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ABSTRACT
Recent scientific and technological advances have witnessed
an abundance of structural patterns modeled as graphs. As
a result, it is of special interest to process graph contain-
ment queries effectively on large graph databases. Given a
graph database G, and a query graph q, the graph contain-
ment query is to retrieve all graphs in G which contain q as
subgraph(s). Due to the vast number of graphs in G and the
nature of complexity for subgraph isomorphism testing, it is
desirable to make use of high-quality graph indexing mecha-
nisms to reduce the overall query processing cost. In this pa-
per, we propose a new cost-effective graph indexing method
based on frequent tree-features of the graph database. We
analyze the effectiveness and efficiency of tree as indexing
feature from three critical aspects: feature size, feature se-
lection cost, and pruning power. In order to achieve better
pruning ability than existing graph-based indexing meth-
ods, we select, in addition to frequent tree-features (Tree),
a small number of discriminative graphs (∆) on demand,
without a costly graph mining process beforehand. Our
study verifies that (Tree+∆) is a better choice than graph
for indexing purpose, denoted (Tree+∆ ≥Graph), to ad-
dress the graph containment query problem. It has two im-
plications: (1) the index construction by (Tree+∆) is ef-
ficient, and (2) the graph containment query processing by
(Tree+∆) is efficient. Our experimental studies demonstrate
that (Tree+∆) has a compact index structure, achieves an
order of magnitude better performance in index construc-
tion, and most importantly, outperforms up-to-date graph-
based indexing methods: gIndex and C-Tree, in graph con-
tainment query processing.

1. INTRODUCTION
Recent scientific and technological advances have resulted

in an abundance of data modeled as graphs. As a general
data structure representing relations among entities, graph
has been used extensively in modeling complicated struc-
tures and schemaless data, such as proteins [3], images [4],
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visions [7], program flows [13], XML documents [15], the
Internet and the Web [6], etc. The dominance of graphs in
real-world applications asks for effective graph data manage-
ment so that users can organize, access, and analyze graph
data in a way one might have not yet imagined. Among
myriad graph-related problems of interest, a common and
critical one shared in many applications in science and en-
gineering is the graph containment query problem: given a
massive dataset with each transaction modeled as graphs,
and a query, represented as graph too, find all graphs in the
database which contain the query as a subgraph(s) [1, 4, 9,
20, 21, 23].

To answer graph containment queries effectively is chal-
lenging for a number of reasons. First, to determine whether
a graph in the database contains the query graph is a sub-
graph isomorphism problem, which has been proven to be
NP-complete [8]; Second, the graph database can be large,
which makes a sequential scan over the database imprac-
ticable. As to graph databases, existing database infras-
tructures might not answer graph containment queries in an
efficient manner. For example, the indices built on the la-
bels of vertices or edges are usually not selective enough to
distinguish complicated, interconnected structures. There-
fore, high performance graph indexing mechanisms need to
be devised to prune graphs that obviously violate the query
requirement. In this way, the number of costly subgraph
isomorphism testings is reduced, which is the primary mo-
tivation of our study.

The strategy of graph indexing is to shift high online query
processing cost to the off-line index construction phase. So
index construction is always computationally expensive be-
cause it requests deliberately selecting high quality indexing
features with great pruning power from the graph database.
The process of selection and evaluation of indexing features
is critical because features with higher pruning power are
superior to be selected as index entries. At the same time,
the number of indexing features should be as small as pos-
sible to keep the whole index structure compact, better to
be held in main memory for efficient access and retrieval.
In sum, a high quality graph indexing mechanism should be
time-efficient in index construction, and indexing features
should be compact and powerful for pruning purpose.

In this paper we present a new tree-based indexing ap-
proach to address the graph containment query problem.
Our work is motivated by an evidence that a large number
of frequent graphs in the graph database are trees in nature.
In fact, for many real-world datasets, over 95% of frequent
graphs are trees. It leads us to reconsider an alternative



Figure 1: A Graph Database with Three Graphs

Figure 2: A Query Graph

solution: “Can we use tree instead of graph as the basic in-
dexing feature?” Tree, which is also denoted as free tree,
is a special connected, acyclic and undirected graph. As a
generalization of linear sequential patterns, tree preserves
plenty of structural information of graph. Meanwhile, tree
is also a specialization of general graph, which avoids un-
desirable theoretical properties and algorithmic complexity
incurred by graph. As the middle ground between these two
extremes, tree becomes an ideal candidate of indexing fea-
tures over the graph database. The main contributions of
this paper are summarized below.

• We analyze the effectiveness and efficiency of trees
as indexing features by comparing them with paths
and graphs from three critical aspects, namely, fea-
ture size, feature selection cost, and pruning power.
We show that tree-features can be effectively and effi-
ciently used as indexing features for graph databases.
Our main results show: (1) in many applications the
majority of graph-features (usually more than 95%)
are tree-features indeed; (2) frequent tree-features and
graph-features share similar distributions and frequent
tree-features have similar pruning power like graph-
features; and (3) tree mining can be done much more
efficiently than graph mining (it is not cost-effective to
mine frequent graph features in which more than 95%
are trees).

• We propose a new graph indexing mechanism, called
(Tree+∆), that first selects frequent tree-features as
the basis of a graph index, and then on-demand selects
a small number of discriminative graph-features that
can prune graphs more effectively than the selected
tree-features, without conducting costly graph mining
beforehand. A key issue here is how to achieve the
similar pruning power of graph-features without graph
mining. We propose a new approach by which we can
approximate the pruning power of a graph-feature by
its subtree-features with upper/lower bounds.

• We conducted extensive experimental studies using a
real dataset and a series of synthetic datasets. We
compared our (Tree+∆) with two up-to-date graph-
based indexing methods: gIndex [23] and C-Tree [9].
Our study confirms that (tree+∆) outperforms gIndex
and C-Tree in terms of index construction cost and
query processing cost.

The rest of the paper is organized as follows. In Sec-
tion 2, we give the problem statement for the graph contain-
ment query processing, and discuss an algorithmic frame-
work with a cost model. In Section 3, we analyze the in-
dexability of frequent features (path, tree and graph) from

three perspectives: feature size, feature selection cost, and
pruning power. Section 4 discusses our new approach to
add discriminative graph-features on demand. Section 5
presents the implementation details of our indexing algo-
rithm (Tree+∆) with an emphasis on index construction and
query processing. Section 6 shows the related work concern-
ing the graph containment query problem over large graph
databases. Our experimental study is reported in Section 7.
Section 8 concludes this paper.

2. PRELIMINARIES
In this section, we introduce preliminary concepts and

outline an algorithmic framework to address the graph con-
tainment query problem. A cost evaluation model is also
presented on which our analysis of graph indexing solutions
are based.

2.1 Problem Statement
A graph G = (V, E, Σ, λ) is defined as a undirected la-

beled graph where V is a set of vertices, E is a set of edges
(unordered pairs of vertices), Σ is a set of labels, and λ is a
labeling function, λ : V ∪E → Σ, that assigns labels to ver-
tices and edges. Let g and g′ be two graphs. g is a subgraph
of g′, or g′ is a supergraph of g, denoted g ⊆ g′, if there
exists a subgraph isomorphism from g to g′. We also call g′

contains g or g is contained by g′. The concept of subgraph
isomorphism from g to g′ is defined as a injective function
from Vg to Vg′ that preserves vertex labels, edge labels and
adjacency. The concept of graph isomorphism can be de-
fined analogously by using a bijective function instead of an
injective function. The size of g is denoted size(g) = |Vg|.
A tree, also known as free tree, is a special undirected la-
beled graph that is connected and acyclic. For tree, the
concept of subtree, supertree, subtree isomorphism, tree iso-
morphism can be defined accordingly. A path is the simplest
tree whose vertex degrees are no more than 2.

Given a graph database G = {g1, g2, · · · , gn} and an arbi-
trary graph g, let sup(g) = {gi|g ⊆ gi, gi ∈ G}. |sup(g)| is
the support, or frequency of g in G. g is frequent if its sup-
port is no less than σ · |G|, where σ is a minimum support
threshold provided by users.

Graph Containment Query Problem: Given a graph
database, G = {g1, g2, · · · , gn}, and a query graph q, a graph
containment query is to find the set, sup(q), from G.

The graph containment query problem is NP-complete. It
is infeasible to find sup(q) by sequentially checking subgraph
isomorphism between q and every gi ∈ G, for 1 ≤ i ≤ n. And
it is especially challenging when graphs in G are large, and
|G| is also large in size and diverse. Graph indexing pro-
vides an alternative to tackle the graph containment query
problem effectively.

Example 2.1: A sample query graph, shown in Figure 2, is
posed to a sample graph database with three graphs, shown
in Figure 1. The graph in Figure 1 (c) is the answer. 2

2.2 An Algorithmic Framework
Given a graph database G, and a query, q, the graph con-

tainment query can be processed in two steps. First, a pre-
processing step called index construction generates indexing
features from G. The feature set, denoted F , constructs the
index, and for each feature f ∈ F , sup(f) is maintained.
Second, a query processing step is performed in a filtering-



Table 1: Frequent Features as Indices
|F| CFS |Cq| Comments

FP small low large simple structure, easy to be discovered, limited indexing ability
FT large intermediate small proper structure, easy to be discovered, good indexing ability
FG large high small complex structure, hard to be discovered, good indexing ability

verification fashion. The filtering phase uses indexing fea-
tures contained in q to compute the candidate answer set,
defined as

Cq =
\

f⊆q∧f∈F
sup(f) (1)

Every graph in Cq contains all q’s indexing features. There-
fore, the query answer set, sup(q), is a subset of Cq. The
verification phase checks subgraph isomorphism for every
graph in Cq. False positives are pruned from Cq and the
true answer set sup(q) is returned.

Eq. (1) suggests indexing structural patterns, that have
great pruning power, to reduce false positives included in
the candidate answer set, Cq. Furthermore, a small-sized
index including high-frequency features is preferred due to
its compact storage. However, it is often unknown before-
hand which patterns are valuable for indexing.

2.3 Query Cost Model
The cost of processing a graph containment query q upon

G, denoted C, can be modeled below

C = Cf + |Cq| × Cv (2)

Here, Cf is the total cost for filtering based on Eq. (1) in
the filtering phase. Every graph in Cq needs to be fetched
from the disk in the verification phase to verify subgraph
isomorphism, where Cv is such an average cost.

The key issue to improve query performance is to min-
imize |Cq| for a graph containment query, q. Intuitively,
|Cq| will be minimized if we index all possible features of G.
However, it is infeasible because the feature set, F , can be
very large, which makes the space complexity prohibitive,
and the filtering cost Cf becomes large accordingly. In other
words, enlarging F will increase the cost of Cf , but proba-
bly reduce |Cq|; On the other hand, reducing F will decease
Cf but probably increase |Cq|. There is a subtle trade-off
between time and space in the graph containment query
problem.

As seen above, the graph containment query problem is
challenging. An effective graph indexing mechanism with
high quality indexing features is required to minimize the
query cost C as much as possible. On the other hand,
the feature selection process itself introduces another non-
negligible cost for index construction, i.e., the cost to dis-
cover F from G, denoted CFS . A graph indexing mechanism
is also cost-effective if it results in a small feature set size
(or index size), |F|, to reduce Cf in the query processing. In
next section, we discuss the three major factors: |F|, CFS ,
and |Cq|, that affect C.

3. GRAPH VS. TREE VS. PATH
Frequent features (paths, trees, graphs) expose intrinsic

characteristics of a graph database. They are representa-
tives to discriminate between different groups of graphs in
a graph database. We denote the frequent path-feature set

as FP , the frequent tree-feature set as FT and the frequent
graph-feature set as FG. In the following, when we dis-
cuss different frequent feature sets, we assume that all the
frequent feature sets are mined with the minimum support
threshold σ. Note: FP ⊆ FT ⊆ FG. Because path is a spe-
cial tree, and tree is a spatial graph, we have the following.

FT ′ = FT −FP (3)

FG′ = FG −FT (4)

FG = FP ∪ FT ′ ∪ FG′ (5)

Here, FT ′ and FG′ denote the tree-feature set without any
path-features (nonlinear tree-features, Eq. (3)) and the graph-
feature set without any tree-features (non-tree graph-features,
Eq. (4)). The relationships among them are given in Eq. (5).
Note: FP ∩ FT ′ = ∅, FP ∩ FG′ = ∅, and FT ′ ∩ FG′ = ∅.

We explore the indexability of frequent features for the
purpose of addressing the graph containment query prob-
lem, and focus on the three major factors, namely, the size
of a frequent feature set (|F|), the feature selection cost
(CFS), and the candidate answer set size (|Cq|), that affect
the query processing cost C (Eq. (1)). Some observations
are summarized in Table 1 for path-feature set (FP ), tree-
feature set (FT ) and graph-feature set (FG). We discuss
each of them in detail below.

3.1 Feature Set Size: |F|
The size of a frequent feature set (|F|) is of special inter-

est because a space-efficient index is critical to query per-
formance, as mentioned in Section 2.3. Below, we discuss
different frequent feature sets: FG, FT , and FP w.r.t. fea-
ture set size.

To our surprise, among all frequent graph-features in FG

(Eq. (5)), the majority (usually more than 95%) are trees.
The non-tree frequent graph-feature set, FG′ , can be very
small in size, and the significant portion of FG is FT ′ , i.e.,
non-linear tree-features. FP shares a very small portion
in FG, because a path-feature has a simple linear structure,
which has little variety in structural complexity. We explain
the reasons below. First, for a non-tree frequent graph-
feature, g ∈ FG′ , based on the Apriori principle, all g’s
subtrees, t1, t2, · · · , tn are frequent, in other words, ti ∈ FT ,
for 1 ≤ i ≤ n. Second, given two arbitrary frequent non-tree
graph-features, g and g′, in FG′ , because of the structural di-
versity and (vertex/edge) label variety, there is little chance
that subtrees of g coincide with those of g′. It is true es-
pecially when graphs of G are large and labels of graph are
diverse.

Consider a complete graph K10 with 10 vertices, and each
vertex has a distinct label. If K10 is frequent, all its 10 1-
vertex subtrees, 45 2-vertex subtrees, · · · , and 100, 000, 000
10-vertex subtrees are frequent. There are 162, 191, 420 fre-
quent subtrees in total. If the linear trees (paths) are ex-
cluded, there are still 156, 654, 565 frequent trees involved.

Next, we investigate the frequent feature distributions.
In other words, we consider the distributions of the total
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Figure 3: The Real Dataset N = 1000, σ = 0.1

 0

 50000

 100000

 150000

 200000

 0  5  10  15  20  25

N
um

be
r 

of
 F

re
qu

en
t F

ea
tu

re
s

Frequent Feature Size

|FP|
|FT|
|FG|

(a) |FP | vs. |FT | vs. |FG|

 1

 10

 100

 1000

 10000

 100000

10987654321

N
um

be
r 

of
 F

re
qu

en
t F

ea
tu

re
s

Frequent Feature Size

|FP|
|FT’|
|FG’|

(b) |FP | vs. |FT ′ | vs. |FG′ |

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

|FG’||FT’||FP|

N
um

be
r 

of
 F

re
qu

en
t F

ea
tu

re
s

Frequent Features

Number

(c) |FP | vs. |FT ′ | vs. |FG′ |
Figure 4: The Synthetic Dataset N = 1000, σ = 0.1

number of frequent features that have the same size, n. Fig-
ure 3 (a) illustrates the numbers of frequent features (paths,
trees and graphs) w.r.t. the feature size (modeled as vertex
number), in a sample AIDS antivirus screen dataset of 1, 000
graphs and σ = 0.1. When n increases, both |FT | and |FG|
share similar distributions. They first grow exponentially,
and then drop exponentially. Similar phenomena appear in
the sample synthetic dataset of 1, 000 graphs and σ = 0.1, as
illustrated in Figure 4 (a). It is worth noting that in terms
of distribution, the frequent tree-features and the frequent
graph-features behave in a similar way. Note: |FP | is al-
most unchanged while n increases, because of simple linear
structure.

We also compare among the frequent path-feature set,
FP , the frequent nonlinear tree-feature set, FT ′ = FT −
FP , and the frequent non-tree graph-feature set, FG′ =
FG − FT . In the sample AIDS antivirus screen dataset,
when the feature size varies from n = 1 to 10, the num-
ber of frequent nonlinear tree-features grows exponentially
and is much larger than frequent non-tree graph-features,
as shown in Figure 3 (b). In total, for all frequent fea-
tures with size up to 10, FT ′ dominates, as shown in Fig-
ure 3 (c). In the sample synthetic dataset, non-tree graph-
features more frequently appear in G, so many frequent non-
tree graph-features are discovered, in comparison with the
sample AIDS antivirus dataset. However, the number of
frequent non-path tree-features still grows much faster than
non-tree graphs, as shown in Figure 4 (b). FT ′ dominates
FG, as shown in Figure 4 (c).

Based on the analysis mentioned above, some conclusions
can be made w.r.t. the feature size |F|: First, in terms of
feature distributions, tree-features and graph-features share
a very similar distribution; Second, the size of frequent tree-
feature set dominates the total feature set, F ; Third, the
number of non-tree graph-features is very small in FG.

3.2 Feature Selection Cost: CFS

In the previous section, we indicated that, in the frequent
graph-feature set FG, the number of non-tree graph-features
can be very small, i.e., the majority of graph-features in FG

are trees (including paths) in nature. It motivates us to

reconsider if there is a need to conduct costly graph mining
to discover frequent graph-features in which most of them
(usually more than 95%) are trees indeed. Below, we briefly
review the cost for mining frequent paths/trees/graphs from
graph databases.

Given a graph database, G, and a minimum support thresh-
old, σ, we sketch an algorithmic framework, called FFS
(Frequent Feature Selection), shown in Algorithm 1, to dis-
cover the frequent feature set F (FP /FT /FG) from G. The
algorithm initiates from the smallest frequent features in G
(size(f) = 1 at line 2) and expands current frequent fea-
tures by growing one vertex each time. This pattern-growth
process, denoted FFM (Frequent Feature Mining), is recur-
sively called until all frequent features are discovered from G
, shown in Algorithm 2. The candidate frequent feature set
of a frequent feature f , C(f) = {f ′|size(f ′) = size(f)+1}, is
determined as a projected database, upon which frequency
checking is performed to discover larger-size frequent fea-
tures (line 5− 6).

If the frequent graph-feature set FG needs to be selected
from G by the FFS algorithm, two prohibitive operations
are unavoidable. In Algorithm 2, line 1, graph isomorphism
has to be checked to determine whether a frequent graph-
feature, f , has already been selected in F or not. If f has
been discovered before, there is no need to mine f and all
its supergraphs again. The graph isomorphism problem is
not known to be either P or NP-complete, so it is unlikely
to check f ∈ F in polynomial time. In Algorithm 2, line 5,
subgraph isomorphism testing needs to be performed to de-
termine whether a candidate graph f ′ ∈ C(f) is frequent or
not. The subgraph isomorphism testing has been proven to
be NP-complete. Therefore, the feature selection cost, CFS ,
for discovering FG from G is expensive.

If the frequent tree-feature set FT needs to be selected,
although a costly tree-in-graph testing is still unavoidable
in Algorithm 2, line 5, tree isomorphism in Algorithm 2,
line 1, can be performed efficiently in O(n), where n is tree
size [2]. Compared with FG, FT can be discovered much
more efficiently from G.

If the frequent path feature set FP needs to be selected,
the costly (sub)graph isomorphism checking boils down to



Algorithm 1 FFS (G, σ)

Input: A graph database G, the minimum support thresh-
old σ

Output: The frequent feature set F
1: F ← ∅;
2: for all frequent features, f , with size(f) = 1 do
3: FFM(f , F , G, σ);
4: return F ;

Algorithm 2 FFM (f , F , G, σ)

Input: A frequent feature f , the frequent feature set F , G
and σ

Output: The frequent feature set F
1: if (f ∈ F) then return;
2: F ← F ∪ {f};
3: Scan G to determine the candidate frequent feature set

of f , C(f) = {f ′|size(f ′) = size(f) + 1};
4: for all f ′ ∈ C(f) do
5: if |sup(f ′)| ≥ σ × |G| then
6: FFM(f ′, F , G, σ);

the (sub)string matching operation, which can be done effi-
ciently in polynomial time. Compared with FG and FT , the
discovery of FP from G is the most efficient.

Based on the analysis mentioned above, we draw the con-
clusion w.r.t. the feature selection cost, CFS : It is not cost-
effective to make use of an expensive graph mining process
to select frequent graph-features, most of which are tree-
features indeed.

3.3 Candidate Answer Set Size: |Cq|
The key to boost graph containment query performance is

to minimize candidate answer set size, |Cq|, given a query q.
It requests selecting frequent features that have great prun-
ing power (Eq. (1)). We define the pruning power power(f)
of a frequent feature, f ∈ F , in Eq. (6),

power(f) =
|G| − |sup(f)|

|G| (6)

The pruning power, power(f), gives a real number between
0 and 1, such as 0 ≤ P (f) < 1. When power(f) = 0, f is
contained in every graph of G, so f has no pruning ability
if it is included in the index. When power(f) approaches
to 1, the feature f has great pruning power to reduce |Cq|,
if it appears in q. Note power(f) cannot be 1, because f
is a feature that appears at least once in G. Since q may
contain multiple frequent features, we consider the pruning
power bestowed by a set of such features together. Let S =
{f1, f2, · · · , fn} ⊆ F , for 1 ≤ i ≤ n. The pruning power of
S can be similarly defined as

power(S) =
|G| − |Tn

i=1 sup(fi)|
|G| (7)

Lemma 3.1: Given a frequent feature f ∈ F . Let its fre-
quent sub-feature set be S(f) = {f1, f2, · · · , fn} ⊆ F , for
fi ⊆ f and 1 ≤ i ≤ n. Then, power(f) ≥ power(S(f)). 2

Proof Sketch: for all gi ∈ sup(f), we have f ⊆ gi. For
every fi ∈ S(f), because fi ⊆ f , fi ⊆ gi is true. Hence,
gi ∈ sup(fi). If gi ∈ sup(fi), for 1 ≤ i ≤ n, then gi ∈Tn

i=1 sup(fi). Therefore, sup(f) ⊆ Tn
i=1 sup(fi). It implies
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Figure 5: Pruning Power

|sup(f)| ≤ |Tn
i=1 sup(fi)|, so power(f) ≥ power(S(f)). 2

Based on Lemma 3.1, we can directly get the following
two important results:

Theorem 3.1: Given a frequent graph-feature g ∈ F , and
let its frequent sub-tree set be T (g) = {t1, t2, · · · , tn} ⊆ F .
Then, power(g) ≥ power(T (g)). 2

Theorem 3.2: Given a frequent tree-feature t ∈ F , and let
its frequent sub-path set be P(t) = {p1, p2, · · · , pn} ⊆ F .
Then, power(t) ≥ power(P(t)). 2

Theorem 3.1 demonstrates that the pruning power of a
frequent graph-feature is no less than that of all its frequent
subtree-features. Similarly, the pruning power of a frequent
tree-feature is no less than that of all its frequent sub-path
features, as presented in Theorem 3.2. Therefore, among
all frequent features in F , graph-feature has the greatest
pruning power; path-feature has the least pruning power;
while tree-feature stands in the middle sharing the pruning
power less than graph-feature, but more than path-feature.

It is interesting to note that the pruning power of all fre-
quent subtree-features, T (g), of a frequent graph-feature g
can be similar to the pruning power of g. It is because
T (g) may well preserve structural information provided by
g. However, in general, there is a big gap between the prun-
ing power of a graph-feature g and that of all its frequent
sub-path features, P(g). It is because, when g is replaced
by P(g), the structural information of g is almost lost and
it becomes difficult to identify g in P(g). Therefore, fre-
quent path-features (P(g)) can not be effectively used as a
candidate to substitute g, in terms of pruning power.

Figure 5 illustrates the pruning power distributions of fre-
quent graph-features with regard to their subtrees and sub-
paths in the sample real dataset mentioned in Section 3.
Among 122 frequent non-tree graph-features found in G, for
each frequent graph-feature, g, its pruning power power(g) is
firstly compared with power(T (g)), (Figure 5 (a)), and then
compared with power(P(g)) (Figure 5 (b)). We observe that
power(T (g)) is very close to power(g) for almost all frequent
graph-features. However, P(g), the set of frequent subpaths
of g, has quite limited pruning power.

Remark 3.1: The frequent tree-feature set, FT , dominates
FG in quantity, and FT can be discovered much more ef-
ficiently than FG from G. In addition, FT can contribute
similar pruning power like that provided by FG. It is fea-
sible and effective to select FT , instead of FG, as indexing
features for the graph containment query problem. 2

Consider Example 2.1. We explain the disadvantages of
the path-based indexing approach that uses frequent path-
features to prune. As shown in Example 2.1, when the query
graph, q (Figure 2) is issued against the graph database Fig-
ure 1. Only the graph in Figure 1 (c) is the answer. But,



Figure 6: Frequent Graphs of G
all the path-features appearing in the query graph q are c,
c–c, c–c–c, c–c–c–c and c–c–c–c–c. They cannot be used
to prune the two graphs in Figure 1 (a) and (b), even if all
these path-features are frequent in the graph database. Re-
consider Example 2.1 for the graph-based indexing approach
that uses frequent graph-features as index entries. This ap-
proach needs to mine frequent graph-features beforehand,
which incurs high computation cost. In this example, some
frequent graph-features discovered are shown in Figure 6,
with σ = 2/3. In order to answer the query graph (Figure 2),
only the graph-feature (Figure 6 (a)) can be used, which is
a tree-feature in nature, while other frequent graph-features
(Figure 6 (b) and Figure 6 (c)) are mined wastefully.

4. GRAPH FEATURE ON DEMAND
Based on the discussions in Section 3, a tree-based index-

ing mechanism can be efficiently deployed. It is compact
and can be easily maintained in main memory, as shown in
our performance studies. We have also shown that a tree-
based index can have similar pruning power like that pro-
vided by the costly graph-based index on average in general.
However, based on Theorem 3.1, it is still necessary to use
effective graph-features to reduce the candidate answer set
size, |Cq|, while tree-features cannot. In this section, we dis-
cuss how to select additional non-tree graph-features from
q on demand that have greater pruning power than their
subtree-features, based on the tree-feature set discovered.

Consider a query graph q, which contains a non-tree sub-
graph g ∈ FG′ . If power(g) ≈ power(T (g)) w.r.t. pruning
power, there is no need to index the graph-feature g, be-
cause its subtrees jointly have the similar pruning power.
However, if power(g) À power(T (g)), it will be necessary to
select g as an indexing feature because g is more discrim-
inative than T (g) for pruning purpose. Note the concept
we use here in this paper is different from the discrimina-
tive graph concept used in gIndex, which is based on two
frequent graph-features instead.

In this paper, we select discriminative graph-features from
queries on-demand, without mining the whole set of frequent
graph-features from G beforehand. These selected discrimi-
native graph-features are therefore used as additional index-
ing features, denoted ∆, which can also be reused further to
answer subsequent queries.

In order to measure the similarity of pruning power be-
tween a graph-feature g and its subtrees, T (g), we define
a discriminative ratio, denoted ε(g), for a non-tree graph,
g ∈ FG′ w.r.t. T (g) as

ε(g) =

8
<
:

power(g)− power(T (g))

power(g)
if power(g) 6= 0

0 if power(g) = 0
(8)

Here, 0 ≤ ε(g) ≤ 1. When ε(g) = 0, g has the same prun-
ing power as the set of all its frequent subtrees, T (g). The
larger ε(g) is, the greater pruning power g has than T (g).
When ε(g) = 1, the frequent subtree set T (g) has no prun-

Figure 7: Discriminative Graphs

ing power, while g is the most discriminative graph-feature
and definitely needed to be reclaimed and indexed from the
graph database, G. Based on Eq. (8), we define a discrimi-
native graph in Definition 4.1:

Definition 4.1: A non-tree graph g ∈ FG′ is discriminative
if ε(g) ≥ ε0, where ε0 is a user-specified minimum discrimi-
native threshold (0 < ε0 < 1). 2

If a frequent non-tree graph g is not discriminative, we
consider that there is no need to select g as an indexing
feature, because it can not contribute more for pruning than
its frequent subtrees that have already been used as indexing
features. Otherwise, there is a good reason to reclaim g from
G into the index, because g has greater pruning power than
all its frequent subtrees (T (g)).

Suppose we set σ = 2/3 and ε0 = 0.5 for the sample
database in Figure 1. Figure 7 illustrates two discriminative
frequent graph-features. The pruning power of Figure 7 (a)
is (1− 2/3) = 1/3 and the pruning power of Figure 7 (b) is
(1− 1/3) = 2/3. Note: all frequent subtrees in Figure 7 (a)
are subtrees of c–c–c–c–c, whose pruning power is 0. So the
discriminative ratio, ε, of Figure 7 (a) is 1. The discrimi-
native ratio ε of Figure 7 (b) can be computed similarly as
1/2.

4.1 Discriminative Graph Selection
Given a query q, let’s denote its discriminative subgraph

set as D(q) = {g1, g2, · · · , gn}, where every non-tree graph
gi ⊆ q (1 ≤ i ≤ n) is frequent and discriminative w.r.t. its
subtree set, T (gi). For D(q), it is not necessary to reclaim
every gi from G as indexing features, because to reclaim gi

from G means to compute sup(gi) from scratch, which in-
curs costly subgraph isomorphism testings over the whole
database. Given two graphs g, g′ ∈ D(q), where g ⊆ g′, in-
tuitively, if the gap between power(g′) and power(g) is large
enough, g′ will be reclaimed from G; Otherwise, g is discrim-
inative enough for pruning purpose, and there is no need to
reclaim g′ in the presence of g. Based on the above analysis,
we propose a new strategy to select discriminative graphs
from D(q).

Recall in [23], a frequent graph-feature, g′, is discrimina-
tive, if its support, |sup(g′)|, is significantly greater than
|sup(g)|, where g′ is a supergraph of g. It is worth not-
ing that a costly graph mining process is needed to compute
sup(g′) and sup(g). Below, we discuss our approach to select
discriminative graph-features without graph mining before-
hand. In order to do so, we approximate the discriminative
computation between g′ and g, in the presence of our knowl-
edge on frequent tree-features discovered.

sup(g)(?)
?−−−−−→ sup(g′)(?)

x??
x??

sup(Tg) −−−−−→ sup(Tg′)

The diagram above illustrates how to estimate the dis-



criminative graph-features based on their frequent subtrees.
Suppose g and g′ are two graph-features from D(q) such that
g ⊂ g′, we define the occurrence probability of g in the graph
database, G as

Pr(g) =
|sup(g)|
|G| = σg (9)

Similarly, the conditional occurrence probability of g′, w.r.t.
g, can be measured as

Pr(g′|g) =
Pr(g ∧ g′)

Pr(g)
=

Pr(g′)
Pr(g)

=
|sup(g′)|
|sup(g)| (10)

Pr(g ∧ g′) = Pr(g′) because g is a subgraph of g′. For each
occurrence of g′ in G, g must occur simultaneously with
g′, but the reverse is not necessarily true. Here, Pr(g′|g)
models the probability to select g′ from G in the presence
of g. According to Eq. (10), if Pr(g′|g) is small, g′ has a
high probability to be discriminative, w.r.t. g. However, it
is still impractical to calculate Pr(g′|g) based on Eq. (10),
because the exact values of sup(g) and sup(g′) are unknown
yet. As illustrated above, instead, we estimate Pr(g′|g) by
making use of T (g) and T (g′). Note: all T (g) (⊆ FT ),
T (g′) (⊆ FT ), and the entire frequent tree-feature set (FT )
are known already. Below, we give the details, and discuss
the tight upper and lower bound of Pr(g′|g), based on T (g)
and T (g′).

Since g and g′ are both frequent, the following inequalities
hold,

|sup(g)| ≥ σ|G| and |sup(g′)| ≥ σ|G| (11)

Since g and g′ are both discriminative (g, g′ ∈ D(q)), the
following inequalities holds,

ε(g) ≥ ε0 and ε(g′) ≥ ε0 (12)

Based on Eq. (6), Eq. (7) and Eq. (8), we translate the above
inequality Eq. (12) to |sup(g)| (|sup(g′)|) by an expression
of |sup(T (g))| (|sup(T (g′))|) and ε0,

|sup(g)| ≤ |G| − |G| − |sup(T (g)|)
1− ε0

(13)

|sup(g′)| ≤ |G| − |G| − |sup(T (g′)|)
1− ε0

(14)

Based on Eq. (11) and Eq. (14), we derive the upper bound
of Pr(g′|g) which is solely relied on T (g′), constant factors
σ and ε0, as shown in Eq. (15). Here, σx = |sup(x)|/|G|,
where x is a frequent feature (or a set of frequent features)
of G.

Pr(g′|g) =
|sup(g′)|
|sup(g)| ≤

|G| − |G|−|sup(T (g′)|)
1−ε0

σ|G| =
σT (g′) − ε0

(1− ε0)σ
(15)

Similarly, based on Eq. (12) and Eq. (13), we derive the
lower bound of Pr(g′|g) which is solely relied on T (g), con-
stant factors σ and ε0, as shown in Eq (16).

Pr(g′|g) =
|sup(g′)|
|sup(g)| ≥

σ|G|
|G| − |G|−|sup(T (g)|)

1−ε0

=
σ(1− ε0)

σT (g) − ε0

(16)

Since Pr(g′|g) is a probability definition, i.e., 0 ≤ Pr(·) ≤ 1,
we have the following restrictions for T (g) and T (g′)

σT (g) ≥ max{ε0, σ + (1− σ)ε0} (17)

Algorithm 3 SelectGraph (G, q)

Input: A graph database G, a non-tree query graph q
Output: The selected discriminative graph set D ⊆ D(q)
1: D ← ∅;
2: C ← {c1, c2, · · · , cn}, ci ⊆ q, ci is a simple cycle;
3: for all ci ∈ C do
4: g ← g′ ← ci;
5: while size(g′) ≤ maxL do
6: if g /∈ ∆ then D ← D ∪ {g};
7: g′ ← g′ ¦ v;
8: if T (g), T (g′) satisfy Eq. (17), Eq. (18), Eq. (19)

and (σT (g′) < σ∗ × σT (g)) then
9: g ← g′;

10: scan G to compute sup(g) for every g ∈ D and add an
index entry for g in ∆, if needed;

11: return D;

max{ε0, σ} ≤ σT (g′) ≤ σ + (1− σ)ε0 (18)

and

(σT (g) − ε0)(σT (g′) − ε0) ≥ [σ(1− ε0)]
2 (19)

Our discovery is expressed in Eq. (15): the conditional oc-
currence probability of Pr(g′|g), is solely upper-bounded by
T (g′). Therefore, to select g′ from D(q) in the presence of g
is equivalent to meet the qualification of σT (g′) which drops
under a specific threshold related to g. In real applications,
we can just test whether the inequality σT (g′) < σ∗ × σT (g)

satisfies or not. So the costly computation of Pr(g′|g) is
successfully translated to an approximate estimation toward
T (g′). Note all frequent tree-features are discovered and in-
dexed from G, so T (g) and T (g′) can be computed efficiently.
The diagram below summarizes the whole estimation pro-
cess.

sup(g)(?)
?−−−−−→ sup(g′)(?)

ε(g)≥ε0

x??
x??ε(g′)≥ε0

sup(Tg)
|sup(T (g))|≥σ|G|−−−−−−−−−−−−→
|sup(T (g′))|≥σ|G|

sup(Tg′)

4.2 Graph Selection Algorithm
The graph selection algorithm is outlined in Algorithm 3.

Let the input query be a non-tree graph q, the algorithm
selects discriminative graphs from D(q) based on the selec-
tion criteria discussed in Section 4.1. The algorithm initiates
from simple cycles of q (line 2), which can be selected from
q efficiently. After a simple cycle c is selected, we extend
c by growing one vertex (and all its corresponding edges)
each time to get a larger-size graph g′(denoted ¦ in line 7).
If the conditions hold (line 8), g′ will be selected from D(q).
Finally, in line 10, the algorithm compute sup(g) for every
g ∈ D and add g as an indexing feature into ∆.

There are several implications in Algorithm 3. First, given
a simple cycle, c ⊆ q, all c’s subtrees are paths in nature.
According to Theorem 3.1 and Theorem 3.2, the simple cy-
cle c is usually discriminative w.r.t. its subpath feature set.
Therefore, it is reasonable to consider all simple cycles of q
as the starting point of our discriminative graph selection
algorithm. Second, a maximum feature size, maxL, is set



Figure 8: A non-tree query graph q and the discrim-
inative graph-feature selection upon q

such that only discriminative graph features within a spe-
cific size are selected. And the pattern-growth process for
each simple cycle c continues at most (maxL−size(c)) times
(line 7). Third, if T (g′) is not frequent in the condition test
(line 8), both g′ and all g′’s subsequent supergraphs must
be infrequent, i.e., the while loop can be early terminated.
Fourth, when a discriminative graph g has already been se-
lected and indexed into ∆ by previous queries, there is no
need to select g for multiple times (line 6). Actually, all
the indexed discriminative graph features can be shared by
subsequent queries.

Figure 8 (a) presents a non-tree query q submitted to the
sample graph database G, shown in Figure 1. The minimum
support threshold σ is set 2/3. The discriminative ratio ε0
is set 1/2 and σ∗ = σ = 2/3. Following Algorithm 3, the
simple cycle c in Figure 8 (b) is selected as the starting
point for graph-feature selection. Based on Figure 7, c is
discriminative w.r.t. all its frequent subtrees. Figure 8 (c)
is generated by extending one vertex of q upon c, which is
denoted as g. For c and g, σT (c) = 1, σT (g) = 2/3, which
satisfies the constraints expressed in Eq. (17), Eq. (18) and
Eq. (19). However, 2/3 × σT (c) = 2/3 = σT (g), i.e., it
does not satisfy the constraint: σT (g) < σ∗ × σT (c). So g
is not selected from D(q) as a discriminative graph feature.
Similarly, Figure 8 (d) is generated by extending one vertex
of q upon g, which is denoted as g′. Since T (g′) = 1/3 <
σ, i.e., g′ is infrequent in G, which disobeys the constraint
expressed in Eq. (18), g′ is not selected from D(q), either.

5. IMPLEMENTATIONS
In this section, we give implementation details of our cost-

effective graph indexing algorithm, (Tree+∆). We present
data structures and design principles of (Tree+∆) from the
perspectives of index construction and query processing.

In order to construct (Tree+∆), we mine frequent tree-
features from the graph database, G. There exist many re-
ported studies on frequent structural pattern mining over
large graph databases such as gSpan [22], Gaston [17], Hybrid
-TreeMiner [5], etc. We proposed a fast frequent free tree
mining algorithm [24] which takes full advantage of charac-
teristics of tree structure. Once the frequent tree feature set
FT is selected from G, every tree t ∈ FT is sequentialized
and maintained in a hash table. Every t ∈ FT is associated
with its support set sup(t), which contains the ids of graphs
in G containing t as subgraph(s). With the aid of the hash
table, every frequent tree feature and its support set can be
located and retrieved quickly. For index maintenance, the
similar strategies discussed in [23] can be adapted.

The query processing of (Tree+∆) is outlined in Algo-
rithm 4 with three parameters: a query graph q, a graph
database G, and the index built on frequent tree-features
of G. Below, we use FT to denote the index composed

Algorithm 4 Query Processing (q, FT , G)

Input: A query graph q, the frequent tree-feature set FT ,
and the graph database G

Output: Candidate answer set Cq

1: D ← ∅;
2: T (q) ← {t | t ⊆ q, t ∈ FT , size(t) ≤ maxL};
3: Cq ←

T
t∈T (q) sup(t);

4: if (Cq 6= ∅) and (q is cyclic) then
5: D ← SelectGraph(G, q);
6: for all (g ∈ D) do
7: Cq ← Cq

T
sup(g);

8: return Cq;

of frequent tree-features. While the selected discriminative
graph-features are maintained in the additional index struc-
ture, ∆, which is handled by SelectGraph (Algorithm 3).

In Algorithm 4, (Tree+∆) enumerates all frequent sub-
trees of q up to the maximum feature size maxL which are
located in the index FT (line 2). Based on the obtained fre-
quent subtree feature set of q, T (q), the algorithm computes
the candidate answer set, Cq, by intersecting the support set
of t, for all t ∈ T (q) (line 3). If q is a non-tree cyclic graph,
it calls SelectGraph to obtain a set of discriminative graph-
features, D (line 5). Those discriminative graph-features
may be cached in ∆ already. If not, SelectGraph will re-
claim them from the graph database and maintain them
in ∆. Then the algorithm further reduces the candidate an-
swer set Cq by intersecting the support set of g, for all g ∈ D
(line 6-7).

The pseudo-code in Algorithm 4 is far from optimized.
At line 2, If a tree-feature fi ⊆ q does not appear in FT , it
implies that fi is infrequent, so there is no need to consider
fj ⊆ q if fi ⊆ fj , due to the Apriori principle. At line 3
and line 7, the candidate answer set Cq is obtained by in-
tersecting support sets of frequent trees and discriminative
graphs of q. However, it is unnecessary to intersect every
frequent feature derived from q. Given a series of frequent
features f1, f2, · · · , fn ⊆ q, if f1 ⊂ f2 ⊂ · · · ⊂ fn, then
Cq

T
sup(f1)

T
sup(f2)

T · · ·T sup(fn) = Cq

T
sup(fn). So

only the maximum frequent features are considered when
computing the candidate answer set. More formally, Let
Fm(q) be the set of maximum frequent features of q, i.e.,
Fm(q) = {f |f ⊆ q, @f ′ ⊆ q, s.t., f ⊂ f ′}. In order to com-
pute Cq, we only need to perform intersection operations
on the support sets of maximum frequent features in Fm(q),
which substantially facilitates the whole graph containment
query processing.

For graph isomorphism testing in line 5, every discrimi-
native graph g is encoded to a canonical code, cc(g). Two
graphs g and g′ are isomorphic to each other, if and only
if cc(g) = cc(g′). There exist several canonical codings for
a general graph, such as CAM [11], DFS-code [22] etc. We
use CAM as canonical code of discriminative graphs in our
implementation.

Another issue to be concerned is the selection and tuning
of different parameters: the minimum support threshold, σ;
the minimum discriminative ratio, ε0, and the discriminative
graph selection threshold, σ∗. For σ, it has a close correla-
tion with |F|, CFS and |Cq|. When σ is set small, the number
of frequent tree-features discovered from G grows exponen-
tially, which inevitably enhances the feature selection cost,
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Figure 9: Index Construction on The Real Dataset

CFS . In the mean time, the feature space, F , is enlarged
accordingly while |Cq| might be reduced because of more in-
dexing features considered. So, σ should be determined on
a deliberate balance between time and space. As to ε0 and
σ∗, they both correlate with the filtering cost, Cf and |Cq|.
Setting a loose bound for the discriminative graph selection
(small ε0 and large σ∗) results in more graph-features to be
reclaimed from G, which increases Cf , whereas |Cq| probably
decreases for more discriminative graph-features are indexed
in ∆. Since the number of discriminative graph-features held
in ∆ is fairly small w.r.t. the tree-based index size, |FT |, the
space overhead of ∆ can be negligible. A practical way to
determine ε0 and σ∗ is to sample a small portion of G and
select discriminative graphs w.r.t their subtrees which well
reflect the characteristics of the whole graph database, and
ε0 and σ∗ are tuned accordingly.

6. RELATED WORK
There is a wealth of literature concerning the graph con-

tainment query problem. Among them emerges a special
case dealing with queries on semi-structured databases, es-
pecially for XML databases [14, 19]. The data object of
XML databases is abstracted as rooted labeled graph, a spe-
cial kind of general graph. Regular path expressions are used
to represent substructures in the database. To avoid unnec-
essary traversals on the database during the evaluation of a
path expression, indexing methods are introduced [15, 16].
In content-based image retrieval, Petrakis and Faloutsos [18]
represented each graph as a vector of features and indexed
graphs in high dimensional space using R-trees. Instead of
casting a graph to a vector form, Berretti et al. [4] pro-
posed a metric indexing scheme which organizes graphs hi-
erarchically according to their mutual distances. The SUB-
DUE system developed by Holder et al. [10] used minimum
description length to discover substructures that compress
the database and represent structural concepts in the data.
However, these systems are designed to address the exact
matching problem between graphs in the database and a
query, which is a special case of the graph containment query
problem.

One solution to graph containment query is to index paths
in graph databases, and this solution is often referred to as
the path-based indexing approach. GraphGrep [20] is a fa-
mous representative of this approach. GraphGrep enumer-
ates all existing paths up to a certain length lp in a graph
database G and selects them as indexing features. The fea-
ture selection can be done efficiently, but the index size can
be large, if lp is not small. A graph containment query is
answered in two phases: the first filtering phase selects a
set of candidate graphs from G in which the number of each
indexed path-feature is at least that of the query. The sec-
ond verification phase verifies each graph in the candidate
answer set derived from the first phase, as opposed to G, by

subgraph isomorphism testing. False positives are discarded
and the true answer set is returned.

Path-based indexing approach have two main disadvan-
tages. First, the index structure is usually huge when |G| is
large or graphs in G are large and diverse. For example, by
randomly selecting 10, 000 graphs from the AIDS antiviral
screening database and artificially setting lp = 10, the num-
ber of path features is more than 1000, 000, most of which
are redundant based on human observation. It will be in-
efficient to index all of them. Second, path-features have
limited pruning power. In other words, the candidate an-
swer set generated in the filtering phase can be considerably
large, even when the number of path-features is large. This
is mainly because the structural information exhibited in
graphs is lost when breaking graphs into paths.

In comparison to the path-based indexing approach, there
exists another mechanism using graphs as basic indexing
features, which is often referred to as graph-based index-
ing approach. A distinguished example of this approach is
gIndex [23]. gIndex takes advantage of a graph mining pro-
cedure to discover frequent graphs from G, by which the
index is constructed. In order to scale down the exponential
number of frequent graphs, gIndex selects only discrimi-
native ones as indexing features. gIndex has several advan-
tages over GraphGrep. First, structural information of graph
is well preserved, which is critical to filter false positives in
the verification phase; Second, the number of discriminative
frequent graph-features is much smaller than path-features,
so that the index is compact and easy to be accommodated
in main memory; Third, discriminative frequent graphs are
relatively stable to database updates, which makes incre-
mental index maintenance feasible. Experimental results
show that gIndex has 10 times smaller index size than that
of GraphGrep, and outperforms GraphGrep by 3 − 10 times
in terms of the candidate answer set size.

The disadvantages of gIndex are obvious. First, because
index construction is a time-consuming graph mining pro-
cedure, the computationally expensive (sub)graph isomor-
phism testings are unavoidable. The index construction cost
can be even high when |G| is large or graphs in G are large
and diverse. Second, gIndex assumes that discriminative
frequent graphs discovered from G are most likely to appear
in query graphs, too. However, since a user may submit
various queries with arbitrary structures, it is much more
valuable to index common structures of query graphs than
those of G. If most subgraphs of a query are luckily in-
dexed, gIndex can return the answer efficiently. Otherwise,
the query performance can be deteriorated because few in-
dexing features can be used, needless to say there may be
some trivial features, such as vertices, edges or simple paths,
which contributes little to pruning. Therefore it is both
costly and unnecessary to discover a complete set of dis-
criminative frequent graphs.
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Figure 10: False Positive Ratio
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Figure 11: Filtering Cost

C-Tree [9] is another graph-based indexing mechanism us-
ing graph closure as indexing features. The graph closure is
a “bounding box” of constituent graphs which contains dis-
criminative information of their descendants. Although the
costly graph mining is avoided in index construction, C-Tree
shares similar disadvantages to gIndex, as mentioned above.

7. EXPERIMENTAL STUDY
In this section, we report our experimental studies that

validate the effectiveness and efficiency of our (Tree+∆) al-
gorithm. (Tree+∆) is compared with gIndex and C-Tree,
two up-to-date graph-based indexing algorithms. We use
two kinds of datasets in our experiments: one real dataset
and a series of synthetic datasets. Most of our experiments
have been performed on the real dataset since it is the source
of real demand. All our experiments are performed on a
3.4GHz Intel PC with 2GB memory, running MS Windows
XP and Redhat Fedora Core 4. All algorithms of (Tree+∆)
are implemented in C++ using the MS Visual Studio com-
piler.

7.1 AIDS Antiviral Screen Dataset
The experiments described in this section use the antivi-

ral screen dataset from the Developmental Theroapeutics
Program in NCI/NIH1. This 2D structure dataset contains
42390 compounds retrieved from DTP’s Drug Information
System. There are total 63 kinds of atoms in this dataset,
most of which are C, H, O, S, etc. Three kinds of bonds
are popular in these compounds: single-bond, double-bond
and aromatic-bond. We take atom types as vertex labels
and omit edge labels because C-Tree does not support edge-
labeled graphs. On average, compounds in the dataset has
43 vertices and 45 edges. The graph of maximum size has
221 vertices and 234 edges.

We set the following parameters in (Tree+∆), gIndex

and C-Tree for our experimental studies. In (Tree+∆) and
gIndex, the maximum feature size maxL is set 10. For
(Tree+∆), the minimum discriminative ratio ε0 is set 0.1;
the minimum support threshold σ is set 0.1, and σ∗ is set
0.8 for discriminative graph selection during query process-
ing. In C-Tree, we set the minimum number of child vertices
m = 20 and the maximum number M = 2m − 1. We use
the NBM method to compute graph closures. All these ex-

1http://dtp.nci.nih.gov/docs/aids/aids data.html

perimental settings are identical to author-specified values
in [9, 23].

The first test is on index size |F| and index construction
cost CFS of three different indexing algorithms: (Tree+∆),
gIndex and C-Tree. The test dataset consists of N graphs,
which is randomly selected from the antivirus screen database.
Figure 9 (a) depicts the number of frequent features indexed
in (Tree+∆) and gIndex with the test dataset size N varied
from 1, 000 to 10, 000 (C-Tree does not provide the explicit
number of indexing features, so we omit C-Tree in this ex-
periment). The curves clearly show that frequent features
of (Tree+∆) and gIndex are comparable in quantity. Fig-
ure 9 (b) illustrates the index size, i.e. |F| of three different
indexing algorithms. Although (Tree+∆) has more index-
ing features than gIndex, the memory consumption for stor-
ing trees are much less than that for storing graphs held in
gIndex and C-Tree. The curves illustrate that (Tree+∆)
has a compact index structure which can easily be held in
main memory. In Figure 9(c), we test the index construc-
tion time, i.e., CFS , measured in seconds. Both (Tree+∆)
and C-Tree outperforms gIndex by an order of magnitude,
while (Tree+∆) and C-Tree have similar index construction
costs. Finally, the index construction time is averaged for
each frequent feature and shown in Figure 9(d), measured in
milliseconds. As the figure illustrates, for each indexing fea-
ture, CFS of (Tree+∆) is much smaller than that of gIndex
and C-Tree.

Having verified the index size |F| and index construction
cost CFS of gIndex, C-Tree and (Tree+∆), we now evalu-
ate their query performances. Given a query graph q, the
query cost is characterized by the candidate answer set size,
|Cq|. Since |sup(q)| is the tight lower bound of |Cq|, an al-
gorithm achieving this lower bound can match the queries
in the graph database precisely. We denote |C(q)|/|sup(q)|,
the false positive ratio, as a measure for the pruning abil-
ity of different graph indexing algorithms. The smaller the
false positive ratio, the better pruning ability an indexing
algorithm has.

We select our dataset by randomly sampling graphs from
the antivirus screen database with size varying from 1, 000 to
10, 000. Five query sets are tested, each of which has 1, 000
queries. The query sets are generated from the antivirus
screen database by randomly selecting 1, 000 graphs and
then extracting connected subgraphs (subtrees, subpaths)
from them. We remove vertices with the smallest degree
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 0

 200

 400

 600

 800

 1000

 1200

 1400

252015105

V
er

ifi
ca

tio
n 

T
im

e 
(S

ec
s)

Query Size

Tree+∆
gIndex
C-Tree

(c) N=4000
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Figure 12: Verification Time

from a graph and this process proceeds until we get a query
with a specified size. If all vertices of a graph have the
same degree, one of them are removed to break the tie and
the vertex-deletion procedure continues. This query gen-
eration approach secures that query graphs are connected
and diverse enough to include different kind of graph struc-
tures(path, nonlinear tree and cyclic graph). We generate
Q5, Q10, Q15, Q20 and Q25, with the digits denoting the
query size.

Figure 10 presents the false positive ratios of three graph
indexing algorithms on different databases. Additionally, we
use only frequent trees of G, i.e., FT as indexing features and
denote this indexing algorithms as Tree. Tree is similar to
(Tree+∆) but does not find discriminative graphs back from
G during query processing. As shown in the figure, In all ex-
perimental settings and for every graph query set, (Tree+∆)
outperforms gIndex, C-Tree and Tree. When the query size
is small, the filtering power of four algorithms is close to each
other and when the graph database becomes large and the
query size increases, the advantages of (Tree+∆) become
more apparent, i.e., (Tree+∆) performs especially well on
large graph databases when query graphs are large and di-
verse. Interestingly, the gap between false positive ratios of
gIndex and Tree is not large. It means that the pruning
power of tree-feature is close to that of graph-feature, but
tree is still less powerful than graph for pruning purpose.
This evidence well justifies our analysis on pruning ability
of different frequent features in F , as mentioned in Section 3.
Meanwhile, it also proves that discriminative graphs play a
key role in false positive pruning, and there is a good reason
for us to find them back from the graph database G during
query processing.

Figure 11 illustrates the filtering cost Cf of three differ-
ent graph indexing algorithms, measured in seconds. As
shown in the figure, in all different databases, Cf of C-Tree
is much larger than (Tree+∆) and gIndex. Meanwhile, Cf

of (Tree+∆) is larger than gIndex because when queries
become large and complex, (Tree+∆) has to select discrimi-
native graphs and reclaim them from the graph database, if
the discriminative graph-features are not held in ∆. When
query is fairly small (Q5), there is little chance for a query
graph to contain cycles, so Cf of (Tree+∆) is smaller than
that of gIndex. It also demonstrates that (Tree+∆) is quite
efficient to answer acyclic graph queries.

Figure 12 presents the verification cost of three graph in-
dexing algorithms, i.e., the factor |Cq|×Cv of the query cost
model in Section 2.3. As illustrated in the figure, (Tree+∆)
needs less time to remove false positives from the candi-
date answer set because |Cq| is smaller than that obtained
by gIndex and C-Tree. Based on Figure 11 and Figure 12,
we are confirmed that (Tree+∆) outperforms gIndex and
C-Tree because our final query cost (Cf + |Cq| ∗ Cv) is min-
imum, in comparison with gIndex and C-Tree, and our
(Tree+∆) shows a good scalability w.r.t. the database size.

7.2 Synthetic Dataset
In this section, we conduct our performance studies on

a synthetic database. This database is generated by the
widely-used graph generator [12] described as follows: first
a set of S seed fragments are generated randomly, whose size
is determined by a Poisson distribution with mean I. The
size of each graph is a Poisson random variable with mean T .
Seed fragment are then randomly selected and inserted into
a graph one by one until the graph reaches its size. A typical
database may have the following experimental settings: it
has 10, 000 graphs and 1, 00 seed fragments with 5 distinct
labels. On average, each graph has 50 edges and each seed
fragment has 10 edges. We denote this dataset with the
above settings as D10kI10T50S100L5.
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Figure 13: False Positive Ratio

We test the false positive ratio on the synthetic database
mentioned above with 5 query sets Q5, Q10, Q15, Q20, Q25,
which are generated using the same method described in
Section 7.1. As shown in Figure 13(a), the filtering power
presented by (Tree+∆) is still better than that provided by
gIndex and C-Tree.

We then test the influence of vertex labels on the query
performance of different indexing algorithms. When the
number of distinct labels is large, the synthetic dataset is
much different from the real dataset. Although local struc-
tural similarity appears in different graphs, there is little
similarity existing among each graph. This characteristic
results in a simpler index structure. For example, if every
vertex in one graph has a unique label, we only use vertex
labels as index features. This is similar to the inverted in-
dex technique in information retrieval. In order to verify
this conclusion, we vary the number of labels from 5 to 10
in the synthetic dataset D10kI10T50S100 and test the false
positive ratios of three algorithms using the query set Q10.
Figure 13(b) shows that they are close with each other when
L is growing large.

8. CONCLUSIONS
Graph indexing plays a critical role in graph contain-

ment query processing on large graph databases which have
gained increasing popularity in bioinformatics, Web anal-
ysis, pattern recognition and other applications involving
graph structures. Previous graph indexing mechanisms take



paths and graphs as indexing features and suffer from overly
large index size, substantial index construction overhead and
expensive query processing cost. In this paper, we have
proposed a cost-effective graph indexing mechanism for ad-
dressing the graph containment query problem: index based
on frequent tree-features. We analyze the effectiveness and
efficiency of tree as indexing feature, w.r.t. path and graph
from three critical perspectives: feature size |F|, feature se-
lection cost CFS and feature pruning power |Cq|. In order to
achieve better pruning ability than path-based and graph-
based indexing mechanisms, we deliberately select a small
portion of discriminative graph-features on demand, which
consist of our additional index structure ∆ related only to
query graphs. Our analysis and performance studies confirm
that the proposed graph indexing algorithm, (Tree+∆), is a
better choice than up-to-date path-based or graph-based in-
dexing algorithms. (Tree+∆) holds a compact index struc-
ture, achieves good performance in index construction and
most importantly, provides satisfactory query performance
for answering graph containment queries over large graph
databases.
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