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Problem Definition
Graph Containment Query Problem

Given a graph database,                         ,and a query 
graph q, a graph containment query problem is to 
find the graphs from G in which q is a subgraph.
(find all q’s supergraph in G)

1 2{ , ,..., }nG g g g=
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Feature-based Index
Index construction generates a set of features, F, from the 
graph database G. Each feature, f, maintains a set of graph 
ids in G containing, f, sup(f).
Query processing is a filtering-verification process.
Filtering phase use the features in query graph q, to 
compute the candidate set.

Verification phase checks subgraph isomorphism for every 
graph in Cq. False positives are pruned.

sup( )q

f q f F

C f
⊆ ∧ ∈
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Feature-based Indexing
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Query Cost Model
The cost of processing a graph containment query q 
upon G is modeled as:

Cf: the filtering cost
Cv: the verification cost (NP-Complete)

Several Fact:
To improve query performance is to minimize |Cq|
The feature set F selected has great impacts on Cf and |Cq|
There is also an index construction cost, which is the 
cost of mining the feature set F

| |f q vC C C C= + ×



Brief Review
1.Feature-based Indexing
GraphGrep (PODS’02 D.shasha, J.T.L wang, and R. Giugno)

An efficient index construction process
Limited pruning power.

GIndex (SIGMOD’04 X. Yan, P.S. Yu and J. Han)
A costly index construction process
Great pruning power

2.Cluster-based Indexing
C-Tree (ICDE’06 H.He and A.K. Singh)
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Tree Features?
Regarding paths and graphs as index features:

The cost of generating path features is small but 
candidate set can be large
The cost of generating graph feature is high but 
the candidate set can be small

The key observation: the majority of frequent 
graph-features (more than 95%) are trees
How good can tree features do?



Frequent Feature Distributions

The Real Dataset (AIDS antivirus screen dataset) 
N=1000,  0.1σ =



The Feature Selection Cost: CFS
Given a graph database, G, and a minimum support
threshold, σ, to discover the frequent feature set F
from G.
Graph: two prohibitive operations are unavoidable

– Subgraph isomorphism
– Graph isomorphism

Tree: one prohibitive operation is unavoidable
– Tree-in-Graph testing

Path: polynomial time



The Candidate Set Size: |Cq|
Let pruning power of a frequent feature, f, be

Let pruning power of a frequent feature set

• Let a frequent subtree feature set of graph, g, be
T (g) = {t1, t2 , …, tn}. power(g) ≥ power(T (g))
• Let a frequent subpath feature set of tree, t, be
P (t) = {p1, p2 , …, pn}. power(t) ≥ power(P (t))

| | | sup( ) |power( )
| |

G ff
G

−
=

1
| | | sup( ) |

power( )
| |

n

i
G f

S
G
=

−
= ∩

1 2{ , ..... }nS f f f=



The Pruning Power



Indexability of Tree
The frequent tree-feature set dominates (95%).
Discovering frequent tree-features can be 
done much more efficiently than mining 
frequent general graph-features.
Frequent tree features can contribute similar
pruning power as frequent graph features do.
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Mining Graph Database
Generate trees by the enumeration tree. 
Use equivalence classes to prune enumeration space

Fast Frequent Free Tree Mining in Graph Databases. 
Peixiang Zhao, Jeffrey Xu Yu ICDM’06.

Compute canonical forms for trees effectively
Canonical forms for labbelled trees and their applications 
in frequent subtree mining. 
Yun chi, Yirong yang, Richard R. Muntz. Knoledge and 
Information System 2005.



The Enumeration Tree



Compute canonical form for tree
The cost of computing canonical forms for 
trees is much lower than the cost for graphs.
Complexity=O(c2·k·logk)

c is the maximal degree of the vertices in the tree
k is the number of vertices



Equivalence Classes



Mining Cost of Index Construction
Isomorphism

Graph isomorphism: maybe NP-Complete
Subgraph isomorphism: NP-Complete
Tree-in-Graph testing: maybe NP-Complete

Canonical Form
Graph: maybe NP-Complete
Tree: O (c2 k log k)
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Add Graph Features On Demand
Consider a query graph q which contains a subgraph
g

If power(T(g)) ≈ power(g), there is no need to index the 
graph-feature g.
If power(g) >> power(T(g)), it needs to select g as an 
index feature, because g is more discriminative than T(g), 
in terms of pruning.

• Select discriminative graph-features on-demand, 
without mining the whole set of frequent graph-
features from G.
• The selected graph features are additional indexing 
features, denoted Δ, for later reuse.



Discriminative Ratio
A discriminative ratio, ε(g), is defined to measure 
the similarity of pruning power between a graph-
feature g and its subtrees T(g).

A non-tree graph feature, g, is discriminative ifε(g) 
≥ε0.



Discriminative Graph Selection (1)
Consider two graphs g and g’, where

• If the gap between power(g’) and power(g) is large, reclaim g’ from G. 
Otherwise, do not reclaim g’ in the presence of g.

Approximate the discriminative between g’ and g, in the 
presence of frequent tree-features discovered.

'g g⊂



Discriminative Graph Selection (2)
Let occurrence probability of g in the graph DB be

The conditional occurrence probability of g’, w.r.t. g:

When Pr(g’|g) is small, g’ has higher probability to be 
discriminative w.r.t. g.



Discriminative Graph Selection (3)
The upper and lower bound of Pr(g’|g) become

because ε(g) ≥ ε0 and ε(g’) ≥ε0. recall:
=| sup( ) | / |G |x xσ



Discriminative Graph Selection (4)
Because 0 ≤ Pr(g’|g) ≤ 1, the conditional 
occurrence probability of Pr(g’|g), is solely 
upper-bounded by T(g’).



Algorithm
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An Experimental Study
We compared our Tree+Δ with gIndex (X. Yan, P.S. Yu, 
and J. Han,SIGMOD’04) and C-Tree (H. He and A.K. Singh, 
ICDE’06).
We used AIDS Antiviral Screen Dataset from the 
Developmental Theroapeutics Program in NCI/NH 
(http://dtp.nci.nih.gov/docs/aids/aids_data.html)

• 42,390 compunds from DTD’s Drug Information System.
• 63 kinds of atoms (vertex labels).
• On average, a compond has 43 vertices and 45 edges.
• At max, 221 vertices and 234 edges.

We also used the graph generator (M. Kuramochi and G. 
Karypis, ICDM’01).
We tested on a 3.4GHz Intel PC with 2GB memory.



Index Construction (Real Dataset)



Real Dataset: False Positive Ratio |Cq|/|sup(q)|)



|Cq|/|sup(q)|  and Query Time



Conclusion
Tree is an effective and efficient graph 
indexing feature to answer graph containment 
queries.
We analyze the indexibility for tree features.
We propose a Tree+Δ approach that holds a 
compact index structure, achieves better 
performance in index construction, and 
provides satisfactory query performance for 
answering graph containment queries.
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