
Graph Indexing: Tree + Delta>=Graph

Peixiang Zhao The Chinese University of Hong Kong
Jeffrey Xu Yu The Chinese University of Hong Kong
Philip S.Yu IBM T.J Watson Research Center

VLDB 2007

Part I Preliminaries
I. Preliminaries
II. Graph vs Tree vs Path
III. Implementations

3.1 Tree Feature
3.2 Graph Feature (Including Query Processing)

IV. Experimental Study
V. Discussion

Problem Definition
Graph Containment Query Problem

Given a graph database, ,and a query
graph q, a graph containment query problem is to
find the graphs from G in which q is a subgraph.
(find all q’s supergraph in G)

1 2{ , ,..., }nG g g g=

Problem Definition

C

C

C

C

C

C C

C

C

N

N

C

C

a b c
A Graph Database with Three Graphs

Problem Definition

C

C

C

C

C

C C

C

C

N

N

C

C

A query graph q

a b c
A Graph Database with Three Graphs

Problem Definition

C

C

C

C

C

C C

C

C

N

N

C

C

A query graph q

a b c
A Graph Database with Three Graphs

Feature-based Index
Index construction generates a set of features, F, from the
graph database G. Each feature, f, maintains a set of graph
ids in G containing, f, sup(f).
Query processing is a filtering-verification process.
Filtering phase use the features in query graph q, to
compute the candidate set.

Verification phase checks subgraph isomorphism for every
graph in Cq. False positives are pruned.

sup()q

f q f F

C f
⊆ ∧ ∈

= ∩

Feature-based Index

C

C

C

C

CC

N

N

C

C

C

C

C

C C

C

C

N

N

C

C

C C C C C

C

C

N

N

CC

C

C

C

C

C

C

C

(a) (b) (c)

f1 f2 f3 f4

C

C

Features

Graph DB

Feature-based Index

C C C C C

C

C

N

N

CC

C

C

C

C

C

C

C

f1 f2 f3 f4

C

C

Query

Features

Feature-based Indexing

C

C

C

C

CC

N

N

C

C

C

C

C

C C

C

C

N

N

C

C

C C C C C

C

C

N

N

CC

C

C

C

C

C

C

C

(a) (b) (c)

f1 f2 f3 f4

C

C

Features

Graph DB

Query Cost Model
The cost of processing a graph containment query q
upon G is modeled as:

Cf: the filtering cost
Cv: the verification cost (NP-Complete)

Several Fact:
To improve query performance is to minimize |Cq|
The feature set F selected has great impacts on Cf and |Cq|
There is also an index construction cost, which is the
cost of mining the feature set F

| |f q vC C C C= + ×

Brief Review
1.Feature-based Indexing
GraphGrep (PODS’02 D.shasha, J.T.L wang, and R. Giugno)

An efficient index construction process
Limited pruning power.

GIndex (SIGMOD’04 X. Yan, P.S. Yu and J. Han)
A costly index construction process
Great pruning power

2.Cluster-based Indexing
C-Tree (ICDE’06 H.He and A.K. Singh)

Part II Graph vs Tree vs Path
I. Preliminaries
II. Graph vs Tree vs Path
III. Implementations

3.1 Tree Feature
3.2 Graph Feature (Including Query Processing)

IV. Experimental Study
V. Discussion

Tree Features?
Regarding paths and graphs as index features:

The cost of generating path features is small but
candidate set can be large
The cost of generating graph feature is high but
the candidate set can be small

The key observation: the majority of frequent
graph-features (more than 95%) are trees
How good can tree features do?

Frequent Feature Distributions

The Real Dataset (AIDS antivirus screen dataset)
N=1000, 0.1σ =

The Feature Selection Cost: CFS
Given a graph database, G, and a minimum support
threshold, σ, to discover the frequent feature set F
from G.
Graph: two prohibitive operations are unavoidable

– Subgraph isomorphism
– Graph isomorphism

Tree: one prohibitive operation is unavoidable
– Tree-in-Graph testing

Path: polynomial time

The Candidate Set Size: |Cq|
Let pruning power of a frequent feature, f, be

Let pruning power of a frequent feature set

• Let a frequent subtree feature set of graph, g, be
T (g) = {t1, t2 , …, tn}. power(g) ≥ power(T (g))
• Let a frequent subpath feature set of tree, t, be
P (t) = {p1, p2 , …, pn}. power(t) ≥ power(P (t))

| | | sup() |power()
| |

G ff
G

−
=

1
| | | sup() |

power()
| |

n

i
G f

S
G
=

−
= ∩

1 2{ , }nS f f f=

The Pruning Power

Indexability of Tree
The frequent tree-feature set dominates (95%).
Discovering frequent tree-features can be
done much more efficiently than mining
frequent general graph-features.
Frequent tree features can contribute similar
pruning power as frequent graph features do.

Part III Implementations
I. Preliminaries
II. Graph vs Tree vs Path
III. Implementations

3.1 Tree Feature
3.2 Graph Feature (Including Query Processing)

IV. Experimental Study
V. Discussion

Mining Graph Database
Generate trees by the enumeration tree.
Use equivalence classes to prune enumeration space

Fast Frequent Free Tree Mining in Graph Databases.
Peixiang Zhao, Jeffrey Xu Yu ICDM’06.

Compute canonical forms for trees effectively
Canonical forms for labbelled trees and their applications
in frequent subtree mining.
Yun chi, Yirong yang, Richard R. Muntz. Knoledge and
Information System 2005.

The Enumeration Tree

Compute canonical form for tree
The cost of computing canonical forms for
trees is much lower than the cost for graphs.
Complexity=O(c2·k·logk)

c is the maximal degree of the vertices in the tree
k is the number of vertices

Equivalence Classes

Mining Cost of Index Construction
Isomorphism

Graph isomorphism: maybe NP-Complete
Subgraph isomorphism: NP-Complete
Tree-in-Graph testing: maybe NP-Complete

Canonical Form
Graph: maybe NP-Complete
Tree: O (c2 k log k)

Part III Implementations
I. Preliminaries
II. Graph vs Tree vs Path
III. Implementations

3.1 Tree Feature
3.2 Graph Feature (Including Query Processing)

IV. Experimental Study
V. Dicussion

Add Graph Features On Demand
Consider a query graph q which contains a subgraph
g

If power(T(g)) ≈ power(g), there is no need to index the
graph-feature g.
If power(g) >> power(T(g)), it needs to select g as an
index feature, because g is more discriminative than T(g),
in terms of pruning.

• Select discriminative graph-features on-demand,
without mining the whole set of frequent graph-
features from G.
• The selected graph features are additional indexing
features, denoted Δ, for later reuse.

Discriminative Ratio
A discriminative ratio, ε(g), is defined to measure
the similarity of pruning power between a graph-
feature g and its subtrees T(g).

A non-tree graph feature, g, is discriminative ifε(g)
≥ε0.

Discriminative Graph Selection (1)
Consider two graphs g and g’, where

• If the gap between power(g’) and power(g) is large, reclaim g’ from G.
Otherwise, do not reclaim g’ in the presence of g.

Approximate the discriminative between g’ and g, in the
presence of frequent tree-features discovered.

'g g⊂

Discriminative Graph Selection (2)
Let occurrence probability of g in the graph DB be

The conditional occurrence probability of g’, w.r.t. g:

When Pr(g’|g) is small, g’ has higher probability to be
discriminative w.r.t. g.

Discriminative Graph Selection (3)
The upper and lower bound of Pr(g’|g) become

because ε(g) ≥ ε0 and ε(g’) ≥ε0. recall:
=| sup() | / |G |x xσ

Discriminative Graph Selection (4)
Because 0 ≤ Pr(g’|g) ≤ 1, the conditional
occurrence probability of Pr(g’|g), is solely
upper-bounded by T(g’).

Algorithm

Part IV. Experimental Study
I. Preliminaries
II. Graph vs Tree vs Path
III. Implementations

3.1 Tree Feature
3.2 Graph Feature (Including Query Processing)

IV. Experimental Study
V. Discussion

An Experimental Study
We compared our Tree+Δ with gIndex (X. Yan, P.S. Yu,
and J. Han,SIGMOD’04) and C-Tree (H. He and A.K. Singh,
ICDE’06).
We used AIDS Antiviral Screen Dataset from the
Developmental Theroapeutics Program in NCI/NH
(http://dtp.nci.nih.gov/docs/aids/aids_data.html)

• 42,390 compunds from DTD’s Drug Information System.
• 63 kinds of atoms (vertex labels).
• On average, a compond has 43 vertices and 45 edges.
• At max, 221 vertices and 234 edges.

We also used the graph generator (M. Kuramochi and G.
Karypis, ICDM’01).
We tested on a 3.4GHz Intel PC with 2GB memory.

Index Construction (Real Dataset)

Real Dataset: False Positive Ratio |Cq|/|sup(q)|)

|Cq|/|sup(q)| and Query Time

Conclusion
Tree is an effective and efficient graph
indexing feature to answer graph containment
queries.
We analyze the indexibility for tree features.
We propose a Tree+Δ approach that holds a
compact index structure, achieves better
performance in index construction, and
provides satisfactory query performance for
answering graph containment queries.

Part V. Discussion
I. Preliminaries
II. Graph vs Tree vs Path
III. Implementations

3.1 Tree Feature
3.2 Graph Feature (Including Query Processing)

IV. Experimental Study
V. Discussion

	Graph Indexing: Tree + Delta>=Graph
	Part I Preliminaries
	Problem Definition
	Problem Definition
	Problem Definition
	Problem Definition
	Feature-based Index
	Feature-based Index
	Feature-based Index
	Feature-based Indexing
	Query Cost Model
	Brief Review
	Part II Graph vs Tree vs Path
	Tree Features?
	Frequent Feature Distributions
	The Feature Selection Cost: CFS
	The Candidate Set Size: |Cq|
	The Pruning Power
	Indexability of Tree
	Part III Implementations
	Mining Graph Database
	The Enumeration Tree
	Compute canonical form for tree
	Equivalence Classes
	Mining Cost of Index Construction
	Part III Implementations
	Add Graph Features On Demand
	Discriminative Ratio
	Discriminative Graph Selection (1)
	Discriminative Graph Selection (2)
	Discriminative Graph Selection (3)
	Discriminative Graph Selection (4)
	Algorithm
	Part IV. Experimental Study
	An Experimental Study
	Index Construction (Real Dataset)
	Real Dataset: False Positive Ratio |Cq|/|sup(q)|)
	|Cq|/|sup(q)| and Query Time
	Conclusion
	Part V. Discussion

