNN over uncertain objects are inherently different than
conventional KNN where each uncertain object takes a set
of mutually exclusive points in a multidimensional space. It
combines a distances measure with an uncertain top-K ranking
model. There are two models of ranking top-k uncertain tuples:
1) retrieving k tuples that can co-exist in a possible world
(e.g. U-topk) [23], and 2) retrieving tuples according to the
probability that a tuple is top-k or at a specific rank in all
possible worlds (e.g. U-kRanks and PT-k) [23], [17]. In KNN
over uncertain objects, the probability for an uncertain object
to be the KNN to a query object is cumulated over all possible
worlds and is used to rank an uncertain object. A number of
probabilistic models have been proposed [3], [5], [7], [20].
Recently, a new model based on expected ranks has been
developed in [10] to rank top-K uncertain objects. As shown
in Section I, they may not always be sensitive to the relative
distributions among object instances. Ge et al [12] study the
score distribution of top-K vectors and choose most typical
results from the score-probability dimensions; nevertheless,
the work seems hard to be extended to objects with multiple
instances.

As a tool to summarize data distribution, quantile compu-
tation has been extensively studied (e.g., [9], [25]). The most
related work is the quantile computation in a multidimensional
space [25]. In [25], two problems has been investigated: 1)
single source query, and 2) multiple sources query. The single
source problem is a special case of the problem of computing
a φ-quantile distance in this paper where a query object has
only one instance and all instances have the same weight.
The problem of multiple sources are inherently different than
our problem. Thus, the techniques in [25] are not generally
applicable to our problem. Nevertheless, our techniques runs
in O(n) time when query object has only one instance, while
the single-source techniques in [25] runs in O(n log n).

VIII. CONCLUSION

In this paper, we investigate the problem of KNN search
over multi-valued objects. In particular, we use the quantile
paradigm to retrieve KNN sensitive to the relative distribution
among multi-valued objects. Two quantile KNN models have
been proposed. One is based on a φ-quantile ranking score
(e.g. median score) and another is based on the overall ranking
score of the φ-quantile best population. We show that the
second KNN problem is NP-hard. A set of efficient, novel
techniques have been developed to process the first quantile
KNN problem. Due to the NP-hardness of the second KNN
problem, efficient approximate techniques with approximate
factor 2 are presented. We conduct extensive experiments

to illustrate the efficiency and effectiveness of our proposed
techniques.

The current algorithms developed are based on main-
memory computation. Although they can be immediately ex-
tended to support I/O involved computation, a possible future
work may investigate I/O efficient techniques for these 2 KNN
problems.

REFERENCES

[1] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search
in sequence databases. In Conf. of Foundations of Data Organization
and Algorithms 1993.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu.
An optimal algorithm for approximate nearest neighbor searching fixed
dimensions. In JACM 1998.

[3] G. Bekales, M. A. Soliman, and I. F. Ilyas. Efficient search for the top-k
probable nearest neighbors in uncertain databases. In VLDB 2008.

[4] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator. In
ICDE 2001.

[5] R. Cheng, J. Chen, M. Mokbel, and C. Chow. Probabilistic verifiers:
Evaluating constrained nearest-neighbor queries over uncertain data. In
ICDE 2008.

[6] R. Cheng, L. Chen, J. Chen, and X. Xie. Evaluating probability threshold
k-nearest-neighbor queries over uncertain data. In EDBT 2009.

[7] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Querying imprecise
data in moving object environment. In TKDE 2004.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to algorithms 2nd edition. chpater 9: Medians and order statistics. In
The MIT Press.

[9] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Effective
computation of biased quantiles over data streams. In ICDE 2005.

[10] G. Cormode, F. Li, and K. Yi. Semantics of ranking queries for
probabilistic data and expected ranks. In ICDE 2009.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide
to the Theory of NP-Completeness. New York, NY, USA, 1990.

[12] T. Ge, S. Zdonik, and S. Madden. Top-k queries on uncertain data: On
score distribution and typical answers. In SIGMOD 2009.

[13] M. M. Guntzer and D. Jungnickel. Approximate minimization algo-
rithms for the 0/1 knapsack and subset-sum problem. In Operations
Research Letters 2000.

[14] A. Henrich. A distance scan algorithm for spatial access structures. In
ACM GIS 1994.

[15] G. Hjaltason and H. Samet. Distance browsing in spatial databases. In
TODS 1999.

[16] G. R. Hjaltason and H. Samet. Ranking in spatial databases. In SSD,
pages 83–95, 1995.

[17] M. Hua, J. Pei, W. Zhang, and X. Lin. Ranking queries on uncertain
data: A probabilistic threshold approach. In SIGMOD 2008.

[18] R. Kohavi and D. Sommerfield. Feature subset selection using the
wrapper model: Overfitting and dynamic search space topology. In Conf.
on Kowledge Discovery and Data Mining 1995.

[19] G. Kollos, D. Gunopulos, and V. Tsotras. Nearest neighbor queries in
mobile environment. In STDBM 1999.

[20] H.-P. Kriegel, P. Kunath, and M. Renz. Probabilistic nearest-neighbor
query on uncertain objects. In DASFAA 2007.

[21] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in
spatial network databases. In VLDB 2003.

[22] N. Roussopoulos, S. Kelley, and Frederick. Nearest neighbor queries.
In SIGMOD 1995.

[23] M. A. Soliman, I. F. Ilyas, and K. C. Chang. Top-k query processing
in uncertain databases. In ICDE 2007.

[24] X. Xiong, M. Mokbel, and W. Aref. SEA-CNN: scalable processing of
continuous k-nearest neighbor queries in spatio-temporal databases. In
ICDE 2005.

[25] M. L. Yiu, N. Mamoulis, and Y. Tao. Efficient quantile retrieval on
multi-dimensional data. In EDBT 2006.

