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Abstract— K Nearest Neighbor search has many applications
including data mining, multi-media, image processing, and mon-
itoring moving objects. In this paper, we study the problem of
KNN over multi-valued objects. We aim to provide effective
and efficient techniques to identify KNN sensitive to relative
distributions of objects. We propose to use quantiles to summarize
relative-distribution-sensitive K nearest neighbors. Given a query
Q@ and a quantile ¢ € (0,1], we firstly study the problem of
efficiently computing K nearest objects based on a ¢-quantile
distance (e.g. median distance) from each object to (). The second
problem is to retrieve the K nearest objects to () based on overall
distances in the “best population” (with a given size specified by
¢-quantile) for each object. While the first problem can be solved
in polynomial time, we show that the 2nd problem is NP-hard. A
set of efficient, novel algorithms have been proposed to give an
exact solution for the first problem and an approximate solution
for the second problem with the approximation ratio 2. Extensive
experiment demonstrates that our techniques are very efficient
and effective.

I. INTRODUCTION

Given a set D of objects (points) in a d-dimensional metric
space and a d-dimensional query object (point) g, the K near-
est neighbor search retrieves the K closest objects to g from
D. The conventional KNN search has been extensively studied
[15], [22] with a wide spectrum of applications including data
mining, contents-based image retrieval, and location based
services. In this paper, we study the problem of K nearest
neighbor search over objects each of which has a collection
of values (instances) without temporal constraints specified;
that is, we do not deal with sequence databases [1], [18].

The existing model, probabilistic KNN, is to apply the
uncertain semantics to each object by treating the collection of
instances of each object mutually exclusive. It aims to catch
relative distributions among objects with multi-instances. The
two semantics of ranking top-k uncertain tuples are employed
in a probabilistic KNN model: 1) retrieving k tuples that
can co-exist in a possible world (e.g. U-topk) [23], and 2)
retrieving tuples according to the probability that a tuple is
top-k or at a specific rank in all possible worlds (e.g. U-
kRanks and PT-k) [23], [17] '. While various probabilistic
NN models are proposed in [3], [5], [20], a probabilistic KNN
model over uncertain data has been proposed following U-topk
ranking semantics [6]. In these probabilistic KNN models,
the probability for an object to be KNN to a query object is
calculated to define the result of a KNN. Nevertheless, below
we show that the probabilistic KNN models may provide

IWhen k = 1, these two models are the same.

results insensitive to relative distributions of instances of
objects.
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Fig. 1. Motivating Example

Motivating Example. Let £ = 1. In gymnastics, suppose
that we want to select the “best” balance-beam player among
all candidates to participate a world championship. The
scores of two players A and B, based on the most recent
n games/attempts, are depicted in Figure 1(a), respectively.
Assume that the 2n scores of A and B (n for A and n for B)
are distributed from 9.99 to 9.0 as depicted in Figure 1(a).
Assume that we approximately treat each player as an
uncertain object and the score of an attempt as an instance
with the equal occurrence probability. It can be immediately
verified that based on the existing probabilistic NN models,
player A and player B have the same probability, %, to be
the nearest neighbor of the query point ¢ (i.e. the score 10)
if |10 — score| is used as the distance metric. We permutate
the distribution in Figure 1(a) by swapping the two pairs of
instances of A and B as depicted in Figure 1(b). It is immediate
that A and B still have the same probability, %, to be the
nearest neighbor regarding the score distribution after these
two permutations. Choosing [ = 3, the score distribution in
Figure 1(a) is eventually modified to the score distribution
in 1(c) after 5 such pairs of permutations; consequently, the
nearest neighbor probabilities of A and B, respectively, remain

unchanged, %, regarding the distribution in Figure 1(c).
Quantile-Based KNN. The examples in Figures 1 (a)-(c)
demonstrate that the existing probabilistic KNN models may



be insensitive to relative distributions of object instances.
Very recently, in [10] a novel model based on the expected
rank for ranking top-k uncertain objects has been proposed.
Regarding the distributions and the permuted intermediate
distributions as depicted above in Figures 1 (a)-(c), player A
and B always have the same expected rank. Moreover, in the
above application we do not need to enforce the uncertain
semantics among multi-instances of each player by treating
them mutually exclusive. Motivated by these, we treat each
player as a multi-valued object.

Quantiles [25] may provide a succinct summary of data
distributions. In this paper, we investigate the KNN problem
over multi-valued objects based on a ¢-quantile distance (¢ €
(0,1]) from a multi-valued object to a query Q; for example,
the median is the 0.5-quantile. We extend our investigation to
the KNN problem over multi-valued objects based on overall
distances in the “best population” (with a given size specified
by ¢-quantile) regarding each object; such overall distances
are called a ¢-quantile group-base distance.

Regarding the above example, our KNN problem based on
0.5-quantile distances is to rank players based on their median
performances, respectively. The KNN problem based on a 0.5-
quantile group-base distance is to rank players based on their
overall performances of the top-50% of scores, respectively.

The above example contains multi-valued objects in a 1-

dimensional space and the query is a single-valued point. Nev-
ertheless, our investigation covers the applications where data
objects consist of multiple instances in a d-dimensional space
and a query object may also consist of multiple instances in a
d-dimensional space. For instance, in NBA the performance of
a player per game may be measured by his statistics (scores,
assists, rebounds, steals, blocks) and may be treated as an
instance of the player; consequently, each player has a set of
instances. Suppose that a team wants to sign a contract with
player A and wants to find his market value. The team may
want to find out the top-k “similar” NBA players, with existing
contracts, to A against their recent game statistics. Then, the
team can use the salaries information of these k-players to
project the salary level of A.
Contributions. To the best of our knowledge, this is the first
paper to study KNN problems regarding quantiles over multi-
valued objects. Yiu et al [25] develop efficient techniques to
compute quantile-distances among data points; nevertheless
the techniques are not applicable to our problem due to the
following reasons. Firstly, the query object in our problem
setting may have multiple instances and we count all pair com-
binations between an object and a given query object, while the
computation of multi-source-based quantile-distances in [25]
is to compute the distance of an instance to its nearest given
source. Secondly, the quantile group-base distance problem
studied in this paper is NP-hard. Our contribution may be
summarized as follows.

« We make the first attempt to identify KNN sensitive to

the relative distributions among multi-valued objects.

« Efficient, novel techniques are proposed for computing

quantile distance based KNN against a set of multi-valued

objects and a given query object that is also multi-valued.
¢ We show that the problem of KNN against the quantile

group-base distance is NP-hard. Novel and efficient al-

gorithms are proposed with the approximation ratio 2.

As a byproduct, our techniques to compute a ¢-quantile
distance is O(n) if single-valued object is involved while the
technique in [25] is O(nlogn) where n is the number of
instances. Besides the theoretical analysis, an extensive perfor-
mance evaluation demonstrates that the proposed techniques
are both efficient and effective.

The rest of the paper is organized as follows. In Section
II, we formally define the problems and provide some neces-
sary background information. In Section III, we present the
framework of our algorithms to conduct KNN against these
2 quantile-based KNN problems. Section IV and Section V
present query processing techniques for these two KNN prob-
lems, respectively. In Section VI, we report our experiment
results. Related work is summarized in Section VII. This is
followed by conclusions.

II. BACKGROUND INFORMATION

We present problem definition and necessary preliminaries.
For reference, notions frequently used in the paper are sum-
marized in Table I.

Notation Definition
U set of of objects
U (@) multi-valued (query) object
E entry of R-tree
u (q) instance of U (Q)) - a point in d-dimensional space
w(u) (w(S)) | (total) weight of u (the set .S)

d(q,u) Euclidean distance between g and u
d°(E,E’) | distance lower-bound between E and E’
d"(E,E") | distance upper-bound between E and FE’
ds(Q,U) ¢-quantile distance of Q) and U
gbdy(Q,U) | ¢-quantile group-base distance of @ and U

QxU Cartesian product of instances from @) to U

TABLE I
THE SUMMARY OF NOTATIONS.

A. Problem Definition

Given a collection S of m elements, each element s; has
a weight w(s;) where 0 < w(s;) < 1 and Y.."  w(s;) = 1.
Let S be sorted increasingly on a search key f - a function;
that is, f(s;) < f(s;) if ¢ < j. Without loss of generality, in
this paper a sorted collection S of data elements, thereafter,
always means sorting S increasingly on a given search key
unless otherwise specified.

Definition 1 (¢-quantile of S): Given a ¢ (0 < ¢ < 1), the
¢-quantile Sy, of S is the first element s; in the sorted S on
the search key such that 377, w(s;) > ¢.

In our problem definition, an instance of an object U (or Q)
is weighted - weight gives the representativeness of an instance
in U. For instance, in the examples in Section I a game statistic
may appear multiple times; consequently a normalized weight



(the occurrence of an instance over the total occurrences of
all instances) may be used to indicate the representativeness
of an instance. Note that the total of such weights in U (or
Q) is 1.

A multi-valued object U is represented as {(u;, w(u;))|1 <
i < m} where u; is a point in a d-dimensional space, 0 <
w(u;)) <11 <i<m),and > ', w(u;) = 1. A query object
@ is also a multi-valued object. We use U/ to denote a set of
multi-valued objects.

For a given @ and each U € U, there are totally (|Q| x |U])
pairs of instances in ) x U where each pair (g;,u;) (¢; € Q
and u; € U) has the weight w(g;) X w(u;), namely w(g;, u;).
Clearly, > cq.,ev w(@) x w(u;) = 1. The Euclidean
distance d(q;, uj)2 between ¢; and u; is called the distance of
(q? ug). Let @ x U = {((¢i, uj), w(gi,uy)) | ¢ € Q & uj €
U}.

Definition 2 (¢-quantile distance of @ and U): Given a
¢ € (0,1], let Q x U be sorted increasingly on the search key
- the distance d(g;,u;) of each element (g;,u;). Then, the
distance of the ¢-quantile of @ x U is called the ¢-quantile
distance of () x U, denoted by dy(Q,U).

Definition 2 states that if (g, u) is the ¢-quantile of Q x U
(e, (Q x U)y = (q,u)) then d(g,u) is dg(Q,U).

Fig. 2. Distances between 2 Multi-Valued Objects

Example 1: Regarding the example in Figure 2, |Q| = 3
and |U| = 2. Assume that w(q1) = 3, w(g) = w(gs) = +;
w(uy) = w(ug) = 1. Consequently, Q x U consists of the
following six pairs sorted on their distances increasingly:

Q x U = {((gzuw),5), ((g3,u1),5) ((g3,u2),5)s
((q1,w1), 7)s ((g2,u2), 5), ((q1,u2), )}

Note that the %>-quantile and the $-quantile of @ x U are
the same (g3, u2). The 0.2-quantile distance dg.2(Q,U) of Q
and U is d(Q3, ’U,l), dof,(Q, U) is d(ql,ul), dg_@(Q, U) is also
d(Ch, ul)' U

Below, we specify a measure based on aggregates to define
the fop/best quantile-population of S.

Definition 3 (¢-quantile population of S): Given a S and
a ¢ € (0,1], a ¢-quantile population Sy p of S is a sub-
collection S’ of S such that the total weights of the elements
in S’ is not smaller than ¢ and removing any element from
S’ makes the total weights in the remaining sub-collection
smaller than ¢.

2Note that our techniques developed in this paper is based on Euclidean
distance; nevertheless they can be immediately extended to cover other
distance metrics.

Definition 4 (¢p-quantile group-base distance): Given a
¢ € (0,1], the ¢-quantile group-base distance of @ and U
is the minimum total weighted distance among ¢-quantile
populations of @) x U; that is, the minimum value of
> (guwyes W(@)w(u)d(g,u) with the constraint that S" is a
¢-quantile population of @ x U.

The ¢-quantile group-base distance between ) and U is
denoted by gbd,(Q, U). Note that for a ¢ € (0, 1], the example
below shows that gbd,(Q, U) is not always defined on the set
of the “consecutive” smallest distances. In fact, we will show
in Section 5 that the computation of gbds(Q,U) is NP-hard.

Example 2: Regarding Example 1, let ¢ = 0.5.
gbdo5(Q,U) = 3d(qa,u1) + gd(gs,u1) + §d(gs, uz) +
+d(g2, u2) instead of $d(q2,u1) + 3d(gs,u1) + §d(gs, uz) +
1d(q1,u1). Here, {((g2,w1), 5), ((g3,u1),5), (g3, u2), 5),
((q1,u1), §)} is not even a 0.5-quantile population of @ x U.

In fact, there are several 0.5-quantile populations of
Q x U, including {((g3, u1), g). (a2, u2), §). (g1, 1), 3)},
{((g2,u1), ). ((g2,u2), 5). ((q1,w1), 7)}, ete. O

Definition 5 (¢-Quantile KNN): Given a ¢ € (0,1], a set
U of multi-valued objects in a d-dimensional space, and a
multi-valued query object @, the ¢-quantile KNN problem is
to retrieve the set @ x of K objects from U/ such that for each
Ue®gand each U' e U — P, dy(Q,U) < dy(Q,U").

Definition 6 (¢-Quantile Group-base KNN): Given a ¢ €
(0, 1], a set U of multi-valued objects in a d-dimensional space,
and a multi-valued query object @), the ¢-quantile group-base
KNN problem is to retrieve the set ®x of K objects from
U such that for each U € ®x and each U’ ¢ U — Pk,

gbdy(Q,U) < gbdy(Q,U").

Problem Statement. In this paper, for a given ¢ € (0, 1], we
study the problems of efficiently computing the ¢-Quantile
KNN and the ¢-Quantile Group-base KNN.

B. Preliminaries

Given a collection S of m elements, each element s; has
a weight w(s;) where 0 < w(s;) < 1 and Y."  w(s;) < 1.
A naive way to compute the ¢-quantile is to firstly sort S
regarding a given search key f, and then scan the sorted list
to obtain the ¢-quantile of S. Clearly, the naive algorithm runs
in O(mlogm).

In [8], an efficient and effective partitioning technique
PARTITIONING (.5) is proposed to find an element s € S to
divide S into two sub-collections S7 and S5 with the following
properties:

1) for each s’ € Sy, f(s') < f(s); and for each s’ € S5,

f(s') = f(s).

2) |S1| > &m — 6 and [So| > Sm — 6.

Using the partitioning technique, in Algorithm 1 we present
an iteration-based algorithm to compute a ¢-quantile when .S
is not sorted.

In Algorithm 1, w(S;) denotes the total weights of the
elements in S;. When S has only one element, S; = Sy = ().

It is shown in [8] that the time complexity of PARTI-
TIONING () is linear - O(|S]). Consequently, each iteration



Algorithm 1: QUANTILE (S, ¢)

Input :S: a collection of m elements; ¢: 0 < ¢ < 37, w(s;);
f: specify a search key;
Output : ¢-quantile of S

1 (s, S1, S2) «— PARTITIONING (S);
2 if ¢ < w(S1) then
L call QUANTILE (51, ¢);
else
if ¢ > w(S1) + w(s) then
| call QUANTILE (S2, ¢ — w(S1) — w(s));
else
L return s;

X N Be W

runs in linear time regarding the current sub-collection size.
Recall the property 2 above in PARTITIONING (S). It is
immediate that the sizes of sub-collections involved in the
iterations in Algorithm 1 are exponentially reduced - at the ith
iteration bounded by ((15)""*m + ¢) where c is a constant;
consequently, the time complexity of Algorithm 1 is linear -
O(m). The correctness of Algorithm 1 immediately follows
from the property 1 of PARTITIONING (S5).

III. FRAMEWORK OVERVIEW

Our techniques for solving the ¢-quantile KNN and and the
¢-quantile group-base KNN for a given ¢ € (0,1] follow a
standard seeding-refinement paradigm outlined in Algorithm
2.

Algorithm 2: Framework
o Phase 1 - Seeding: Compute the ¢-quantile (or
¢-quantile group-base) distance from each of the K
chosen objects to Q).

o Phase 2 - Refinement: Determine the final solution for

¢-quantile KNN (or ¢-quantile group-base KNN).

In the seeding phase, we choose K objects and compute
their ¢-quantile distances (or ¢-quantile group-base distances);
assume that v, (Ag) is the maximal of these K ¢-quantile
distances (or the ¢-quantile group-base distances). In the
refinement phase, we use vx (Ax) and ¢ to effectively prune
objects and iteratively update vk (Ax) (if necessary).

Selecting K Objects in the Seeding Phase. Any K multi-
valued objects from U could be used for the seeding phase.
Clearly, the smaller vg is, the more powerful vx may be
used in the refinement for pruning. In our algorithm, we use
the mean ay of the multiple instances for each multi-valued
object U, and we use the mean a¢ of the multiple instances of
Q. Then we apply the KNN algorithm in [16] to obtain the K
nearest neighbors to ag from {ay | U € U}. Subsequently, we
use the K objects corresponding to these K nearest means to
aq as the K objects in the seeding phase for both ¢-quantile
KNN and ¢-quantile group-base KNN, respectively.

Data Structures. Below are the data structures used in the
seeding and refinement phases in our techniques. For each

Fig. 3.

Local aR-trees for Multi-Valued Objects

multi-valued object U € U, a local aR-tree is built to organize
its multiple instances. The aggregate information kept on each
intermediate entry is the sum of weights of instances indexed
by the entry. Namely, for every intermediate entry F in the
local aR-tree, we record the weight of E as the sum of weights
(total weights) of instances having E as an ancestor. Local
aR-trees will facilitate the efficient computation of ¢-quantile
(or ¢-quantile group-base) KNN and support effective pruning
techniques. Figure 3 shows the local aR-trees for @ and U
where each intermediate entry records w(E).

Besides, we maintain an R-tree on the MBBs of multiple
instances of objects. That is, for each object we first obtain
the MBB of its multiple instances. Then we build an R-tree
on these MBBs. This R-tree is called the global R-tree. Note
in the global R-tree, each leaf is an MBB of an object.

Distances between MBBs. Given two MBBs E and E’, we
compute the minimal and maximal distances d'°(E, E') and
d“?(E, E') between them as follows. For each dimension
(1 <3 < d), let Ig; and Ig/; denote the intervals on
which F and E’ are projected, respectively. The minimum
distance mindist;(E, E') between I ; and Ig/ ; is defined as
follows. If Ig ; overlaps with Ig ; then mindist;(E, E') =
0 otherwise mindist;(FE,E’) is the minimal value among
the distances of 4 pairs of the ends of Ig; and Ig ;.
mazxdist;(E, E’) is the the maximal value among the dis-
tances of 4 pairs of the ends of I ; and Ig/ ;.

d

d'°(E,E') = \j > (mindist;(E, E'))?

i=1

d

d"P(E,E') = $ > (maxdist;(E, E'))?

i=1

Figure 4 below shows representative examples. Note that
we can immediately verify that for each pair of instances
(u,u') where u is contained by E and v’ is contained by
E', d°(E,E") < d(u,u') < d"P(E,E"). Thus, d'°(E,E’)
and d"P(E, E') can be used as a lower- and upper- bound of
the distance of any pair in £ x E’. Immediately, computing
minimal/maximal distance between the two d-dimensional
MBBs requires O(d) time.

IV. $-QUANTILE KNN

We present our techniques for conducting ¢-quantile KNN
for a given ¢ € (0, 1]. We first present an efficient algorithm to
compute a ¢-quantile distance between ) and U instead of a
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brute-force computation; this will be used in the two phases.
Then, we present a set of novel pruning techniques in the
refinement phase, as well as the refinement algorithm.

A. Efficiently Computing ¢-Quantile Distances.

Given @, U, and a ¢ € (0,1], we present an efficient
algorithm to compute dy (@, U) in this section.

Naive Linear Algorithm. Firstly, for each (g;,u;) in Q x U,
we calculate its distance d(g;, u;) and its weight w(g;, u;) (=
w(g;)w(u;)). Then call Algorithm 1 to produce the ¢-quantile
(¢,u) of @ x U regarding the search key value (distance) of
each (¢;, u;) and the weight w(g;, u;) of each (g;, u;). Clearly,
dy(Q,U) = d(g,u) and the naive algorithm runs in linear time
regarding |@Q x Ul; that is, O(|Q x U]).

Pruning-based Linear Algorithm. While it is costly to
enumerate all pairs of instances in ) x U, intuitively most
pairs in Q x U are possible to be removed without enumerating
them. This may be done by using the local aR-trees of )
and U, respectively. Our algorithm is based on level-by-level
synchronous traversal on the local aR-trres of () and U. The
example below gives the basic idea of the algorithm.

dor
w=02 : w=0.3 : . w =02 .
(E1 E1)  (E1 E2) | (B2 E2)
. ' w=03 !
1 (Ez Eyp) |
Fig. 5. Prune Entries at the Current Level

Basic Idea. Suppose that the root R of local aR-tree of ) has
2 entries (F1, E5), and the root Ry of loca aR-tree of U has 2
entries (E/, E}). Totally, the 4 pairs of entries are depicted in
Figure 5 where the two ends of each interval, corresponding
to (E;, E}), are d'°(E;, E}) and d"?(E;, E}), respectively, and
w(E;, E;) is also shown as w. Assume that a lower-bound df;
and an upper-bound d” of dy(Q,U) are as what are depicted
in Figure 5, respectively.

Since d“P(E, E}) is smaller than dg’, (E1, E]) can be
removed. The pair of (E2, F}) can also be removed because
d'°(Ey, E}) is larger than d:;p . Consequently, we only focus
on 2 pairs of entries, (E1, F}) and (E2, E}), in the next level
iteration. As the distance of any pair of instances in (E7, E})

is guaranteed to be smaller than d(Q, U) and the total weight
of (E1, EY) is 0.2, from the next level we only need to find the
(¢—0.2)-quantile distances in the remaining pairs of instances.
This is the basic idea of our algorithm.

Algorithm Description. We outline our algorithm in Algorithm
3 below in a recursive fashion. Note that the input of the
algorithm is a collection of pairs of entries - initially, Rg X Ry
where Rg (Ry) is the set of the entries in the root of the local
aR-tree of Q) (U).

Algorithm 3: QUANTILE-DISTANCE (Rqg x Ry, ¢)

Inmput : Ro X Ry; ¢: 0< ¢ <1
Output : dy(Q,U)

10:=0;T1:=0; T2 :=0;

2 if Rg x Ry only contains leaf entries then

3 | call Algorithm 1 on Rg x Ry and ¢

4 else

5 Calculating df; and dzp regarding Rg x Ry;
6 for each (E, E’) € Rg x Ry do

7 if d“?(E, E') > d; and d'°(E, E') < d” then
8 L T = {(E'7 El)}UTl

9 else if d“?(E, E') < d'¢ then

10 | 6:=0+w(E)x w(E")

1 for each (E, E’) € T} do

12 | T»:=T» U ENUMERATING(E, E')

13 | QUANTILE-DISTANCE (T3, ¢ — 0);

In Algorithm 3, lines 7 and 8 remove the pairs, with their
maximum distances smaller than dg’ or minimum distances
larger than d;‘)p , from T3 (i.e. no further exploring). Lines 9
and 10 cumulatively record the total weights 6 of removed
pairs of entries with the maximum distance smaller than dfzf’.
Lines 11 and 12 enumerate all the remaining pairs of entries in
the next level for the next iteration; this will be shown in the
example below. To ensure the correctness, in the next iteration,
we compute the (¢—6)-quantile distance from remaining pairs
of instances.

Example 3: Continue the example (Figure 5) in the part of
Basic Idea. Using Algorithm 3, Ty = {(E1, EY), (E2, E])} in
the 1st iteration and 6 = 0.2.

Assume that the child node, NODE(E)), of R correspond-
ing to the entry E; has two entries {E1 1, E1 2}, NODE(Es)
contains {Fy 1, Ea2}, NODE(E]) contains {Ef j, F],},
and NODE(E3) contains {Fjq, Ej,}. In Algorithm 3,
ENUMERATING(E}, E}) generates the 4 pairs of entries,
{(E11, E3q), (B, B ), (Bre, Eyy), (B, B o)} Sim-
ilarly, ENUMERATING(E>, E) generates the 4 pairs of en-
tries, {(E2,1, B 1), (B2, Bl ), (B2, B y), (B2, Bl )}
These 8 pairs (in T») together with (¢ — 0.2) are sent to the
next iteration - QUANTILE-DISTANCE (7%, ¢ — 0.2). I

Remark 1: If {E;,Es} are the leafs (i.e. points), then
they have no corresponding children nodes. In this case,
ENUMERATING(E,, E) and ENUMERATING(E,, E})
generate 4 pairs of entries in total: {(E1, E3 1), (E1, E3,),
(Ea, B 1), (B2, E] 5)}. Similarly, if {E7, E5} are the leafs,



then the following 4 pairs of entires are generated for the next
iteration: {(E]_J,Eé), (El’Q,Eé% (Eg’l,Ei), (EQ)Q,Ei)}. O

Calculating dl¢o and dzp . In Algorithm 3, at each iteration we
need to calculate df; and dg” (line 5) except that all entries
are at the leaf level. Assume that at the jth iteration, there
are [ pairs of entries left; that is, 7o = {¢; | 1 < i < [}
- each t; with the form (F,E’) where E is an entry from
the local aR-tree of @ and E’ is an entry from the local ar-
tree of U. Recall that the maximum distance d"?(¢;) and the
minimum distance d'°(¢;) are defined on a pair ¢; of entries
in Section III. Suppose that in the current iteration, we want
to compute the ¢’'-quantile distance dy (7) in 7 where T
denotes the collection of pairs of instances each of which has
an element in 75 as the ancestor; that is, for each pair of
instances (q,u) € 7, (E,E’") € Ty such that E contains ¢
and E’ contains u.

Let the ¢'-quantile of T, regarding the search key d'°(t;),
be (EL,EL’), and the ¢'-quantile of T%, regarding the search
key d“P(t;), be denoted by (EU, EU").

Theorem 1: d"°(EL,EL") < dy(T) < d“?(EU, EU’).

Proof: According to the definition of the ¢’-quantile
distance, it is immediate that Zdlo(t)§d¢/(T),teT2 w(t) > ¢';
consequently, d'°(EL, EL") < dy(T).

Similarly, according to the definition of ¢’-quantile dis-
tance, Zd“p(t)<d¢/(7),t€T2 w(t) < ¢'. Therefore, dy (7) <
d“r(EU, EU"). ]

Theorem 1 implies that d'°(EL, EL') and d"P(EU, EU')
are a lower-bound and an upper-bound, respectively, of
de (T). Thus, in line 5 of Algorithm 3, we calculate
d°(EL,EL') and d*?(EU, EU’). Clearly, this can be done
by Algorithm 1 in linear time.

Time Complexity. In each iteration, our algorithm is linear
regarding |T3|; that is, O(|T»|). Since the total entries in the
local aR-trees of @ and U are (|Q|) and O(|U]), respectively,
Algorithm 3 runes in linear time regarding |Q x U]; that is,
o(|Q x UJ).

Correctness. The following theorem can be immediately ver-
ified based on the definition of ¢-quantile distance.

Theorem 2: Let 6 denote the total weights of the pairs of
entries so far pruned by df; at each iteration. Then, dy_o(7) =
dy(Q,U) where 7 consists of all remaining pairs of instances
after the current iteration.

Theorem 1 and Theorem 2 imply that Algorithm 3 is correct;
that is, it can produce dy(Q,U).

Filtering while Enumerating. Algorithm 3 can be im-
proved when enumerating children pairs in line 12 -
ENUMERATING(FE, E’). For every enumerated pair ¢ of
children entries, before adding to 7> we check if it can be
pruned by the current distance lower and upper bounds. Then
T, keeps only the remaining pairs of children entries for the
next iteration. Note that in 6, we also include the total weights
of children pairs pruned by the current lower bound df; .
Example 4: Continue Example 3. The enumerated 8 pairs
are depicted in Figure 6. The pair (Ey 1, E] ;) with the weight

0.1 is pruned by the current dfbo. Consequently, the remaining
7 pairs (put in 75) and (¢ — 0.2 — 0.1) are used to call
QUANTILE-DISTANCE () for the next iteration.

d/()|

(@) |
child entry pairs of(E1 E,") |

N\ W=005,  w=005

T 0 U
 EraBax)  (Ban Bad)
| w =01 w =01

(E12 Ez1) (E12 Epp

Fig. 6. Filtering while Enumerating

Note that the time complexity of Algorithm 3, by adding
the technique “Filtering while Enumerating”, remains the same

o(lQl x |U]).
B. Refinement Algorithm

In the seeding phase, after dy(Q,U) is calculated for each
U of chosen K objects. A max_heap maintains the K objects
based on their ¢-quantile distances; vx is the maximum of
these K ¢-quantile distances and sits on the top. Our refine-
ment algorithm for generating the final result for ¢-quantile
KNN is outlined below in Algorithm 4. In the algorithm,
we effectively use vx and ¢ to prune as many entries, in
the global R-tree on MBBs of objects and local aR-trees, as
possible. Since “closer” objects have a better chance to be in
the final result of KNN (thus a better chance to reduce v ), we
traverse the global R-tree based on the priority that an entry
E with the smallest minimum distance to the MBB of @ will
be visited first. This can be done by maintaining a heap I on
the currently extended entries.

Algorithm 4: Refinement

1 while H # () do

2 E := deheap(H);

3 if not PRUNED1(Q, E) then
4

5

if F is an intermediate entry then
L add MBBs of the child entries to H

6 else /* E corresponds to an object U %/
7 if not PRUNED2(Q, E)) then

8 call Algorithm 3 to compute dy(E, Q);

9 if dy(Q, E) < vk then

10 | update current KNN

11

In Algorithm 4, we initially load to H the entries MBBs in
the root node of the global R-tree. Then we iteratively apply



PRUNEDI(E, Q) to the heap top E by using the pruning rules
below in Section IV-C for the global R-tree. If E' cannot be
pruned (i.e. PRUNED1(Q, F) returns FALSE), then we add
to H the entries of the child node with £ as the MBB when
E is an intermediate entry. When E cannot be pruned and F
is the MBB of an object U, we apply the pruning rules below
in Section IV-C on an individual object, PRUNED2((Q, E), to
prune U (PRUNED2(Q, E) returns TRUE if pruned) or “trim”
the entries in the local aR-tree of U.

C. Pruning Rules

Pruning Rules 1 and 2 attempt to prune an entry in the
global R-tree, while Pruning Rule 3 is to further examine the
“details” of a remaining object using its local aR-tree.

Pruning an Entry E of Global R-tree. Pruning Rules 1 and
2 below use @ to prune an entry F of the global R-tree. The
correctness of Pruning Rule 1 is immediate.

Pruning Rule 1. (Distance based:) If d'°(Eq, E) > v, then
E can be pruned where Eg is the MBB of ) and E is an
entry of the global R-tree. (E is pruned means that all objects
indexed by £ can be pruned).

Note that the minimum distance between two MBBs is
defined in Section III and can be calculated in constant time.
Next, we present Pruning Rule 2.

Regarding the local aR-tree aRg of (), a set I' of entries
in aRg is a yx-cover of aRg if 1) there are no 2 entries
in I' with the descendent relationship, 2) for each F; € T,
d"(E;,E) < vk, and 3) for each entry E’ which is not an
ancestor nor a descendent of any entry in T, d'°(E’, E) > k.
The following theorem is immediate from the definition of ¢-
quantile distance.

Theorem 3: Let I' be a ~g-cover of Rg. If
Yomer W(E') < ¢, then for each U € E, dy(Q,U) > k.

Clearly, if we can find a yx-cover satisfying the condition
in Theorem 3, then £ can be pruned.

Pruning Rule 2. (Weights based.) If there is a yx-cover I' with
> mer W(E') < ¢, then E can be pruned.

Note that there could be many vyx-covers as shown in
Example 5.

E1g E, E; Ezjl
Ei, E22
E
Eig ¢ 23
s [
Fig. 7. ~yx-Cover

Example 5: As depicted in Figure 7, the yx-covers can be
{El,EQ}, {El,EQ,g}, {E173,E2}, {E173,E2,3}. If E173 and
E5 3 have child entries, more alternatives could be enumerated.
They possibly have different total weights.

A yg-cover I is minimum if ), . w(E') is minimized. In
example 5, {Ej 3, E2 3} has the smallest weight among those

4 covers. Clearly, the minimum g has the maximal pruning
power since ), . w(E') is minimized.

Executing Pruning Rule 2. Although a minimum ~yg-cover
can be computed by traversing alZg level-by-level from the
root, we will not always try to get a minimum ~yx-cover if £
can be pruned earlier. We visit alRg level-by-level from the
root. At each level 4, we generate a todo list T'D; (initially ),
and remove/trim the child entries E’ of the entries in TD;_1,
if d'°(E', E) > k. For each remaining child entry E’ (not
trimmed), E’ with d"P(E’, E) < ~k will not be extended
at the next level since all its decedent entries always have
their minimum (and maximum) distances not greater that -y
- we cumulate w(E') in A; E’ with d*P(E', E) > ~vi will
be extended in the next level for further trimming (thus, it is
put into T'D;). E is pruned and we terminate the execution of
Pruning Rule 2 if the value of A plus the total weights of the
entries in T'D; is not greater than ¢. Note that if E cannot be
pruned, then the execution terminates if either the the current
TD; is empty or at the leaf level. Moreover, at the root level
(i.e. ¢ = 1), we assume that T'Dg consists of the MBB Eg of
Q.

Clearly, the execution of Pruning Rule 2 terminates if E is
pruned or the minimum value of ~yx-cover is obtained (A +
the total weights in current 7'D). If E is the MBB of an object
U (i.e. corresponds to U) and U cannot be removed, then we
record the obtained total weights of the minimum ~yx-cover
in A¢ and record its trimmed aR-local tree by aRq ¢rim- A
will be used in the next pruning rule, and aR ¢rim Will be
used in line 8 to call Algorithm 3 if U cannot be pruned by
the next pruning rule.

Example 6: Continue Example 5 regarding Figure 7. Sup-
pose that the root of alRg contains entires Iy and Ey. T'Dy =
{Eq}. At the root level, we obtain D = {E1, E5} regarding
the depicted ;. At the next level, Eq 1, E1 9, E2 2, Fo; are
trimmed; consequently, 7Dy = {E13,E33} and A = 0 if
dup(E173,E) > YK and dup(EQ,g,, E) > VK- If w(TDQ) < (Z),
then E will be pruned; otherwise we go to the next level for
further exploring.

In case that d"P(E; 3, FE) < yx and d"P(Ey3,E) < 7k,
T D, remains ) and A = w(E; 3)+w(F23). If A > ¢ then F
cannot be pruned. Since T'D, = (J, the execution of Pruning
Rule 2 terminates. If I is an object, then we record Ay and
aRQ trim- Here, Ag = w(E4 3) + w(Es2,3), and in aRQ trim.
Er1, Fi2, By, Eo 3 are pruned/trimmed. [

Remark 2: When we trim/remove entries of R-trees, we do
a “logic” removal by commenting them out.

PRUNEDI(Q, E). For each entry, we first check Pruning Rule
1 - PRUNEDI1(Q, E) returns TRUE if E is pruned. If F
cannot be pruned by Pruning Rule 1, then we invoke the above
execution of Pruning Rule 2; PRUNEDI1(Q, F) returns TRUE
if E is pruned.

Trimming the Local aR-Tree of U. Before conducting the
computation of ¢-quantile distance by Algorithm 3, we first
trim the entries of the local aR-tree by vx. We conduct this



in a level-by-level fashion from the root of the local aR-tree
in the same way as the execution of Pruning Rule 2 except
that we swap the role () with U; that is, ) becomes F, and U
becomes () in the execution of Pruning Rule 2. At each level
1 of aR-tree of U, we check the flowing pruning rule.

Pruning Rule 3. (Using Local aR-tree:) If (A + w(T'D;)) X
Ag < ¢, then U can be pruned. 3

Proof: From the definition of ¢-quantile distance, it is
immediate that if (A+w(TD;)) x Ag < ¢, then dy(Q,U) >
VK- u

PRUNED2(Q, E). As described above, the execution of Prun-
ing Rule 3 is the same as the execution of Pruning Rule 2
except that we swap the roles of @ and U and check Pruning
Rule 3 instead of Pruning 2 at each level. PRUNED2(Q, F)
terminates and returns TRUE if E is pruned; otherwise,
PRUNED2(Q, E) terminates at the leaf-level (or TD; = ()
and returns FALSE. When PRUNEDI1(Q, E) returns FALSE,
Rq trim X Ry trim 18 used as the input of Algorithm 3 for
computing dy(Q, U) instead of using Rg x Ryy. Here, Rg irim
(Ry,trim) consists of the untrimmed entries at the root of
aRq trim (aRy trim). Note that in Algorithm 3, level-by-
level we use only untrimmed entries from both aRg ¢rim and
aRy irim. We can further speed-up the computation by visiting
only the intermediate nodes, in aRq trim and alRQ irim,
respectively, with more than one child.

The correctness of Algorithm 4 immediately follows from
the theorems and pruning rules. Note that when Algorithm 3
is invoked, at each iteration we use the minimum value of g
and the obtained upper-bound dzzp as an upper-bound.

V. ¢-QUANTILE GROUP-BASE KNN

Our algorithm for solving the ¢-quantile group-base KNN
(¢ € (0, 1]) (defined in Section II-A) also follows the seeding-
refinement framework, Algorithm 2. For the seeding-phase,
firstly we show that computing a ¢-quantile group-base dis-
tance gbdy (@, U) between @ and U is NP-hard, and then an
existing algorithm is employed with the approximation factor
2 to approximately compute gbds(Q,U). In the refinement
phase, 2 novel, effective pruning techniques are developed.

A. Computing ¢-Quantile Group-base Distances

We first show that the Knapsack Problem can be converted
to a special case of our problem.

Knapsack Problem. It is NP-complete and can be formally
described below [11].

INSTANCE: Finite set .S, for each element s € S, an integer
size ¢(s), and an integer value v(s), and positive integers X
and Y.

QUESTION: Is there a subset S” of S such that ) ¢, c(s) <
Xand ) g v(s) =Y.

3Here, Ag is obtained as the weight of the minimum g -cover of the
local aR-tree of Q). A and T'D; are recorded when execute the Pruning Rule
2 at level ¢ and swap the roles of @) and U as described above.

NP-hardness. As defined in Section II-A, the problem of
computing gbd,(Q,U) can be stated below. Find a subset
S’ from @ x U such that Z(q,u)es’ w(q,u) > ¢ and
> (guwyes w(g,u)d(g,u) is minimized.

A special case of the problem of computing gbds(Q,U)
is that @ is a point with weight 1. In this case, each w(u)
(= w(Q,u)) may be arbitrarily assigned with the constraint
> wey w(u) = 1, and the location of each u can be chosen
so that w(@, u)d(Q,u) equals any integer.

If we normalize the above Knapsack Problem by normaliz-
ing each v(s) by % Then the normalized version of
Knapsack is also NP-complete. The decision problem of the
above spacial case of computing gbd,(Q,U) is the same as
the normalized Knapsack Problem. Consequently, the problem
of computing gbd,(Q,U) is NP-hard.

Theorem 4: The problem of computing gbd,(Q,U) is NP-
hard.

Approximately Computing gbd,(Q,U). If we want to max-
imize ) g v(s) with respect to a given X in the Knapsack
Problem, then there is PTAS; that is, a polynomial-time
approximation scheme giving an approximate factor arbitrarily
closer to 1. Nevertheless, there is no PTAS to approximately
minimize ) _g c(s) regarding a given Y.

We adopt the approximate algorithm in [13] for Knapsack
Problem. It runs in time O(mlogm), where m is the num-
ber of elements in S, with the approximation factor 2 for
minimizing ) g c(s) for a given Y. The algorithm can be
immediately used to approximately compute gbd,(Q,U) if
we treat @@ X U as S; and for each (q,u) € Q x U, treat
w(g,u) as a v value and treat w(q,u)d(q,u) as a ¢ value
in the Knapsack Problem. Let aproxgbds(Q,U) denote the
group distance output by the approximation algorithm. The
following theorem is shown [13].

Theorem 5: 1 < %W < 2.

We briefly present the basic idea of the algorithm in [13]
while applying it to computing gbds. It iteratively conducts
2 phases: Completion and Growing Seed-Set ST - initially
0 (w(ST) is always smaller than ¢). We firstly sort Q x U
increasingly based on d(g,w). In the Completion phase, for
each element (q,u) in the remaining @ x U with w(q,u) +
w(ST) > ¢, 1) replace the current feasible solution S’ if the
total weighted distance in ST U {(q,u)} is smaller than that
in S, and 2) remove (q,u) from @ x U. In Growing Seed-
Set ST, move the 1st element from the remaining @) X U to
ST. In each iteration, we first conduct Completion and then
Growing Seed-Set; the algorithm terminates and outputs the
total weighted distance in S’ if there is no element left in the
remaining @ x U.

Example 7: Suppose that ¢ = 0.5 and Q x U contains
4 elements. To simplify the presentation, we present these 4
elements only by its (distance, weight): {(1,0.28), (2,0.12),
(3,0.48), (4,0.12)}. In our algorithm, we first sort the list in-
creasingly based on the value of %ﬁf'm = distance.

In the 1st iteration, nothing is chosen in the Completion
phase since all elements with weight less than 0.5; ST



becomes {(1,0.28)} and (1,0.28) is removed from @ x U
in the Growing Seed-Set phase. In the 2nd iteration, S’ =
{(1,0.28), (3,0.48)} is chosen as a feasible solution and
(3,0.48) is removed @ x U in the Completion phase; ST
grows to {(1,0.28),(2,0.12)} and (2,0.12) is removed from
Q@ x U since (2,0.12) was the st element. In the 3rd iteration,
regarding Completion phase, (4,0.12) is removed from Q x U
as w(ST) + 0.13 = 0.52 > 0.5 and {(1,0.28), (2,0.12),
(4,0.12)} becomes S’ as its total weighted distance (1) smaller
than that (1.72) in S’ = {(1,0.28), (3,0.48)}. Consequently,
1 is output as approxzgbdy 5(Q, U); in this example it happens
approzgbdo.5(Q,U) = gbd(Q,U). O

Note that this approximate algorithm does not accommodate
a pruning-based level-by-level computation of gbdy(Q,U)
because it requires to access all elements.

B. Refinement

In the seeding phase, we use the above approximate algo-
rithm to approximately compute gbd,(Q,U) between () and
each of the chosen K objects. The largest obtained aproxgbdy,
value is denoted as A . The refinement algorithm follows the
similar framework outlined in Algorithm 4 in Section IV-B
except that:

o In PRUNDEI(Q, F) we will use the pruning rules below.

o remove line 7.

o call the above algorithm to (approximately) compute

gbdy(Q, U) instead of Algorithm 3.

o use aproxgbd, generated by the above approximate

algorithm and A to replace dy4 and g, respectively.

In the group with its total weighted distance gbds(Q,U),
instances may be from many different entries of the local aR-
tree of U. Consequently, it is not always possible to trim many
entries (subtrees) from the local aR-tree as what we do for
computing ¢-quantile KNN. Thus, in our refinement algorithm
we only develop pruning rules to prune entries in the global
R-tree.

Pruning Rule 4. Suppose that Eg is the MBB of Q. If ¢ x
clL(EQ7 E) > Mk, then E is pruned from the global R-tree.
The next pruning rule is used at each level. Suppose that
Ly = {E; | 1 < i < I} consists of all the entries at the
level k of the local aR-tree of (). Without loss of generality,
we assume that Ly, is sorted in the increasing order based on
dt(E;, B); that is, d¥(E;1, E) < d¥(Ejp, E) if il < i2. Let
E; denote the ¢-quantile of L; according to the search key
d*(E;, E) and the weight w(E;) of each element E; € L.

Pruning Rule 5. E is pruned if:

qwa )dL(E;, E) + Z

Executing PRUNDE1(Q, E). For an FE in the global R-tree,
we first check Pruning Rule 4; this is done by constant time.
If E cannot be pruned, then we traverse the local aR-tree of
Q level-by-level from the root to test Pruning Rule 5. To test
Pruning Rule 5 at each level k, we first need to sort Lj. The

) x d¥(E;, E)) > \k.

total time complexity for traversing the local aR-tree of @) to
test Pruning Rule 5 is thus O(|Q)|).

Accuracy Guarantee. Our algorithm for solving ¢-quantile
group-base KNN has the following accuracy guarantee.

Theorem 6: Suppose that for 1 < i < k, U; is ranked the
top-ith in the exact ¢-quantile group-base KNN, and U/ is
ranked the top-ith by our algorithms. Then for 1 < ¢ < k,
gbdy(Q,U;) < aproxgbdy(Q,U]) < 2gbdy(Q,Us).

Proof: First, it can be immediately verified that the object

U pruned (i.e., the entry E containing U is pruned) by Pruning
Rule 4 or Pruning 5 has the property that gbd,(Q,U) > Ak.
From Theorem 6, it follows that for 1 < ¢ < k, gbds(Q, U;) <
aproxgbds(Q,U!) < 2gbdy(Q,U;). [ ]

Theorem 6 states that every ith group-base distance (i €
[1, K]) output by our algorithm is between gbdy(Q,U;) and
2gbd4(Q,U;). Our experiment, nevertheless, indicates the er-
ror could be much smaller in practice.

VI. EXPERIMENTAL STUDY

We report a thorough performance evaluation on the effi-
ciency and effectiveness of our algorithms. In particular, we
implement and evaluate the following techniques.

Q-KNN: Techniques presented in Section IV to compute
KNN based on a ¢-quantile distance (¢ € (0, 1]).

Naive Q-KNN: Remove the pruning rules from Q-KNN.

G-KNN: Techniques in Section V to compute KNN based
on ¢-quantile group-base distances.

Naive G-KNN: Remove the pruning rules from G-KNN.

All algorithms are implemented in C++ and compiled by
GNU GCC. Experiments are conducted on PCs with Intel
Xeon 2.4GHz dual CPU and 4G memory under Debian Linux.
Our experiments are conducted on both real and synthetic
datasets.

Real dataset is extracted from NBA players’ game-by-game
statistics (http://www.nba.com), containing 339,721 records of
1,313 players. Each player is treated as a multi-valued object
where the statistics (score, assistance, rebound) of a player
per game is treated as an instance with the equal weight
(normalized).

Synthetic datasets are generated using the methodologies
in [4] regarding the following parameters. Dimensionality d
varies from 2 to 5 with default value 3. Data domain in each
dimension is [0, 1]. Number n of objects varies from 10,000
to 50,000 with default value 10,000. Number m of instances
per object follows a uniform distribution in [1, M] where M
varies from 400 to 2, 000 with the default value 400. The value
K varies among 5, 10, 20, 30 and 40 with default value 10. The
average length of object MBBs follows a uniform or normal
distribution. In normal distribution, the length of MBB lies in
the range [0, h] with the expectation value h/2 and standard
deviation 0.025; in uniform distribution, the length of MBBs
uniformly spreads over [0, h] where A varies from 0.05 to
0.25 with default value 0.05 (i.e., 5% of the edge length of the



whole data space). With the default setting, the total number
of instances is about 2 millions.

Centers of objects (objects’ MBBs) follow either uniform,
normal or anti-correlated distribution. Locations of instances
in an object follow uniform or normal distribution. Weights
assigned to each instance follow wuniform or normal dis-
tribution. Table II summarizes the parameters used in our
experiment where the default values are in bold font. For each
experiment, we randomly choose 100 objects from datasets as
query objects and record the average performance. Note that
default values will be used in our experiment unless otherwise
specified.

2,3,4,5
10k, 20k, 30k, 40k, 50k
edge length h 0.05, 0.1, 0.15, 0.2, 0.25
number of instances m | 400, 600, 800, 1k, 2k
K 5, 10, 15, 20, 30
[0} 0.1, 0.3, 0.5, 0.7, 0.9
object location uniform, normal, anti-correlated

dimensionality d
number of objects N/

instance location

uniform, normal

weight distribution

uniform, normal

h distribution

uniform, normal

TABLE I
PARAMETER VALUES.
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A. Computing ¢-Quantile Distance

Figure 8 evaluates the efficiency of our technique, Algo-
rithm 3, for computing a ¢-quantile distance, against the naive
algorithm described in Section IV-A. In our experiment, we
randomly select 1000 pairs of objects from the datasets to test
these 2 algorithms and report the average time by seconds.
Figure 8(a) shows that our technique has more advantages
when the number of instances increases. Figure 8(b) shows
that the advantage of using Algorithm 3 gets lower when
dimensionality increases. This is because that the pruning
costs in Algorithm 3 are proportional to the dimensionality.
When dimensionality increases, more pruning overheads are
involved. Nevertheless, Figure 8 indicates Algorithm 3 signifi-
cantly outperforms the naive algorithm. Therefore, we always
use Algorithm 3 in the remaining experiments. Note that we
did not evaluate the techniques in [25] since they are not
generally applicable to our problem.

B. Overall Performance

Figure 9 reports the results of the evaluation on processing
time of Q-KNN, Naive Q-KNN, G-KNN, Naive G-KNN over
real and synthetic datasets. As shown, Q-KNN and G-KNN
are much more efficient than their naive versions (i.e. without
using pruning techniques in the refinement phase) - upto 2
orders of magnitude. The improvement is less significant over
NBA data. This is because in NBA dataset, objects’ MBB
sizes are very large relative to the whole data space; this gives
very high overlapping degree among objects’ MBBs. Thus less
objects can be pruned during query processing.
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Fig. 9. Overall Performance

We further evaluate the pruning powers in the refinement
phase by conducting the following experiment. Regarding the
¢-quantile KNN, we examine the running time of Naive Q-
KNN, Naive Q-KNN with the Pruning Rule 1 (P1), Naive
Q-KNN with the Pruning Rules 1 and 2 (P1-2), and the Naive
Q-KNN with the Pruning Rules 1, 2, and 3 (P1-3, that is, Q-
KNN). Similarly, for ¢-quantile group-base KNN, Naive G-
KNN, Naive G-KNN with the Pruning Rule 4 (P4), and Naive
G-KNN with the Pruning Rules 4 and 5 (P4-5, that is, G-KNN)
are examined. The evaluation results are depicted in Figure
10. It shows that all these pruning rules are very effective and
efficient. These 2 experiments indicate that Q-KNN and G-
KNN are much more efficient than Naive Q-KNN and Naive
G-KNN, respectively. Thus, in the rest of experiments we will
no longer evaluate Naive Q-KNN and Naive G-KNN.
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Fig. 10. Pruning Powers

C. Accuracy

To evaluate the accuracy of G-KNN, we use two error
measures. The first is the average distance error ratio. For
1 <i < K, approx(i) denotes the group-based distance of
the top-ith object output by G-KNN, and ezxact(i) denotes the
group-based distance of the top-ith object in the exact solution.

K |approz(i)—ezact(i)|
i=1 exact(i)

K

err_ratio =



The second measure records the “misplaced” ratio. For 1 <
1 < K, if the ith object in the exact solution is not the same as
the ith object in the solution output by G-KNN, then mp(i) =
1.

>y mp(i)
K

As the ¢-quantile group-base KNN is NP-hard and no efficient
algorithm exists, we generate the exact solutions by a trivial
exhaustive search - it is exponential and very slow. We
conduct a very small scale experiment as follows. Each object,
including query object, has 4 instances; there are total 100
objects. Others all use the default settings in Table II. Table III
reports the evaluation results when object distribution varies,
while Table IV reports the results when the distribution of
weights varies. Both demonstrate G-KNN is highly accurate
and more accurate than the theoretical guarantee in Theorem
6; that is, err_ratio is much smaller than 2.

mp_ratio =

err_ratio | mp-_ratio
anti 0.015 0.02 err_ratio | mp-ratio
unif 0.013 0.02 unif 0 0
norm 0.015 0.04 norm 0.015 0.02
TABLE III TABLE IV

VARY OBJECTS DISTRIBUTION VARY WEIGHT DISTRIBUTION

D. Evaluating Impacts by Different Settings

Distributions. We evaluate possible impacts on algorithm
efficiency by distributions of centers of objects, locations of
instance, edge lengths of object MBBs, and weights. The
results (time in seconds) for Q-KNN and G-KNN are reported
in Table V, respectively. They demonstrate that Q-KNN is
not quite sensitive to various distributions but G-KNN is
quite sensitive towards different distributions. This is because
of the nature of ¢-quantile group-base distance - group-
base. Note that it is only meaningful for object locations to
have anti-distributions; consequently, we do not evaluate other
distributions using anti. Moreover, the experiment shows anti
always leads to more computation time; this is the reason why
we use anti as a default setting for locations.

Q-KNN G-KNN
unif norm anti unif norm anti
object_loc 0.9(s) | 0.8(s) | 1.1(s) 2.3(s) | 2.0(s) | 2.8(s)
MBB_length 1.1(s) | 1.2(s) * 2.8(s) | 2.9(s) *
instance_loc 1.1(s) | 1.0(s) * 2.8(s) | 2.3(s) *
weights 1.1(s) | 1.1(s) * 2.0(s) | 2.8(s) *
TABLE V

VARIOUS DISTRIBUTIONS

Impacts by Other Settings. In the next set of experiments,
we study the scalability of our algorithms regarding differ-
ent ¢-values, number of objects, number of instances (M),
lengths of MBB edges (h), K, and the dimensionality d.
In our experiments, we record the average running time per

query for each algorithm. While Q-KNN and G-KNN are not
quite sensitive to different ¢-values due to the nature of the
techniques developed, they are quite sensitive to the other
settings especially G-KNN. The techniques in G-KNN do not
have pruning rules for trimming object entries and the distance
computation techniques of G-KNN do not have any pruning
rules either. Thus, G-KNN is very sensitive to the increment
of number of objects, number of instances, MBB lengths, and
K. It is interesting to note that G-KNN runs faster when the
dimensionality d increases. This suggests that G-KNN prunes
more objects in the refinement phase when d increases. A
possible reason is that when we fix the MBB edge length, the
average area of MBBs gets smaller related to the whole data
space; consequently, Pruning Rules 4 and 5 are more effective
as they are group-based (thus, area based).
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E. Summary

Our performance evaluation indicates that Q-KNN is very
efficient and scalable. Although ¢-quantile group-base KNN is
inherently more complex, our G-KNN techniques still perform
quite efficiently. Furthermore, G-KNN is highly accurate and
performs much more accurate than the theoretical bound.

VII. RELATED WORK

Conventional NN or KNN search in a multidimensional
space is fundamental in data analysis and information retrieval.
Most existing techniques for NN and KNN search have been
developed based on popular spatial access methods such as
R-trees. The depth first search algorithm on R-trees is first
proposed by Roussopoulos et al [22]. The best first search
algorithm is proposed by Henrich [14] and is subsequently



optimized by Hjaltason and Samet [15] with the I/O opti-
mal performance guarantee. Efficient sub-linear approximation
techniques (PTAS) have been proposed by Arya et al [2].
Many variations of KNN search have been studied in different
contexts, including road networks [21], moving objects [19],
continuous queries [24], etc. Conventional KNN treats every
object as a point in multidimensional space.

KNN over uncertain objects are inherently different than
conventional KNN where each uncertain object takes a set
of mutually exclusive points in a multidimensional space. It
combines a distances measure with an uncertain top- K ranking
model. There are two models of ranking top-k uncertain tuples:
1) retrieving k tuples that can co-exist in a possible world
(e.g. U-topk) [23], and 2) retrieving tuples according to the
probability that a tuple is top-k or at a specific rank in all
possible worlds (e.g. U-kRanks and PT-k) [23], [17]. In KNN
over uncertain objects, the probability for an uncertain object
to be the KNN to a query object is cumulated over all possible
worlds and is used to rank an uncertain object. A number of
probabilistic models have been proposed [3], [5], [7], [20].
Recently, a new model based on expected ranks has been
developed in [10] to rank top-K uncertain objects. As shown
in Section I, they may not always be sensitive to the relative
distributions among object instances. Ge et al [12] study the
score distribution of top-K vectors and choose most typical
results from the score-probability dimensions; nevertheless,
the work seems hard to be extended to objects with multiple
instances.

As a tool to summarize data distribution, quantile compu-
tation has been extensively studied (e.g., [9], [25]). The most
related work is the quantile computation in a multidimensional
space [25]. In [25], two problems has been investigated: 1)
single source query, and 2) multiple sources query. The single
source problem is a special case of the problem of computing
a ¢-quantile distance in this paper where a query object has
only one instance and all instances have the same weight.
The problem of multiple sources are inherently different than
our problem. Thus, the techniques in [25] are not generally
applicable to our problem. Nevertheless, our techniques runs
in O(n) time when query object has only one instance, while
the single-source techniques in [25] runs in O(nlogn).

VIII. CONCLUSION

In this paper, we investigate the problem of KNN search
over multi-valued objects. In particular, we use the quantile
paradigm to retrieve KNN sensitive to the relative distribution
among multi-valued objects. Two quantile KNN models have
been proposed. One is based on a ¢-quantile ranking score
(e.g. median score) and another is based on the overall ranking
score of the ¢-quantile best population. We show that the
second KNN problem is NP-hard. A set of efficient, novel
techniques have been developed to process the first quantile
KNN problem. Due to the NP-hardness of the second KNN
problem, efficient approximate techniques with approximate
factor 2 are presented. We conduct extensive experiments

to illustrate the efficiency and effectiveness of our proposed
techniques.

The current algorithms developed are based on main-
memory computation. Although they can be immediately ex-
tended to support I/O involved computation, a possible future
work may investigate I/O efficient techniques for these 2 KNN
problems.
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