
Efficiently and Effectively Processing

Probabilistic Queries on Uncertain Data

by

Wenjie Zhang

B.Sc., Harbin Institute of Technology, 2004

M.Sc., Harbin Institute of Technology, 2006

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN THE SCHOOL

OF

Computer Science and Engineering

Aug 6, 2010

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

c⃝ Wenjie Zhang 2010

Originality Statement

‘I hereby declare that this submission is my own work and to the best of my

knowledge it contains no materials previously published or written by another

person, or substantial proportions of material which have been accepted for the

award of any other degree or diploma at UNSW or any other educational institu-

tion, except where due acknowledgement is made in the thesis. Any contribution

made to the research by others, with whom I have worked at UNSW or elsewhere,

is explicitly acknowledged in the thesis. I also declare that the intellectual content

of this thesis is the product of my own work, except to the extent that assistance

from others in the project’s design and conception or in style, presentation and

linguistic expression is acknowledged.’

Signed ..

Name: Wenjie Zhang

i

ii

Abstract

Uncertainty is inherent in data collected from many important, novel applications

such as large sensor networks, WWW, data cleaning and integration, environmental

surveillance and market analysis. The sources of uncertainty in these applications

vary from data randomness and incompleteness, limitations of measuring equip-

ments, delay or loss in data transfer. As a rapidly growing amount of uncertain

data is collected, it is highly desirable to conduct advanced analyzing and query

processing over uncertain data. The following five important aspects for uncertain

data management are investigated in this thesis.

We study the problem of probabilistic top-k skyline queries. A model for the

top-k skyline operator is proposed combining the feature of top-k objects and that

of skyline. Based on this model, an efficient exact algorithm and a randomized al-

gorithm with ϵ-approximation guarantee are developed for discrete and continuous

cases, respectively.

We extend skyline operator to streaming environment and study the problem

of probabilistic skyline queries over sliding windows. We characterize the minimum

information needed in continuously computing probabilistic skyline against a sliding

window. Then novel, efficient techniques are developed to process a continuous,

probabilistic skyline query.

As the top-k dominating query is another important method for multi-criterion

iii

decision making, we study top-k dominating queries on uncertain data. The prob-

lem is formally defined in a probability threshold fashion. Then, a threshold-based

algorithm is developed to compute the exact solution. To overcome some inherent

computational deficiency in an exact computation, we develop an efficient random-

ized algorithm with an accuracy guarantee.

We study the problem of quantile-based KNN over multi-valued objects. Two

different ϕ-quantile distances are proposed. While the first distance can be com-

puted in polynomial time, the second problem is NP-hard. A set of efficient, novel

algorithms have been proposed to give an exact solution for the first problem and

an approximate solution for the second problem with the approximation ratio 2.

To overcome some deficiencies of existing uncertain index structures, we pro-

pose UI-tree which can efficiently support various queries including range queries,

similarity joins and their size estimation, as well as top-k range query, over multi-

dimensional uncertain objects against continuous or discrete cases.

iv

Dedication

Father, Yunquan Zhang

Mother, Zhenfeng Wu

Sister, Wenchao Zhang

For their love and support

v

vi

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Prof. Xuemin Lin.

During my PhD study, Prof. Lin encourages me to explore my potential in research

and spends great efforts on the supervision. I also learnt the characteristics of a

successful researcher from Prof. Lin. He has great passion for research, paying

attention to details and trying best in every research project involved.

I would like to thank Prof. Jeffrey Xu Yu, Prof. Jian Pei, Dr. Wei Wang, Dr.

Ying Zhang, Dr. Ming Hua and Aamir Cheema for the research collaboration in

the work presented in Chapter 3, 4, 5, 6 and 7.

And special thanks go to the former group members: Yidong Yuan and Bin

Jiang, as well as the fellow group members: Yi Luo, Mahady Hansan, Chuan Xiao,

Haichuan Shang, Gaoping Zhu, Ke Zhu, Zhitao Shen, Weiren Yu, Weiwei Jia,

Pengjie Ye, Xiang Zhao, Liming Zhan and Jing Yang. The time we spent together

will be memorized forever.

I would like to thank Prof. Xiaofang Zhou in University of Queensland and Prof.

Jianmin Wang in Tsinghua University for providing me internship opportunities in

their research groups during my PhD life.

I am grateful to the staff members from our school. I am also very grateful to

the University of New South Wales and NICTA for financially supporting my PhD

study.

vii

Last but not least, I would also like to thank my parents and my younger sister

for their love and support.

viii

Contents

Originality Statement i

Abstract iii

Dedication v

Acknowledgements vii

List of Figures xix

List of Tables xxi

List of Algorithms xxiii

1 Introduction 1

1.1 Applications . 1

1.2 Types of Uncertain Data . 5

1.3 Problems Studied . 7

1.4 Contributions . 10

1.5 Thesis Organization . 12

2 Related Work 14

2.1 Modeling Uncertainty . 14

ix

2.2 Possible World Semantics and Probabilistic Models 15

2.2.1 Possible World Semantics 15

2.2.2 Other Advanced Models . 17

2.3 Probabilistic Queries . 20

2.3.1 Query Evaluation . 20

2.3.2 Aggregate Queries . 21

2.3.3 Join Queries . 22

2.3.4 Similarity Joins . 23

2.3.5 Top-k Queries . 24

2.3.6 Nearest Neighbor Queries 26

2.3.7 Skyline Queries . 27

2.4 Indexing Uncertain Data . 28

2.5 Uncertainty Management Systems 30

2.5.1 Trio . 30

2.5.2 MystiQ . 31

2.5.3 URank . 32

2.5.4 MayBMS . 32

2.5.5 ORION . 33

2.5.6 MauveDB . 35

2.6 Other Related Work on Uncertainty Management 36

3 The Probabilistic Top-k Skyline Operator 38

3.1 Background Information . 42

3.1.1 Problem Statement . 42

3.1.2 Problem Definition . 42

3.1.3 Preliminaries . 44

3.2 Framework for TOPK-SOUND . 47

x

3.2.1 Step 1: Preprocessing . 48

3.2.2 Step 2: Seeding . 49

3.2.3 Step 3: Final-Computation 50

3.3 Exactly Computing TOPK-SOUND 55

3.4 Randomized Algorithm . 60

3.4.1 Accuracy Guarantee . 62

3.4.2 Efficient Algorithm . 65

3.5 Computing p-Skyline . 67

3.6 Performance Evaluation . 68

3.6.1 Evaluating Efficiency . 70

3.6.2 Evaluating Accuracy . 73

3.6.3 p-skyline computation . 76

3.6.4 Summary . 76

3.7 Conclusions . 76

4 Probabilistic Skyline Operator over Sliding Windows 78

4.1 Background . 81

4.1.1 Problem Definition . 81

4.1.2 Preliminaries . 82

4.2 Framework . 84

4.2.1 Using SN,q Only . 85

4.2.2 Estimating sizes of SN,q and SKYN,q 88

4.3 Algorithms . 93

4.3.1 Aggregate R-trees . 93

4.3.2 Inserting a New Element . 98

4.3.3 Expiration . 102

4.3.4 Multiple Confidences . 103

xi

4.3.5 Algorithm Analysis . 105

4.4 Performance Evaluation . 106

4.4.1 Evaluate Space Efficiency 108

4.4.2 Evaluation Time Efficiency 111

4.4.3 Summary . 113

4.5 Applications . 113

4.6 Conclusion . 115

5 Probabilistic Top-k Dominating Queries 116

5.1 Background Information . 124

5.1.1 Problem Statement. 124

5.1.2 Preliminaries . 126

5.1.3 Challenges . 130

5.2 Framework . 130

5.2.1 Data Structures . 131

5.2.2 Monotonic Property . 132

5.2.3 Efficient Level-by-level Computation 132

5.3 Exact Algorithm . 133

5.3.1 Step 1: Pre-ordering Objects 133

5.3.2 Step 2: Initial Computation 135

5.3.3 Step 3: Final Computation 136

5.4 Randomized Algorithm . 148

5.4.1 Accuracy Guarantee . 150

5.4.2 Efficient Algorithm . 151

5.5 Experimental Study . 158

5.5.1 Efficiency Evaluation . 160

5.5.2 Pruning Powers . 162

xii

5.5.3 Accuracy Evaluation . 165

5.5.4 Summary . 167

5.6 Conclusion . 167

6 Quantile-Based KNN Over Multi-Valued Objects 169

6.1 Background Information . 174

6.1.1 Problem Definition . 174

6.1.2 Preliminaries . 177

6.2 Framework Overview . 179

6.3 ϕ-Quantile KNN . 182

6.3.1 Efficiently Computing ϕ-Quantile Distances. 182

6.3.2 Refinement Algorithm . 187

6.3.3 Pruning Rules . 188

6.4 ϕ-quantile Group-base KNN . 193

6.4.1 Computing ϕ-Quantile Group-base Distances 193

6.4.2 Refinement . 195

6.5 Experimental Study . 197

6.5.1 Computing ϕ-Quantile Distance 199

6.5.2 Overall Performance . 200

6.5.3 Accuracy . 201

6.5.4 Evaluating Impacts by Different Settings 202

6.5.5 Summary . 204

6.6 Conclusion . 205

7 Effectively Indexing the Uncertain Space 206

7.1 Background . 209

7.1.1 Problem Definition . 209

xiii

7.1.2 Preliminaries . 212

7.2 UI-Tree Index . 217

7.2.1 Index Building Criterions 217

7.2.2 UI-Tree Structure . 224

7.2.3 Index Maintenance . 225

7.3 Query Processing . 230

7.3.1 Range Query . 230

7.3.2 Size Estimation of Range Query 236

7.3.3 Top-k Range Query . 237

7.3.4 Similarity Join . 237

7.4 Performance Evaluation . 238

7.4.1 Index Construction Evaluation 241

7.4.2 Query Performance Evaluation 242

7.5 Conclusion . 248

8 Conclusions and Future Work 249

8.1 Conclusions . 249

8.2 Future Work . 251

8.2.1 Manipulating Complex Correlations 251

8.2.2 Building Prototype System 251

Bibliography 252

Appendix A Related Publications and Works 272

Appendix A Related Publications and Works 274

xiv

List of Figures

1.1 Location of iPhone Holders . 4

1.2 Sightings of a Satellite . 4

1.3 Two Survey Forms . 5

1.4 Continuous and Discrete Cases . 7

1.5 Uncertain Data Analysis Framework 8

2.1 Relation BOOK . 18

2.2 Probabilistic Similarity Join . 24

2.3 The Distribution of Top-k Tuples’ Total Scores 26

2.4 Certain Objects. 28

2.5 Uncertain Objects. 28

2.6 Pruning/Validating in U-tree. 30

2.7 Multiple PCRs. 30

2.8 Trio System Architecture . 31

2.9 URank Framework . 33

2.10 MayBMS Architecture . 34

2.11 ORION 2.0 Architecture . 35

2.12 MauveDB Architecture . 36

3.1 Instances of Two Realtor Uncertain Objects 39

3.2 Certain Data. 42

xv

3.3 Uncertain Data. 42

3.4 Dominance Relationships. 45

3.5 Example. 46

3.6 Data Distributions . 52

3.7 Dealing IU . 52

3.8 Multiple Dominance Relationships. 60

3.9 Example of Samples. 65

3.10 Different Datasets . 71

3.11 Varying n . 72

3.12 Varying h . 72

3.13 Varying m . 72

3.14 Varying k . 73

3.15 Varying d . 73

3.16 Different Datasets . 73

3.17 Varying k . 73

3.18 Varying n . 74

3.19 Varying m . 74

3.20 Various d . 74

3.21 Various m . 74

3.22 Various d . 75

3.23 Various n . 75

4.1 A Sequence of Data Elements . 83

4.2 Dominance Relationships. 84

4.3 Aggregate R-trees . 94

4.4 Space Usage vs Diff. Data set . 109

4.5 Space Usage vs Window Size . 110

xvi

4.6 Space Usage vs Appearance Probability 110

4.7 Space Usage vs Probability Threshold 111

4.8 Time Efficiency vs n . 111

4.9 Avg. Delay vs W . 111

4.10 Avg. Delay vs Pµ . 112

4.11 Avg. Delay vs q . 112

4.12 Query Cost vs |Q| . 113

5.1 Average . 118

5.2 NBA Players. 118

5.3 Certain Data . 127

5.4 Uncertain Data . 127

5.5 Dominating Relationships. 129

5.6 Level-by-level Computation. 138

5.7 Entry Distribution . 144

5.8 Tree Structure Map . 144

5.9 Samples . 149

5.10 Runtime with respect to Different Parameters. 157

5.11 Performance vs Diff. Object Access Orders 161

5.12 Chernoff-Hoeffding based vs Bisection based 162

5.13 Varying k . 163

5.14 Varying q . 163

5.15 Node Calculated Ratio with respect to Different Parameters. 164

5.16 Relative error with respect to Different Parameters 165

5.17 Relative error of score with respect to Different Parameters 166

6.1 Motivating Example . 171

xvii

6.2 Distances between 2 Multi-Valued Objects 176

6.3 Local aR-trees for Multi-Valued Objects 180

6.4 Minimal/Maximal Distance between 2 MBBs 181

6.5 Prune Entries at the Current Level 183

6.6 Filtering while Enumerating . 187

6.7 γK-Cover . 190

6.8 Time for Computing dϕ . 199

6.9 Overall Performance . 200

6.10 Pruning Powers . 201

6.11 Other Settings . 204

7.1 Taxis within 10 km from the City Tower 207

7.2 Uncertain Region Based Index . 213

7.3 A 2d PCR (θ) . 214

7.4 Irregular Query . 216

7.5 Circle query . 216

7.6 Motivation . 218

7.7 Size of wmbr . 218

7.8 R-Tree Based Inverted Index . 219

7.9 Update . 230

7.10 Example . 230

7.11 Query Example . 231

7.12 Filtering Capacity Evaluation . 235

7.13 Index Evaluation against Diff. m 242

7.14 Diff. rq . 243

7.15 Diff. m . 243

7.16 Performance vs Diff. Data Set . 244

xviii

7.17 Diff. distribution . 245

7.18 Diff. rq . 245

7.19 Performance vs Diff. rq Size . 246

7.20 Diff. ru . 247

7.21 Diff. n . 247

7.22 Diff. θ . 247

7.23 Size Est. vs rq . 247

7.24 Top-k(Diff. k) . 248

7.25 Similarity Join(Diff. θ) . 248

xix

List of Tables

1.1 Readings of Temperature and Wind-Speed 3

2.1 Speeding Vehicles Records. 17

2.2 Possible Worlds of Table 2.1. 17

2.3 Vehicle and Speed. 19

2.4 Vehicle and Driver. 19

3.1 The Summary of Notations. 44

3.2 Experiment Settings. 71

4.1 Laptop Advertisements. 79

4.2 System Parameters . 108

5.1 Ranks of NBA 1st Picks after Removing Outliers 119

5.2 Ranks of NBA 1st Picks . 120

5.3 The Summary of Notations. 124

5.4 Parameter Values. 159

6.1 The Summary of Notations. 174

6.2 Parameter Values. 199

6.3 Vary Objects Distribution . 202

6.4 Vary Weight Distribution . 202

xx

6.5 Various Distributions . 203

7.1 The Summary of Notations. 210

7.2 System Parameters . 241

7.3 Index Size Comparison . 242

xxi

List of Algorithms

3.1 Seeding . 49

3.2 Final-Computation . 54

3.3 Prob(U,R) . 56

3.4 Randomized Algorithm . 61

4.1 Continuous Probabilistic Skyline Computation over a Sliding Window 85

4.2 CalProb (E) . 97

4.3 UpdateOldNew (E, E ′) . 97

4.4 Inserting (anew) . 99

4.5 Probe (C1, Psky) . 100

4.6 Dequeue (C1) . 101

4.7 Probe (C2, R) . 102

4.8 Probe (C12, R, Psky(anew)) . 103

4.9 UpdateProb (R) . 104

4.10 Place (R4) . 105

4.11 Expiring (aold) . 106

5.1 Exact Algorithm . 131

5.2 Calculate pscore . 135

5.3 Final Computation . 137

5.4 Step 3.1 . 145

xxii

xxiii

5.5 Propagation to Ancestors . 147

5.6 Randomized Algorithm . 149

5.7 gCaR Post-processing . 154

5.8 Calculating pscorer . 155

6.1 QUANTILE (S, ϕ) . 178

6.2 Framework . 179

6.3 QUANTILE-DISTANCE (RQ ×RU , ϕ) 184

6.4 Refinement . 188

7.1 Insertion(UI, U) . 228

7.2 Range Query(UI, Q, θ) . 232

xxiv

Chapter 1

Introduction

Data stored in traditional databases are required to be modeled as precise values.

In recent years, many emerging, important applications produce a large amount of

uncertain data. These applications include sensor networks, trend prediction, mov-

ing object management, data cleaning and integration, economic decision making,

market surveillance and privacy preservation. In such applications, uncertainty is

inherent due to various factors such as data randomness, limitation of equipment,

and delay or loss in data transfer. The uncertain nature poses great challenges for

uncertain data management. For instance, the problem of evaluating conjunctive

queries can be #P-complete over uncertain data [DS07a]. Thus, many query types

have been reinvestigated under the uncertain semantics, including query evalua-

tion [DS04], aggregate queries [BDRV05], joins [CSP06], top-k queries [HPZL08b],

skyline queries [PJLY07], dominating queries [ZLZ+09], nearest neighbor queries

[BSI08], etc.

1.1 Applications

We enumerate some typical applications in this section.

1

2 Chapter 1. Introduction

Sensor Networks Wireless sensor networks (WSNs) are widely deployed with a

set of sensor nodes installed in a large range. Certain tasks will be carried out by

the sensor nodes such as monitoring temperature, humility and wind speed in a

forest to decrease the risk of forest fires. In many cases WSNs are set up in remote

areas or areas that are difficult for humans to access; also the sensor nodes are

often battery-powered. Thus, limited energy of the sensor nodes is a key challenge

in WSNs management. For the sake of energy conservation, according to some

protocols, the sensor nodes usually follow the hibernate–wakeup life circle which

means they hibernate for some time and then wake up collecting data and send

readings to the server. So the readings kept at the server are not always precise

but associated with certain levels of uncertainty. Another source of uncertainty

in WSNs origins from the limitation of equipment which means the readings of a

sensor node are inherently imprecise or erroneous. In order to detect areas in a

forest with high risks of fire hazard, people may want to select areas with high

temperature, low humility and high wind speed from all areas with sensor nodes

installed. Such kind of multi-criteria decision making problems are often modeled

as skyline or dominating queries and should be conducted on the collected uncertain

data.

As a concrete example, suppose sensors are used to detect the temperature

and wind speed in a forrest. Due to limitations of sensors, detections can not be

accurate all the time. Instead, detection confidence is often estimated. Table 1.1

lists a set of synthesized records of parameters detected by sensors. In some high

harzard locations, multiple sensors are deployed to improve the detection quality.

Two sensors in the same location (e.g., S206 and S231, as well as S063 and S732 in

Table 1.1) may detect the parameters at (approximately) the same time, such as

records R2 and R3, as well as R5 and R6. In such a case, if the readings detected

Chapter 1. Introduction 3

by multiple sensors are inconsistent, at most one sensor can be correct.

RID Location Time Sensor-id Temp. Wind-Speed Conf.

R1 A 2:14 AM S101 21 ◦C 20 km/h 0.3

R2 B 12:07 PM S206 33 ◦C 51 km/h 0.4

R3 B 12:09 PM S231 35 ◦C 55 km/h 0.5

R4 A 1:32 PM S101 34 ◦C 48 km/h 1.0

R5 E 2:31 PM S063 37 ◦C 57 km/h 0.8

R6 E 2:28 PM S372 40 ◦C 56 km/h 0.2

Table 1.1: Readings of Temperature and Wind-Speed

Location Based Services With the rapid development of wireless communica-

tion and GPS techniques, there is a huge amount of location information of moving

objects collected and accumulated everyday. Usually the GPS equipped moving ob-

jects report their location information to a server through wireless communication

networks. However, to do the reporting continuously consumes too much network

connection and shortens the battery lifetime. Instead, the moving object may only

report its location periodically. For example, the location of a set of iphone hold-

ers may be monitored. In Figure 1.1 [PHTL], an iphone reports its location to

the server every five minutes. So even though we know the position of the iphone

holder exactly at time stamps 10:00 AM and 10:05 AM, the position information

in-between these two time stamps is not known. Instead, based on some informa-

tion like road network and speed constraint, we may expect the position of the

iphone holder in between 10:00AM and 10:05AM to be within the shaded area.

Image Data Analysis Orbit satellites may record sightings in a large range re-

motely so that they are often used to detect movement of enemies in battle fields.

However, due to the limitation of sight capturing devices in satellites and the fact

that a satellite orbits in the space far away, the sightings captured are often very

vague. As shown in Figure 1.2 [AKO07], based on the satellites sightings, we may

discover there is a moving object in the red circle; however, we can not conclude

4 Chapter 1. Introduction

Figure 1.1: Location of iPhone Holders

whether this object is our enemy or friend and whether it is for civilian or military

uses.

Figure 1.2: Sightings of a Satellite

Data Quality Another typical application involving uncertain data is data clean-

ing and integration. For instance, the data collected from a manually filled form

for the sake of census may contain missing or unclear values, as shown in Figure

1.3 [AKO07]. In the first form the marital status is not clear and in the second,

this information is completely missing. Furthermore, the social security number in

the first form can be read as either “785” or “185” and we can not tell if the social

security number in the second form is “186” or “185”.

Chapter 1. Introduction 5

Figure 1.3: Two Survey Forms

Other applications requiring uncertain data management include social net-

works, information retrieval, economic decision making, etc.

1.2 Types of Uncertain Data

Note that throughout this thesis, we do not distinguish between imprecise and

uncertain data and use the term uncertain for the reason of simplicity. To be

precise, imprecision means information available is not specific enough, for instance,

the temperature outside is between 35 and 38 centigrade (interval); it is 35 or 38

centigrade (disjunction); it is not 20 centigrade (negative); or we simply do not

know the outside temperature. On the other hand, uncertainty indicates it is

impossible to determine whether information available is true or not. For instance,

the temperature may be 38 centigrade [GUP05].

Most frequently used granularities to specify uncertain are group-based, object-

based and instance-based [TCX+05]. A group-based approach concerns the “cov-

erage” of the group such as how much percent of objects in the group is present; an

object-based approach assigns appearance probability to each object in the group;

6 Chapter 1. Introduction

in the instance level, an instance from an uncertain object is associated with prob-

ability distribution information describing a set of possible values. In this thesis,

we mainly focus on the instance-based granularity of uncertainty.

There are two major cases of uncertain data in most applications, the continuous

case and the discrete case. An uncertain object U may be described by a probability

density function (PDF) fU such that
∫
u∈U fU(u)du = 1 where fU(u) ≥ 0; this is

also referred as the continuous case. Nevertheless, in many applications PDFs are

not always available. Instead, an uncertain object U is represented by a set of

instances (points) such that each instance u ∈ U has a probability pu to appear.

Such a representation, also referred as the discrete case, has the property that

0 < pu ≤ 1 and
∑

u∈U pu = 1.

In the following part of the thesis, in the continuous case, an uncertain object U

in a d-dimensional space is defined with (i) a PDF fU(u) where u is d-dimensional

point; (ii) a d-dimensional uncertain region covering all possible locations of u ∈ U .

In the discrete case, U is defined with (i) a set of instances such that each instance

u is a point in the d-dimensional space and
∑

u∈U pu = 1, 0 < pu ≤ 1; (ii) a

d-dimensional uncertain region covering all the possible locations of u ∈ U .

Figure 1.4 describes two uncertain objects. Figure 1.4 (a) shows a 1-dimensional

uncertain object with a continuous PDF. [xmin, xmax] represents the uncertain re-

gion of the object and for any x′ ∈ [xmin, xmax], the associated probability of x′ can

be obtained precisely using the given PDF. Figure 1.4 (b) illustrates a 2-dimensional

uncertain object in a discrete case. The irregular polygon represents the uncertain

region covering locations of all instances in the object.

Chapter 1. Introduction 7

probability

x
xmin xmaxx'

prob(x')

(a) Continuous Case

y

x

uncertain region

instance

(b) Discrete Case

Figure 1.4: Continuous and Discrete Cases

1.3 Problems Studied

From the view of database research, uncertain data analysis largely contains three

steps, data collection, uncertainty integration, and modeling and querying uncer-

tain data, as shown in Figure 1.5. In data collection, large amounts of uncertain

data are collected through sensor nodes, GPS equipped devices, survey conduction,

etc. In uncertainty integration, the uncertainty level is assessed. Probability values

may be assigned to uncertain data based on numerous factors including the nature

of the equipment and confidence level of observation. Also, other information such

as correlations among uncertain data are derived based on applications. In this

thesis, we mainly focus on the last step, namely, modeling and querying uncertain

data.

Numerous applications will benefit from the support of advanced query types

and efficient indexing techniques on uncertain data. However, research on these as-

pects still remains largely open. Particularly, skyline query and dominating query,

as two important tools in multi-criteria decision making, need to be reinvestigated

under the uncertain semantics. Secondly, KNN queries are widely used in various

8 Chapter 1. Introduction

sensor nodes

data
data

probabilities,
 correlations,

......

 Uncertainty
 Intepretion

 Modelling and
 Querying Uncertain
 Data

Figure 1.5: Uncertain Data Analysis Framework

applications to retrieve a set of objects that are closest to a query object according

to given distance metrics. According to our analysis in Chapter 6, existing tech-

niques for KNN queries on uncertain data may not fully capture the distributions

of instances. Lastly, a set of queries rely on efficient processing of range queries,

including range aggregates, join, similarities joins, nearest neighbor queries, sky-

line queries, etc. However, current indexing techniques supporting range query on

uncertain data are sensitive to the size or shape of uncertain regions of uncertain

objects and queries.

Motivated by the above observations, this thesis aims to bridge the gap of

advanced query types and efficient indexing techniques in the field of uncertain

data management.

Problem I: The Probabilistic Top-k Skyline Operator

Given a set U of uncertain objects and an integer k, the probabilistic top-k

skyline operator retrieves k uncertain objects with maximal skyline probabilities.

Problem II: Probabilistic Skyline Operator over Sliding Windows

We study the problem of efficiently retrieving skyline elements from the most

recent N elements, seen so far in a stream, with the skyline probabilities not smaller

than a given threshold q (0 < q ≤ 1); that is, q-skyline. Specifically, we will

investigate the problem of efficiently processing such a continuous query, as well as

Chapter 1. Introduction 9

ad-hoc queries with a probability threshold q′ ≥ q.

Problem III: Probabilistic Top-k Dominating Queries

Given a probabilistic threshold q, an integer k, and a set U of uncertain objects,

a threshold based probabilistic top-k dominating query retrieves k objects with

highest dominating probability. Dominating probability for an uncertain object

U ∈ U is defined as the largest number of other objects in U that are dominated

by U with probability at least q.

Problem IV: Quantile-based KNN over Multi-valued Objects

Each multi-valued object is represented by a set of instances and the sum of

probabilities of the instances equals to 1. Given a value ϕ ∈ (0, 1], we define two

types of distance between two multi-valued objects Q and U , ϕ-quantile distance

dϕ(Q,U) and ϕ-quantile group-base distance gbdϕ(Q,U).

[ϕ-Quantile KNN] Given a ϕ ∈ (0, 1], a set U of multi-valued objects in a d-

dimensional space, and a multi-valued query object Q, the ϕ-quantile KNN problem

is to retrieve the set ΦK of K objects from U such that for each U ∈ ΦK and each

U ′ ∈ U − ΦK , dϕ(Q,U) ≤ dϕ(Q,U ′).

[ϕ-Quantile Group-base KNN] Given a ϕ ∈ (0, 1], a set U of multi-valued

objects in a d-dimensional space, and a multi-valued query object Q, the ϕ-quantile

group-base KNN problem is to retrieve the set ΦK of K objects from U such that

for each U ∈ ΦK and each U ′ ∈ U − ΦK , gbdϕ(Q,U) ≤ gbdϕ(Q,U ′).

Problem V: Indexing Structure for Uncertain Space

The aim is to build an efficient index to support various queries which rely

on efficient processing or range query, such as size estimation of range query and

similarity join. The index supports uncertain objects with arbitrary PDFs and is

not sensitive to the size and shape of the query regions.

10 Chapter 1. Introduction

1.4 Contributions

The contributions of this thesis can be summarized as follows.

Contributions on the Probabilistic Top-k Skyline Operator

• We present a concrete model for the problem for both discrete and continuous

cases.

• We develop an efficient, threshold-based algorithm to compute the exact top-

k skyline objects. The algorithm is based on a set of novel techniques to

calculate skyline probabilities and prune objects.

• To address the applications with a large number of instances per object

or a given continuous probability density function (PDF) per object, we

develop an efficient randomized algorithm with an accuracy guarantee, ϵ-

approximation. It follows the framework of our exact algorithm to effectively

remove non-top-k skyline objects.

Contributions on Probabilistic Skyline Operator over Sliding Windows

• We characterize the minimum information needed in continuously computing

probabilistic skyline against a sliding window.

• We show that the volume of such minimum information is expected to be

bounded by logarithmic size in a lower dimensional space regarding a given

window size.

• We develop novel, incremental techniques to continuously compute proba-

bilistic skyline over sliding windows.

• We extend our techniques to support multiple pre-given probability thresh-

olds, as well as “top-k” probabilistic skyline.

Chapter 1. Introduction 11

Contributions on Probabilistic Top-k Dominating Queries

• We formally define a top-k dominating query on uncertain data with a given

probability threshold imposed to support different confidence requirements.

• An efficient, threshold-based exact algorithm is proposed to take an advantage

of the threshold-based paradigm [FLN03]. Based on a novel application of

laws of large numbers [Gol01] and mathematic characterizations, a set of

novel, effective pruning techniques have been proposed to pursue efficiency.

• We develop an efficient randomized algorithm with an accuracy guarantee.

Novel processing techniques and data structures are developed in our ran-

domized techniques.

Contributions on Quantile-based KNN over Multi-valued Objects

• We make the first attempt to identify KNN sensitive to the relative distribu-

tions among multi-valued objects.

• Efficient, novel techniques are proposed for computing quantile distance based

KNN against a set of multi-valued objects and a given query object that is

also multi-valued.

• We show that the problem of KNN against the quantile group-base distance is

NP-hard. Novel and efficient algorithms are proposed with the approximation

ratio 2.

Contributions on Indexing Structure for Uncertain Space

• A space-efficient index structure for organising multidimensional uncertain

objects, UI-tree, is proposed. UI-tree can support arbitrary PDF of uncertain

objects.

12 Chapter 1. Introduction

• We develop efficient solutions for various types of queries based on UI-tree,

including range query, size estimation of range query, probabilistic top-k range

query and similarity join.

• We provide rigorous analysis to estimate the filtering capacity of UI-tree.

• Extensive experiments over real and synthetic data sets are conducted to

demonstrate the efficiency and scalability of UI-tree compared with other

state-of-the-art techniques.

1.5 Thesis Organization

A thorough survey of existing techniques for managing uncertain data is presented

in Chapter 2. We introduce current modeling and querying techniques, as well as

database management systems designed especially for uncertain data.

In Chapter 3, we study the problem of top-k skyline on uncertain data. The

problem is firstly formally defined for both continuous and discrete cases. Exact

and random algorithms are proposed thereafter. Experiments on both real and

synthetic data show the efficiency and effectiveness of the technique.

We extend our study of skyline operator on uncertain data to sliding windows

in Chapter 4. After formally defining the problem, we characterize the candidate

set with minimum size and give a formal proof of correctness. Efficient techniques

based on R-tree structures are proposed. Extensive experiments on both real and

synthetic datasets demonstrate that techniques proposed are scalable and support

high speed data streams.

Besides skylines, dominating query is another important tool for multi-criteria

decision making. In Chapter 5, we study the important problem of top-k dominat-

ing query on uncertain data. After giving a formal definition of the problem, both

Chapter 1. Introduction 13

exact and random algorithms are presented. These are followed by experimental

study to demonstrate the efficiency and effectiveness of our study on both real and

synthetic datasets.

Another advanced query type, KNN query, is tackled in Chapter 6. Having

observed that existing techniques for KNN processing on uncertain data may lose

the important information of instances distribution, we define KNN queries sen-

sitive to the instance distribution among multi-valued objects based on quantile

distances. Techniques for quantile based KNN queries are then presented. As the

problem of KNN against the quantile group-base distance is NP hard, in the fol-

lowing, we develop approximate algorithms with accuracy guarantee. Efficiency,

accuracy, scalably and power of pruning rules are studied in experimental study.

Observing some deficiencies of existing indexing techniques for uncertain data,

we investigate the problem of indexing multidimensional uncertain data in Chapter

7. The structure of the index UI-index is firstly introduced. Then, we show how

to support various query types using it. Comprehensive experimental studies are

conducted to demonstrate the efficiency and scalability of UI-index.

The thesis concludes in Chapter 8. Future work directions are also presented.

Chapter 2

Related Work

In this chapter, we overview the related work on uncertain data management.

Firstly, we give a brief introduction of models for uncertain data. Next, we sum-

marize existing techniques on various probabilistic query types. Then, we describe

DBMSs specially designed for supporting uncertainty management. In the end,

other research topics on uncertain data management are discussed, such as pri-

vacy, uncertain XML, clustering and mining, etc.

2.1 Modeling Uncertainty

The uncertainty of an object can be specified by three models [TXC07]:

fuzzy model [GUP05], evidence-oriented model [Lee92, LSS96] and probabilistic

model [SBHW06]. In fuzzy models, fuzzy entities, fuzzy attributes, fuzzy relation-

ship, fuzzy aggregation, fuzzy constraints, etc are used to model uncertainty and

imprecision. In evidence-oriented models, the Dempster-Shafer Theory of Evidence

is applied to model uncertainty and imprecision. Probabilistic models specify un-

certainty with probability values. In this chapter we focus on probabilistic models

since it is is not only the most widely used but also it is the only model adopted

14

Chapter 2. Related Work 15

in existing DBMSs for uncertainty analysis.

2.2 Possible World Semantics and Probabilistic

Models

2.2.1 Possible World Semantics

We first introduce possible world semantics for object-based uncertainty. Suppose

in a set of uncertain objects D, an object U has probability P (U) (P (U) > 0)

to occur and all objects are independent. A possible world W is a subset of D.

Clearly, the occurrence probability of a possible world is P (W) =
∏

U∈W P (U) ·∏
U /∈W (1− P (U)). Note that an object with occurrence 1 must appear in any

possible world. Let W be the set of all possible worlds of D and N be the number

of objects with occurrence probability smaller than 1, then |W| = 2N . The sum

of the membership probabilities of all possible worlds in W equals to 1; that is,∑
W∈W P (W) = 1.

For instance-based uncertainty, given a set of uncertain objects U =

{U1, · · · , Un}, each uncertain object consists of a set of instances. All objects

are independent. A possible world W = {u1, · · · , un} is a set of instances with

one instance from each uncertain object. The probability of W to appear is

P (W) =
∏n

i=1 pui
. LetW be the set of all possible worlds, then

∑
W∈W P (W) = 1.

General Model. In a general case, records in a data set may be correlated.

A comprehensive study of possible world semantics is conducted by Hua et al

in [HPZL08a, SIC07, YLKS08]. A set of records R1, ..., Rm are exclusive if at

most one of them could appear in a possible world and
∑

1≤i≤m P (Ri) ≤ 1 where

P (Ri) is the occurrence probability of Ri. A set of exclusive records are also called

16 Chapter 2. Related Work

a generation rule R. Occurrence probability of a generation rule R is the sum of

probabilities of all the records involved in R; that is, P (R) =
∑

R∈R P (R). Note

that a generation rule (virtually regarded as an object) could contain only one

record and different generation rules are independent. Given a set of m generation

rules − GD = {R1, ...,Rm}, a possible world W is defined as an element in
∏

R∈G′R

where G ′ is a subset of GD, G ′ contains every generation rule R such that P (R) = 1.

Let |R| be the number of records in R. The number of all possible worlds with

respect to GD is:

|W| =
∏

R∈GD,P (R)=1

|R|
∏

R∈GD,P (R)<1

(|R|+ 1) (2.1)

Occurrence probability of a possible world W is:

P (W) =
∏

R∈GD,R∩W ̸=ϕ

P (R∩W)× (2.2)

∏
R∈GD,R∩W=ϕ

(1− P (R))

where P (R ∩W) refers to the occurrence probability of a record which is in both

R and W .

As an example, Table 2.1 records the ID of speeding vehicles (Vehicle in the

table) and speed (Speed) captured by sensor nodes (SID) at certain location (Loc.)

and time (Time). Each record is given an occurrence probability (P) representing

its confidence to be true. In this example, records R1 and R2 can not appear in the

same possible world; that is, R1 and R2 are exclusive. R3 is independent with them;

this means the generation rule containing R3 only is independent with generation

Chapter 2. Related Work 17

rule {R1, R2}. There are 6 possible worlds in all for this uncertain database, as

shown in Table 2.2, along with corresponding occurrence probabilities.

RID SID Time Loc. Vehicle Speed P

R1 S1 2 : 00PM L1 HB1235 120 0.7

R2 S1 2 : 00PM L1 HB1238 150 0.2

R3 S6 3 : 45PM L17 HA2568 170 0.9

Table 2.1: Speeding Vehicles Records.
Possible World Occurrence Probability

W1 = {ϕ} 0.01

W2 = {R1} 0.07

W3 = {R2} 0.02

W4 = {R3} 0.09

W5 = {R1, R3} 0.63

W6 = {R2, R3} 0.18

Table 2.2: Possible Worlds of Table 2.1.

2.2.2 Other Advanced Models

There are a number of advanced models. In this subsection, we introduce three

representatives.

• Fuhr and Rolleke model uncertainty based on non-first-normal-form

(NF2) [FR07] where records in a relation are assigned probabilistic weights.

Imprecise attribute values are modelled as a probabilistic sub-relation. More-

over, a probabilistic relational algebra (PRA) is proposed as a generalization

of standard relational algebra.

Tuple t in a probabilistic relation modeled by NF2 contains three aspects,

its attribute values, an event expression t.η and event probability t.β. As

shown in Figure 2.1 [FR07], the relation BOOK consists of atomic attributes

BNO, YEAR, and attributes PRICE, INDEX, AUTHOR which are modeled

by subrelations. Types of probabilistic relations include “deterministic”, “in-

dependent”, “disjoint” and “dependent”. For example, subrelation price is

18 Chapter 2. Related Work

Figure 2.1: Relation BOOK

disjoint meaning that one and only one event between BÊP1 and BÊP2 can

be true. INDEX is independent meaning that both BÊI1 and BÊI2 can be

true with different confidence and AUTHOR is deterministic indicating that

both values for NAME in this subrelation takes the same event probability

as the tuple it belongs to, namely, 1.0.

Clearly, general model introduced earlier can also be used to model such NF2

probabilistic relations, in a clearer and more concise way.

• Sarma et al integrate lineage to model uncertainty [SBHW06]. Linage is

associated with a data item carrying information about its derivation. A

model ULDBs (Uncertainty-Lineage Databases) is developed by extending

standard SQL relational model with the following four aspects [BSHW06a].

1. alternatives capturing the uncertainty of contents of a tuple.

2. maybe annotations “?” representing the uncertainty about the presence

of a tuple.

3. confidence values quantifying the degree of above two types of uncer-

tainties.

4. lineage recording derivation information of tuple alternatives.

Chapter 2. Related Work 19

In fact, besides a new ingredient lineage, this model is almost identical to

the independent model in object-level uncertainty.

Table 2.3 gives an example of ULDBs. Record R1 can be either of the two

tuples with different confidence values. R2 exists in this table with confidence

0.9. Table 2.4 captures vehicle ID and driver names. We join these two

tables and project on the driver attribute, clearly obtaining only one tuple

(John). We call this tuple R5. Lineage captures how R5 is derived from the

original two tables by a function λ over the alternatives of tuples. λ(R5, 1) =

((R1, 2), (R3, 1)) means that the first alternative of R5 is derived from joining

of the second alternative of R1 and first alternative of R3.

RID (Vehicle ID, Speed)

R1 (HB1235, 120): 0.7 || (HB1238, 120): 0.2

R2 (HA2568, 170): 0.9 ?

Table 2.3: Vehicle and Speed.

RID (Vehicle ID, Driver)

R3 (HB1238, John)

R4 (HC2457, Wendy)

Table 2.4: Vehicle and Driver.

• Sen and Deshpande utilize a probabilistic graphical model [Pea88] to facil-

itate query evaluation over uncertain data with general forms of correla-

tions [SD07]. Besides independence and mutual exclusivity, implies and nxor

are also explored; that is, the presence of one tuple implies absence of other

tuples and high positive correlation between two tuples, respectively. Each

tuple is associated with a boolean valued random variable Xt, namely false

and true. In the probabilistic graphical model, nodes represent random vari-

ables while edges represent correlations. Thus different types of correlations,

such as complete independence, mutual exclusivity, positive correlation can

20 Chapter 2. Related Work

be modelled. Query evaluation problem with correlations is then transformed

into equivalent problem under probabilistic graphical model and can be solved

using existing techniques such as inference algorithms.

A lot of research work aims to represent uncertainty besides what we introduced

above, for instance [AKG87, AKO07, BGMP92, DS96, Fuh90, IJ84].

2.3 Probabilistic Queries

We review existing work on important probabilistic queries in this subsection.

2.3.1 Query Evaluation

Cheng et al present a broad classification of probabilistic queries over one-

dimensional uncertain data as well as techniques for evaluating probabilistic

queries [CKP03]. There are four types in all, value-based non-aggregates, entity-

based non-aggregates, value-based aggregates and entity-based aggregates accord-

ing to two aspects: 1) the query requires qualifying objects or values and 2) the

query is aggregate-based or not. An example of entity-based non-aggregate query

is: given an interval [l, r] where l < r, return a set of tuples (Ti, Pi) where attribute

a of Ti is within the range [l, r] with non-zero probability Pi. Bounding and prun-

ing techniques are deployed to evaluate these queries. In [CXP+04], Cheng et al

explore access methods to also support range search for one dimensional data only.

A series of work has been done by Dalvi and Suciu from University of Wash-

ington to evaluate probabilistic queries. In [DS04], they tackle the problem of

evaluating queries with uncertain predicates. Optimization algorithms that can

evaluate efficiently most queries are presented. They also show that the evaluation

of some queries is #P -complete; these queries are approached in two different meth-

Chapter 2. Related Work 21

ods: a heuristic avoiding significant errors and a Monte-Carlo simulation algorithm

with precision guarantees. In [DS05], they propose to answer queries from statistic

and probabilistic views. In [DS07a] a very clean and complete theoretical result is

provided that the complexity of evaluating conjunctive queries over uncertain data

set is either PTIME or #P -complete.

Sen and Deshpande utilize probabilistic graphical model to approach the

same problem in uncertain data sets with correlated tuples as introduced in Sec-

tion 2.1 [SD07].

2.3.2 Aggregate Queries

A most recent work on aggregate query processing over relational uncertain data

is from Stanford InfoLab as a function supported by their system Trio [MW07].

Five types of aggregate operators are tackled, COUNT, MIN, MAX, SUM and

AVG. Among them, COUNT, MIN and MAX are relatively easy and there exist

polynomial algorithms [HPZL08a]. However, it is shown in [DS07b] that results

for SUM and AVG may be different in each possible world and computing SUM

or AVG is #P-complete. Three approximate alternatives are proposed to avoid

exhaustively materialize all possible results caused by “exact” aggregation in un-

certain databases: lowest possible value, highest possible value and expected value.

For instance, lowest possible value of SUM (LSUM) is defined as the sum of lowest

value from each uncertain object (e.g., sets of tuples from probabilistic table that

are governed by a generation rule). Specifically, expected-average (EAVG) value is

approximated using expected-sum (ESUM) divided by expected-count (ECOUNT).

Transformed aggregate queries are processed using TriQL techniques used in Trio

which is an extension of SQL.

A thorough and fundamental study of OLAP against uncertain and imprecise

22 Chapter 2. Related Work

data has been conducted in [BDRV05]. Other major work may be found in [CCT96,

JKV07, MSS01, RSG05, RB92, SM03].

2.3.3 Join Queries

Join queries over one dimensional uncertain data are defined by Cheng et al

in [CSP06] in a continuous case. Uncertainty over a data item a is parameter-

ized with an uncertainty interval a.U and PDF a.f(x). Uncertainty comparison

operators, equality, inequality, greater than and less than are defined in a contin-

uous fashion. Take equality between two uncertain items a and b as an example.

Since the PDFs for both a and b are continuous, the probability that a equals b

could be infinitesimally small. A new parameter resolution (c) is introduced to

avoid this: a equals b if they are within c distance i.e., |a− b| ≤ c. The probability

that a equals b with resolution c is defined as:

P (a =c b) =

∫ +∞

−∞
a.f(x) · (b.F (x+ c)− b.F (x− c))dx (2.3)

where b.F (x) denotes the cumulative distribution function (CDF) of b.

Denote θu as a uncertainty comparison operator and R and S are uncertain

data sets; probabilistic join query (PJQ) returns all pairs of tuples (Ri, Sj) with

P (RiθSj) > 0, where Ri ∈ R, Sj ∈ S. Probabilistic threshold join query (PTJQ)

further imposes a probability threshold and only uncertain item pairs with matching

probability value no less than this threshold satisfy PTJQ. Based on this threshold,

pruning techniques in different indexing levels are proposed to answer PTJQ.

A recent work on join queries on uncertain data is given in in a top-k fash-

ion [AW07] by Agrawal and Widom. In such confidence-aware joins, only results

with top-k matching confidence will be output.

Chapter 2. Related Work 23

2.3.4 Similarity Joins

Kriegel et al study similarity joins on uncertain spatial objects in [KKPR06]. The

probability that distance between two uncertain objects U and V is within a range

[a, b] is defined as,

P (a ≤ d(U, V) ≤ b) =

∫ b

a

fd(U, V)(x)dx (2.4)

where fd(U, V) is the probabilistic distance function between U and V . Although

fd(U, V) may be computed directly for some uncertain object representations, for

efficiency reasons, Kriegel et al propose algorithms based on Monte-Carlo sampling

technique where each uncertain object is represented by a set of s sampled instances.

In this case, the similarity join probability between U and V is defined as follows.

Assume all instances in an uncertain object take the same probability to appear

P (d(U, V) ≤ ϵ) =
|{(ui, vj)|d(ui, vj) ≤ ϵ, 1 ≤ i, j ≤ s}|

s2

Here Pd(ui,uj)≤ϵ denotes the probability that the distance between ui and vj is

not greater than ϵ, where ui ∈ U and vj ∈ V . As shown in Figure 2.2 where

there are totally 9 pairs of instances, only the distances of three pairs of instances

connected with solid line are smaller than a given distance threshold; consequently

P (d(U, V) ≤ ϵ) = 1/3. In their algorithms, instances are also grouped and indexed

using R-tree. Then effective pruning techniques based on ϵ are applied. For any

two input uncertain objects and distance threshold ϵ, the similarity join probability

between these two objects regarding ϵ will be output by their algorithms.

In [BPS06a], a similar problem − similarity matching is investigated. In their

settings, uncertainty of feature vectors follow Gaussian distribution. A novel index

structure, Gauss-tree, is developed for similarity matching processing.

24 Chapter 2. Related Work

U

V

Figure 2.2: Probabilistic Similarity Join

2.3.5 Top-k Queries

Top-k queries are important in analyzing uncertain data. Unlike a top-k query over

certain data which returns the k best alternatives according to a ranking function,

a top-k query against uncertain data has inherently more sophisticated semantics.

Soliman et al [SIC07] first relate top-k queries with uncertain data. They define

two types of important queries - U -Topk and U -kRank, regarding discrete cases.

U-Topk returns a set of k records which as a whole have the highest probability to

be the top-k results in all possible worlds. A precise definition is as follows [SIC07].

Let D be an uncertain data set with possible worlds space W =

{W1, ...,Wn}. Let T = {T 1, ..., Tm} be a set of k-length record vec-

tors, where for each T i ∈ T : (1) records of T i are ordered according to

scoring function F , and (2) T i is the top-k answer for a non empty set

of possible worlds W (T i) ⊆ W . A U-Topk query, based on F, returns

T ∗ ∈ T , where T ∗ = argmaxT i∈T (
∑

w∈W (T i) P (w)).

U-kRank retrieves k ordered records where the i-th record has the highest proba-

bility of ranking in the i-th position among all possible worlds [SIC07].

Let D be an uncertain data set with possible worlds space W =

Chapter 2. Related Work 25

{W1, ...,Wn}. For i = 1, ..., k, let {x1
i , ..., x

m
i } be a set of records, where

each record xj
i appears at rank i in a non empty set of possible worlds

W (xj
i) ∈ W based on scoring function F . A U-kRanks query, based on

F , returns {x∗
i ; i = 1, ..., k}, where x∗

i = argmaxxj
i
(
∑

w∈W (xj
i)
P (w)).

Methods proposed in [SIC07] navigate all possible states of the search space,

meanwhile minimizing the number of tuples accessed. Based on novel observa-

tions, Yi et al [YLKS08] significantly improve the efficiency while tackling the

same queries.

Threshold based top-k queries defined by Hua et al [HPZL08a, HPZL08b] aim

to retrieve all records whose probability of being top-k results in all possible worlds

is no less than a given probability threshold. Re et al [CR07] deal with query evalu-

ation on probabilistic database and results are ranked according to the probability

of satisfying a given query.

Expected rank is proposed to use for answering top-k queries on uncertain

data by Cormode et al in [CLY09]. By utilizing expected rank, some fundamental

properties such as exact-k, containment, unique rank, value invariance and stability

are all satisfied. These properties naturally hold on certain data but are missed

by some top-k definitions on uncertain data. In [GZM09], Ge et al study the

score distribution and typical answers of top-k queries on uncertain data. By

presenting the score distribution of all top-k vectors, the users are able to choose

among all results along the score-probability dimensions, as shown in Figure 2.3

[CLY09]. Instead of displaying distributions of all potential top-k vectors, the

authors also propose to provide a a number of typical vectors that effectively sample

this distribution.

Finally in [LSD09], Li et al propose a universal ranking function based on com-

puting the parameters of generating functions. Although this universal ranking

26 Chapter 2. Related Work

Figure 2.3: The Distribution of Top-k Tuples’ Total Scores

function generalizes most existing probabilistic ranking semantics, it does not sup-

port certain definition with specific requirements like all top-k tuples should belong

to the same possible world, e.g. U-Topk.

2.3.6 Nearest Neighbor Queries

The problem of nearest neighbor query on uncertain objects is tackled in [KKR07].

In a discrete case, both uncertain objects and a query object are represented by a

set of s sampled instances. The probability that uncertain object U is the nearest

neighbor of query object Q Pnn(U,Q) is defined based on the instance pairs from

U and Q.

Pnn(U,Q) =

∑
i,j∈1...s Pnn(ui, qj)

s2

where Pnn(ui, qj) is the probability that instance ui ∈ U is the nearest neighbor of

instance qj ∈ Q. Pnn(U,Q) in continuous cases is computed based on the proba-

bilistic distance between Q and U and the probabilistic distance between Q and

other objects except U .

Chapter 2. Related Work 27

To facilitate query processing, instances inside an object are clustered into sev-

eral groups bounded by minimal bounding boxes (MBRs) and indexed by R-tree.

Thus higher level pruning and validating measures can be applied.

Constrained nearest neighbor query is studied in [CCMC08] with a pre-given

probability threshold. Only objects with probability no less than this threshold of

being nearest neighbor of the query object will be output. In [BSI08], Beskales et

al define the top-k probabilistic KNN problem based on possible world semantics

and develop techniques optimizing both I/O and CPU cost.

2.3.7 Skyline Queries

For two points u and v in a multi-dimensional space, u dominates v (u ≺ v) if in

each dimension the coordinate of u is not greater than that of v and there is one

dimension in which the coordinate of u is smaller than v. For a given data set,

the skyline operator returns all points in the data set which are not dominated by

other points. As illustrated in Figure 2.4, skyline points are a, b and c since they

are not dominated by any other points. Skyline operator over uncertain objects

is more complex since it involves sophisticated analysis of probability distribution

of each uncertain object. As in Figure 2.5, generally instances in each uncertain

object have different dominating ability. This problem is firstly approached by Pei

et al in [PJLY07]. In a continuous case, suppose that f is the PDF of uncertain

object U in the data space D, the probability for U to be a skyline object is:

Pr(U) =

∫
u∈D

f(u)
∏

∀V ̸=U

(1−
∫
v≺u

f ′(v)dv)du (2.5)

Here
∏

V ̸=U(1−
∫
v≺u

f ′(v)dv) is the probability that the point u ∈ U is not domi-

nated by any uncertain objects. f ′ denotes the PDF of V . In a discrete case, the

28 Chapter 2. Related Work

skyline probability of U is:

Pr(U) =
∑
u∈U

(P (u)×
∏

∀V ̸=U

(1−
∑

v∈V,v≺u

P (v))) (2.6)

∏
V ̸=U(1 −

∑
v∈V,v≺u p(v)) is the probability that u ∈ U is not dominated by any

other objects. Recall that P (u) denotes the appearance probability of instance u.

a

b
c

d

eY

X

Figure 2.4: Certain Objects.

a1
b2a2 b1

c1

c2 A
B
C

Y

X

Figure 2.5: Uncertain Objects.

Bounding-pruning-refining iteration is deployed to achieve efficiency. Two algo-

rithms, bottom-up and top-down, are developed. The bottom-up algorithm com-

putes P (U) from instance level. After calculating skyline probabilities of some

selected instances, these values are used to prune other instances and objects. Top-

down algorithm, on the other hand, partitions instances of one uncertain object

into several groups and apply pruning techniques in the group and object level.

A variation of uncertain skyline, monochromatic and bichromatic reverse skyline

search over uncertain objects, is studied in [LC08].

2.4 Indexing Uncertain Data

The first index structure supporting range queries on multi-dimensional spatial

uncertain data with arbitrary PDFs is U-tree [TCX+05]. U-tree is a novel modi-

fication of R-tree to facilitate a set of new pruning and validating techniques. A

Chapter 2. Related Work 29

d-dimensional uncertain object U is modeled using a d-dimensional uncertain re-

gion U.ur and probability density function U.pdf(x). Suppose the query region of

a range query Q is rQ, the appearance probability of U in rQ is defined as:

Papp(U,Q) =

∫
U.ur∩rQ

U.pdf(x)dx (2.7)

where U.ur ∩ rQ is the intersection of U.ur and rQ. Given a probability threshold

p, uncertain objects with Papp(U,Q) ≥ p are retrieved by the range query.

The basic idea to build a U-tree is illustrated in Figure 2.6 where polygon U.ur

is the uncertain range of 2-dimensional uncertain object U . For a given probability

p1, in each dimension, two lines are calculated. In the horizontal dimension, U has

the probability p1 to occur on the left side of line l1−, also the probability p1 to occur

on the right side of line l1+. Similarly, l2− and l2+ are calculated in the vertical

dimension. The shadowed region forms the probability constrained region (PCR) of

U with respect to p1. Such a region is used to prune or validate objects. There are

multiple PCRs computed beforehand to facilitate range query processing, as shown

in Figure 2.7. To tradeoff between space costs and pruning/validating abilities, a

U-tree structure is constructed based on the approximation of such polygons.

In [BGK+07, BPS06b], Böhm et al study range queries with the constraint that

instances of uncertain objects follow Gaussian distribution. Results are ranked

according to the probability of satisfying range queries. A more recent work ad-

dressing indexing high dimensional uncertain data is [AY08].

Motivated by some shortcomings of U-tree, in Section 7 we also develop another

index structure UI-tree.

30 Chapter 2. Related Work

U.ur

l1- l1+

l2-

l2+������
Figure 2.6: Pruning/Validating in

U-tree.

U.ur

p1

p2

p3

Figure 2.7: Multiple PCRs.

2.5 Uncertainty Management Systems

Many systems have been developed and implemented to support uncertain data

management. We briefly summarize six representatives below.

2.5.1 Trio

Trio is developed by Standford InfoLab [ABS+06, BSHW06b, MTdK+07, Wid05].

As a database system, it not only tackles modelling and analyzing data but also the

accuracy and lineage of data. Trio is developed based on data model ULDB which

is introduced in Section 2.1. It is implemented on the top of traditional relational

DBMS (PostgreSQL). Query language in Trio is an extension of SQL, TrioQL.

TrioQL handles queries, as well as accuracy and lineage of data. Figure 2.8 illus-

trates the system architecture of Trio [MTdK+07]. The Trio API accepts TrioQL

as well as regular SQL queries from client and translates them into standard SQL

queries; in the relational DBMS, data tables are encoded, namely, are integrated

with uncertainty information such as confidence and alternatives as introduced in

Section 2.1. Trio Stored Procedures handles confidence and lineage information.

Chapter 2. Related Work 31

Standard relational DBMS

Trio API and translator
(Python)

Trio API and translator
(Python)

Command-line
client

Command-line
client

Trio
Metadata

TrioExplorer
(GUI client)

TrioExplorer
(GUI client)

Trio Stored
Procedures

Encoded
Data Tables

Lineage
Tables

Standard SQL

Figure 2.8: Trio System Architecture

2.5.2 MystiQ

MystiQ is a database system managing uncertainty in a probabilistic view devel-

oped by the University of Washington [BDM+05]. The system contains four main

components, data modelling language (mDML), data definition language (mDDL),

preprocessor and query translation engine. mDDL defines approximate match op-

erators and allows users to specify confidence in query predicates. Below is an

example query in mDDL [BDM+05].

SELECT F.title, D.name

FROM Director D, Films F

WHERE D.did = F.did

AND D.name ∼ ’Copolla’ [CONFIDENCE = 0.9]

AND F.year ∼ 1975 [CONFIDENCE = 0.7]

This query retrieves film title and director name where the film was produced

32 Chapter 2. Related Work

in approximately 1975 with confidence 0.7 and the director name is approximately

’Copolla’ with confidence 0.9, from tables Director and Film. mDDL is integrated

with the new components to manage uncertainty; the new components include

predicate functions to specify measure used to generated similarity probabilities,

global constraints for detecting and resolving inconsistency, etc. Based on mDDL

specification, the preprocessor generates additional relational tables integrating

probability values. The query translation engine is a critical component in MystiQ,

translating queries written in mDML into regular SQL queries. Query evaluation

techniques in MystiQ are introduced in [DS04, CR07].

2.5.3 URank

URank is a system mainly designed for answering U-Topk and U-kRanks queries

from Waterloo University and UIUC [SFC07]. Querying techniques are introduced

in [SIC07]. URank is also built on traditional relational DBMS with new compo-

nents to cope with uncertainty. The system is composed of two layers as shown

in Figure 2.9, Storage Layer and Processing Layer. Physical data and generation

rules are manipulated in Storage Layer, as well as different access methods, such

as random access and sorted access. Processing Layer is mainly based on tech-

niques in [SIC07]. Space Navigation accesses data from the Storage Layer. Each

accessed tuple is sent to the component State Formulation to calculate probabilities

of newly generated states. Rule Engine is the part of the system to handle such

state probability computation based on generation rules.

2.5.4 MayBMS

MayBMS project, developed by Cornel University, aims to build a probabilistic

database management system based on the Postgres server. MayBMS is founded

Chapter 2. Related Work 33

Figure 2.9: URank Framework

on a series of theories and principles to extend mature relational database technolo-

gies to create robust and scalable systems for managing and querying large scale

uncertain datasets. Research themes of MayBMS include data representation, stor-

age mechanism, query language, query processing techniques, query optimization,

update language, concurrency control and recovery, APIs, etc. Figure 2.10 [AK08]

illustrates the architecture of MayBMS system. Compared to traditional DBMSs,

systems for managing uncertain data need to deal with two additional levels of

abstraction, the representation system and the possible worlds model [AK08].

2.5.5 ORION

The ORION project is developed by researchers in Purdue University. Orion sup-

ports both attribute and tuple uncertainty with arbitrary correlations. Contribu-

tions of ORION include modeling, access methods, query optimization, graphical

34 Chapter 2. Related Work

Figure 2.10: MayBMS Architecture

visualization of and statistical inference over uncertain data. The fundamental dif-

ference between Orion and related projects is indeed its support of attribute-level

continuous uncertainty, which enables the system to represent probabilistic data

in a natural and efficient manner. Figure 2.11 [SMM+08] shows the architecture

of the entire system. In the figure, uncertain type, system catalog in system level,

uncertain data types, uncertainty query functions in user level are new components

that correspond to the primary features of the Orion data model. Cost estimation

functions, indexes and query engine in system level are portions of the PostgreSQL

backend that are extended to support queries over uncertain data. Other parts in

the architecture (which include the majority of the PostgreSQL backend) indicate

components that are not modified.

Chapter 2. Related Work 35

Figure 2.11: ORION 2.0 Architecture

2.5.6 MauveDB

MauveDB, developed by University of Maryland, aims to provide abstractions to

continuously apply statistical modeling tools to streaming sensor data. MauveDB

supports a new abstraction called ”model-based views” to achieve the above goal,

where a model-based view is analogous to a traditional database view in that it

can be used to present a consistent “view” of the underlying data to the user. The

architecture of the system is shown in Figure 2.12 [DM06]. As shown, MauveDB

consists of three main modules, storage manager, view manager and query pro-

cessor. The storage manager is responsible for maintaining the raw sensor data

on disk, as well as maintaining indexes on the tables. The view manager tracks

the type and status of the views in the system and then provides corresponding

information to the query processor. The query processor mainly answers users’

queries.

36 Chapter 2. Related Work

Figure 2.12: MauveDB Architecture

Other systems managing uncertain data may be found in [LLRS97, MSCP03,

Mot88].

2.6 Other Related Work on Uncertainty Man-

agement

Clustering uncertain objects is addressed in [KP05]. The distance between two

uncertain objects is the same as Equation(2.4). Key concepts in density-based

clustering on uncertain objects, such as core objects, core object probability, and

reachability probability among objects are defined where a core object has a dense

neighborhood and both core object probability and reachability probability are

derived based on the Equation(2.4), respectively. Novel density-based clustering

algorithm FDBSCAN is then developed based on these new concepts.

Ngai et al address the same problem in [NKC+06] using clustering algorithm

Chapter 2. Related Work 37

based on the traditional K-mean algorithm. Different from the probabilistic dis-

tance functions in [KP05], distance values used between a pair of uncertain objects

or between an uncertain object and a cluster are expected values. For arbitrary

PDF, such expected values often involve expensive numerical integration calcula-

tion. Pruning techniques are also proposed to avoid such an expensive step. Chau

et al tackle the problem of mining uncertain data in [CCKN06] as an extension of

the techniques proposed in [NKC+06].

Query evaluation over uncertain data has also been studied against other ap-

plications, such as data streams [CG07], sensor networks [CP03, LCLC04], moving

objects [CKP04], video retrieval [BGK+07], XML data [AS06, HGS03b, HGS03a,

KS07, NJ02, SA07], categorical data [SMP+07], etc. Theoretical problems such

as functional dependency [SUW08] and confidence computation [STW08] analysis

over uncertain relation data have also been addressed. Privacy issues in uncertain

semantics are studied in [Agg08, BAN08].

Chapter 3

The Probabilistic Top-k Skyline

Operator 1

Skyline analysis (e.g., [BKS01, CJT+06, HJLO06, LYWL05, PJET05, SS06,

TXP06, YLL+05]) has been demonstrated very useful in multi-criteria decision

making applications. In a multidimensional space where a preference order is given

in each dimension (e.g., low price and high quality are preferred in dimensions

price and quality), a point u1 dominates another point u2 if u1 is not worse than

u2 in every dimension, and is better than u2 in at least one dimension accord-

ing to the preference. Point u is a skyline point if there is no any other point u′

such that u′ dominates u. Given a set of certain points, the skyline consisting of

all skyline points presents all best possible tradeoffs among the dimensions under

consideration.

Skyline analysis is also meaningful on uncertain data. To motivate our study, let

us consider an example. Suppose that the service performance of a realtor regarding

1The techniques presented in this chapter originally appear in the paper “Ranking Uncertain

Sky: the Probabilistic Top-k Skyline Operator”, Ying Zhang, Wenjie Zhang, Xuemin Lin, Jian

Pei, and Bin Jiang, submitted to Journal of Information Systems (conditional acceptance)

38

Chapter 3. The Probabilistic Top-k Skyline Operator 39

O

a1

a2

a3

b1

b2

b3

instances ofA

instances ofB

E

P

Figure 3.1: Instances of Two Realtor Uncertain Objects

a property sold by her/him is evaluated against the two aspects: percentage of the

actual price increments against the reserve price (dimension P) - the higher the

better, and the service quality ranked by the property owner (dimension E) where

scores 1 to 5 are given for ranking purposes - the lower the better. Thus, the

performance of a realtor can be naturally modeled as an uncertain object in the

2-dimensional space (P,E), and each successful sale record can be viewed as an

instance of the uncertain object.

There can be a large number of realtors doing business in an area. Therefore, a

new customer (property owner) often likes to receive recommendations of realtors

who are good in both aspects - high value of P and lower value of E. Unfortunately,

in practice it is often impossible for one realtor dominates all other realtors in both

aspects against all sale records. Thus, skyline analysis against uncertain data makes

sense here.

While skyline on certain data is well defined, finding skyline of realtors as un-

certain objects is not straightforward. Consider two realtors A and B and their

instances in Figure 3.1 where we record multiplicative inverse of the price incremen-

tal percentage on dimension P and assume that coordinate values are all positive

without loss of generality. Instances a1 and a2 of A dominate instance b2 of B.

40 Chapter 3. The Probabilistic Top-k Skyline Operator

Instance b1 of B dominates instance a3 of A. Moreover, a1 neither dominates nor

is dominated by b1, b3.

Clearly, A neither dominates nor is dominated by B completely. In fact, A

takes a probability of 2
9
dominating B, and B takes a probability of 1

9
dominating

A, assuming each instance takes the same probability to appear.

Generally, a realtor as an uncertain object takes a probability not being domi-

nated by any other realtors. We are particularly interested in the skyline probability

- the probability that a realtor is not dominated by any other realtors. The skyline

probability can be used as a quality measure of the realtor’s performance.

Note that computing the skyline probabilities of realtors is different from com-

puting the skyline of realtors using aggregates (e.g., the average scores) on the

instances (Table 2 in [PJLY07] illustrates such a difference). Using aggregates like

the average scores, the distribution information of instances is lost. Contrarily, the

skyline probability of a realtor considers the relative distribution of the instances

of the realtor against instances of other realtors.

Due to a large number of realtors in the market, a new customer may often ask

for top-k realtors who have the highest skyline probabilities. This is an example

of computing top-k skyline objects from uncertain data. Clearly, the computation

of top-k skyline objects is very useful in many other applications where ranking

uncertain objects in a multi-dimensional space is involved; for instance, ranking

NBA players based on their game-by-game statistics.

To the best of our knowledge, we are the first to identify the problem of com-

puting top-k skyline objects on uncertain data. In this chapter, our investigation

includes both discrete and continuous cases. Our principal contributions can be

summarized as follows.

• We present a concrete model for the problem for both discrete and continuous

Chapter 3. The Probabilistic Top-k Skyline Operator 41

cases.

• We develop an efficient, threshold-based algorithm to compute the exact top-

k skyline objects. The algorithm is based on a set of novel techniques to

calculate skyline probabilities and prune objects.

• To address the applications with a large number of instances per object

or a given continuous probability density function (PDF) per object, we

develop an efficient randomized algorithm with an accuracy guarantee, ϵ-

approximation. It follows the framework of our exact algorithm to effectively

remove non-top-k skyline objects.

We evaluate the effectiveness and the efficiency of our techniques for computing

top-k skyline objects on uncertain data. Our experiment results demonstrate the

efficiency of both algorithms and also show that the randomized algorithm is highly

accurate in practice. Moreover, our algorithms can be immediately applied to

finding uncertain objects with skyline probabilities above a given threshold (p-

skyline). While the randomized algorithm is the first technique to compute p-

skyline regarding the continuous case with an ϵ-approximation guarantee, our exact

algorithm significantly outperforms the existing techniques in [PJLY07].

The remainder of this chapter is structured as follows. In Section 3.1, we model

the problem and present preliminaries. Section 3.2 presents a framework to be

adopted in the exact algorithm and randomized algorithm, as well as discrete and

continuous cases. Section 3.3 applies the framework to our exact algorithm, while

Section 3.4 presents novel techniques for the randomized algorithm. In Section 3.5,

we extend our techniques to compute p-skyline. Section 3.6 reports the experiment

results. We conclude this chapter in Section 3.7.

42 Chapter 3. The Probabilistic Top-k Skyline Operator

3.1 Background Information

3.1.1 Problem Statement

Points and/or instances referred in this chapter, by default, are in a d-dimensional

numeric space D = {D1, · · · , Dd} where Di denotes the i-th dimension. For two

points u and v, u dominates v, denoted by u ≺ v, if u.Di ≤ v.Di for every Di ∈ D,

and there exists a dimension Dj ∈ D where u.Dj < v.Dj. Given a set of points,

the skyline consists of all points which are not dominated by any other point.

a

b c

d
e

Y

X

Figure 3.2: Certain Data.

a1

a2 b2

b1

c1

c2

A
B
C

Y

X

Figure 3.3: Uncertain Data.

Example 3.1. Consider a set of points in Figure 3.2. The skyline consists of a,

b, and c where b dominates d and e.

3.1.2 Problem Definition

We investigate both discrete and continuous cases.

Discrete Case. Given a set of uncertain objects U = {U1, · · · , Un}, a possible

world W = {u1, · · · , un} is a set of instances with one instance from each uncertain

object. The probability of W to appear is Pr(W) =
∏n

i=1 pui
. Let Ω be the set of

all possible worlds, then
∑

W∈Ω Pr(W) = 1.

We use SKY (W) to denote the set of objects such that for each object

U ∈ SKY (W), U has an instance in the skyline of a possible world W . The

Chapter 3. The Probabilistic Top-k Skyline Operator 43

probability that U appears in the skylines of the possible worlds is Psky(U) =∑
U∈SKY (W),W∈Ω P (W). Psky(U) is called the skyline probability of U .

Example 3.2. Figure 3.3 plots a set of uncertain objects. Assume all instances

take the probability 0.5 to appear. We have 8 possible worlds in total. Psky(A) = 1

since a1 and a2 are in the skyline of every possible world.

Note that c1 is dominated by every instance of A and c2 is dominated by every

instance of B; consequently, there is no possible world where C is in the skyline.

Thus, Psky(C) = 0.

Note that B is in the skylines of 4 possible worlds {a1, b1, c1}, {a1, b1, c2},

{a1, b2, c1}, and {a1, b2, c2}. Therefore, Psky(B) = 4× (0.5× 0.5× 0.5) = 0.5.

By the above definition, it can be immediately verified that for each instance u

of U ∈ U , the total probability of the possible worlds, in which instance u is in the

skyline, is pu ×
∏

V ∈(U−U)

(
1−

∑
v∈V,v≺u pv

)
. Let

Psky(u) =
∏

V ∈(U−U)

(
1−

∑
v∈V,v≺u

pv
)
.

Psky(u) is called the skyline probability of u, which is a conditional probability

computed when we only consider the possible worlds containing instance u. It is

also immediate that the skyline probability Psky(U) of U can be re-written below,

Psky(U) =
∑
u∈U

pu × Psky(u) (3.1)

=
∑
u∈U

(
pu ×

∏
V ∈(U−U)

(
1−

∑
v∈V,v≺u

pv
))

.

Continuous Case. Similarly, given a set of uncertain objects U = {U1, ..., Un}

such that each Ui has a PDF fUi
defined on Ui. The possible world se-

mantic can be extended to cover the continuous case as follows. A possible

world W = {u1, u2, ..., un} is a point in the space Ω =
∏n

i=1 Ui such that∫
W∈Ω

∏n
i=1 fUi

(ui)du1du2...dun = 1.

44 Chapter 3. The Probabilistic Top-k Skyline Operator

Similarly, we define SKY (W) by including the objects with a point in the

skyline of W . The skyline probability of U is

Psky(U) =

∫
U∈SKY (W),W∈Ω

n∏
i=1

fUi
(ui)du1du2...dun. (3.2)

This can be rewritten as:

Psky(U) =

∫
u∈U

fU(u)
∏
V ̸=U

(1−
∫
v≺u,v∈V

fV (v)dv)du. (3.3)

Problem Statement. In this chapter, we investigate the problem of finding top-k

skyline objects on uncertain data (Top-k SOUND); it is formally defined below.

Definition 3.1 (Top-k SOUND). Given a set U of uncertain objects and an integer

k, retrieve the k uncertain objects with the maximum skyline probabilities.

Table 7.1 summarizes the notations used in this chapter.

Notation Definition

U , V uncertain objects

u, v instances of uncertain objects

fU (u) probability density function of U

pu the probability of u to appear

M(U) the weighted centroid of U , i.e.,
∑

u∈U pu × u

U.MBB the minimum bounding box of U

Umax(Umin) the upper (lower) corner of U.MBB

Psky(U) skyline probability of U

Psky(u) skyline probability of u

Psky(U)|U skyline probability of U in U ∪ U
Pr(U) the probability of U

PD(U) the set of objects partially dominating U

nU the number of instances in U

Table 3.1: The Summary of Notations.

3.1.3 Preliminaries

Dominance Relationships. A pair U , V of uncertain objects may have three

kinds of relationships as illustrated in Figure 3.4.

Chapter 3. The Probabilistic Top-k Skyline Operator 45

fully dominate

y

x

partially dominate

not dominate
U

V2

V3

V1

V4

Figure 3.4: Dominance Relationships.

Let U.MBB denote the minimum bounding box of the instances of an uncertain

object U . Umax and Umin are the upper-right and lower-left corners of U.MBB,

respectively. An object U is fully dominated by another object V if Umin is domi-

nated by Vmax or Umin = Vmax with the property that there is no instance from U

allocated at Umin or there is no instance from V allocated at Vmax. U is partially

dominated by V if Umax is dominated by Vmin but U is not fully dominated by

V . Otherwise, U is not dominated by V . As depicted in Figure 3.4, U is fully

dominated by V1, partially dominated by V2 and V3, and is not dominated by V4.

Note that when U degenerates to one instance, the above concepts are immediately

extendible if a point is treated as a special case of MBB.

An object is redundant if it is fully dominated by another object. Pei et al

[PJLY07] shows the following theorem.

Theorem 3.1. Regarding the discrete case, a redundant object U has 0 skyline

probability, and any instance from another object V dominated by an instance of U

is fully dominated by a non-redundant object, and thus has 0 skyline probability.

Theorem 3.1 immediately applies that any redundant object can be immediately

removed. This is because that any instance dominated by an instance from a

redundant object must be fully dominated by another non-redundant object.

Weighted Centroids. Generally, the skyline probability of an object is deter-

46 Chapter 3. The Probabilistic Top-k Skyline Operator

1

3

5

7

9

11

13

15

17

19

1 3 5 7 9 11 13 15 17 19 21 23

U4

U6

U5

U1

U2

U3

U7

U8

U9
E2

E1

E3

21

x

y

(a) Set of Objects.

1

3

5

7

9

11

13

15

17

19

1 3 5 7 9 11 13 15 17 19 21 23

U4

U6

U5

U1

U2

U3

E2

E1

21

x

y

(b) After Removing E3.

Figure 3.5: Example.

mined by the distribution of its instances (intra relationships) and its relationships

to the distributions of the instances of other objects (inter relationships). In our

algorithms, we use the weighted (by probabilities) centroid M(U) of instances to

approximately represent the distribution of instances in object U to determine the

processing order of objects. Formally, M(U) =
∑

u∈U pu × u.

R-tree. An initial computation in our algorithms is index-based, making use of

the existing techniques. We assume that the minimum bounding boxes MBBs of

objects’ instances are indexed by an R-tree [Gut84]. A node of an R-tree contains

a set of entries. Each entry in a leaf node is in the form <obj, obj.MBB> where obj

refers to the object ID and obj.MBB is the MBB of the object’s instances. Each

entry in a non-leaf node has form <child, child.MBB> where child refers to a child

node, and child.MBB is the minimum bounding box of this child node. Figure 3.5

(a) illustrates an R-tree built on MBBs of 9 uncertain objects. The root has 3

entries E1, E2, and E3. Each child of the root encapsulate 3 objects, respectively.

BBS Algorithm. BBS algorithm [PTFS03] will be used and modified in the

initial computation phase of our algorithms. Given a set of points indexed by an

R-tree, BBS algorithm traverses an R-tree (built on points) to compute the skyline.

Chapter 3. The Probabilistic Top-k Skyline Operator 47

It maintains a min-heap H built against the mindist (minimum distance to the

origin of the data space) of every entry (node). The algorithm goes iteratively. At

the beginning, entries of the root are inserted into H. In each iteration, the top

element e of H is processed. If e is fully dominated (i.e., the minimum corner of e is

dominated) by an already computed skyline point, then e is discarded. Otherwise,

if e is a data point, then it is output as a skyline point; if not, e is discarded and

those entries of e which are not fully dominated by any already computed skyline

point are inserted into H. An in-memory R-tree on already computed skyline

points is maintained in order to facilitate examining the dominance relationship.

The algorithm terminates when H is empty.

BBS ensures that each output point is in the skyline and it is I/O optimal.

3.2 Framework for TOPK-SOUND

Naively computing the skyline probability of each object is expensive and takes

time O(
∑

∀U,V nU × nV) for the discrete case where nU and nV are the number

of instances in objects U and V , respectively. The computation regarding the

continuous case may be even more expensive due to integrating PDFs.

In the light of efficiently computing top-k queries (i.e., pruning away none top-k

objects as soon as possible), below we present a framework to efficiently support

both exact computation and randomized computation. It consists of three Steps:

Preprocessing-Seeding-Final-Computation.

Step 1: Preprocessing. Remove redundant objects.

Step 2: Seeding. Select k objects and compute their skyline probabilities.

Step 3: Final-Computation. Finalize the computation of top-k SOUND.

48 Chapter 3. The Probabilistic Top-k Skyline Operator

Note that after Step 1, if the number of objects left is not greater than k, then

we can terminate the algorithm. Without loss of generality, we assume that there

are more than k objects left after Step 1 in the rest of this section. Below, we

present details in Step 1, Step 2, and Step 3.

3.2.1 Step 1: Preprocessing

As discussed in Section 3.1, Theorem 3.1 guarantees the correctness by removing

redundant objects without affecting the skyline probability computation of remain-

ing uncertain objects in discrete cases. Theorem 3.1 can be immediately extended

to cover continuous cases. Note that if u ≺ v, there must exist two small regions

ru and rv surrounding u and v, respectively, such that ru fully dominates rv.

Theorem 3.2. In continuous cases, a redundant object U also has 0 skyline proba-

bility. Moreover, any region in an uncertain object V fully dominated by a region in

U is fully dominated by a non-redundant object, and thus has 0 skyline probability.

Theorem 3.2 can be immediately verified according to the definitions. It implies

that we can also remove the redundant objects regarding continuous cases without

affecting the skyline probability computation for remaining objects.

We modify the original BBS algorithm to conduct the preprocessing. Below are

the details of our modified BBS algorithm.

• An R-tree is built on MBBs; that is the unit data are MBBs of objects instead

of points in the original BBS.

• Replace the dominance relationships among points by the fully dominance

relationship among MBBs of objects in the modified BBS..

• In modified BBS, for every data entry in the R-tree we adopt the distance

dM(U) between the centroid M(U) and the origin as mindist, while for an

Chapter 3. The Probabilistic Top-k Skyline Operator 49

internal node (entry) in the R-tree, the minimum of such distances among

the objects (data entries) contained is used as mindist; we assume that they

are recorded in the R-tree.

It can be immediately verified that for two objects U and V , if dM(U) < dM(V)

then U will not be fully dominated by V . This guarantees no false positive and

thus the modified BBS algorithm can remove all redundant objects.

Regarding the objects in Figure 3.5(a), after step 1, only the objects in Figure

3.5(b) remain.

3.2.2 Step 2: Seeding

The aim is to initially choose k objects with large skyline probabilities as a threshold

to quickly prune away objects with small skyline probabilities without conducting

the entire computation of their skyline probabilities. Intuitively, an object U with

M(U) as a skyline point, of all weighted centroids, may have more instances not to

be dominated by other objects’ instances; thus, it has a good chance to have a high

skyline probability value. Moreover, we also give the preference to M(U) with the

smallest dM(U) since intuitively, smaller dM(U), less chance U being dominated by

others.

Algorithm 3.1 Seeding
Choose the k objects U such that:

• M(U) are skyline points with smallest dM (U), and

• if there are not enough skyline points M(U), then choose the remaining objects V

with the smallest dM (V) to make total k objects.

Algorithm 3.1 involves the computation of the skyline of the weighted centroids

of non-redundant objects. This could be separately conducted after obtaining all

50 Chapter 3. The Probabilistic Top-k Skyline Operator

non-redundant objects. In our algorithm, we conduct this simultaneously by ex-

ecuting the original BBS on centroids while computing non-redundant objects to

share the costs since in our modified BBS dM(U) (∀U) is already used as mindist;

that is, we only need to maintain one heap.

Note that BBS, so does the modified BBS, always generates objects sorted

increasingly on the search key mindist as a by-product. Thus, after running the

modified BBS on objects and the original BBS on weighted centroids, the non-

redundant objects U are sorted as a sorted list L2 on dM(U) (non-decreasingly) and

the objects with M(U) as skyline points are also sorted as a sorted list L1 against

dM(U) (non-decreasingly). Clearly, L2 contains all objects in L1. Nevertheless, we

can remove from L2 the objects in L1, while running BBS on the centroids and

modified BBS simultaneously, as the objects are processed in the same order in

these two algorithms. Algorithm 3.1 is thus executed in linear time O(k).

Computing the skyline probability. The last phase of Step 2 (seeding) is to

compute skyline probability for each seeded object, totally k objects. This will be

conducted differently in the exact algorithm and the randomized algorithm.

3.2.3 Step 3: Final-Computation

The framework regarding this Step is outlined below. We iteratively process each

object U as follows.

Filtering. If Psky(U) ≤ Pk, then U is not a candidate of top-k SOUND. Here,

Pk is the smallest skyline probability of the current top-k objects.

Refinement. Otherwise replace by U the object V , with the skyline proba-

bility Pk, in the current top-k objects. Update Pk.

Chapter 3. The Probabilistic Top-k Skyline Operator 51

Suppose that for each object U , PD(U) denotes the set of objects each of

which partially dominates U . Clearly, computing Psky(U) takes time (nU ×

(
∑

V ∈PD(U) |nV |) if PD(U) is already obtained.

An object is a master object if in the final-computation, it is processed to deter-

mine its current candidature of the result of top-k SOUND. The objects in PD(U),

when U is processed as a master object, are called associated objects to U . There

are 2 key issues.

1. By which order are the associated objects (i.e., objects in PD(U)) accessed

against a master object?

2. By which order are objects accessed as master objects?

Our experiments demonstrate that a random selection towards these two issues

leads to the computation time an order of magnitude slower than the techniques

developed below.

Order of Associated Objects. The main goal of this step is to develop efficient

and effective techniques to prune away a master object U as earlier as possible;

that is, access as less as possible the objects in PD(U). The following theorem is

immediate from the definitions.

Theorem 3.3. Suppose that U ′ is a subset of the set U of objects. Then,

Psky(U)|U ′ ≥ Psky(U)|U , where Psky(U)|U (Psky(U)|U ′) denotes the skyline proba-

bility of U regarding the set {U} ∪ U ({U} ∪ U ′) of objects.

The monotonic property in Theorem 3.3 implies that we only need to access

objects U ′ if Psky(U)|U ′ ≤ Pk.

Pruning Rule 3.1. For an object U , let U be a subset of PD(U). U can be

excluded from the candidates of Top-k SOUND if Psky(U)|U ≤ Pk.

52 Chapter 3. The Probabilistic Top-k Skyline Operator

1

3

5

7

9

11

13

15

17

19

1 3 5 7 9 11 13 15 17 19 21 23

U4

U6

U5

U1

21

x

y

M(U4)

M(U5)

M(U6)

M(U1)

Figure 3.6: Data Distributions

1

3

5

7

9

11

13

15

17

19

1 3 5 7 9 11 13 15 17 19 21 23

U4

U6

U5

U1

21

x

y

M(U4)

M(U5)

M(U6)

M(U1)

U10

Figure 3.7: Dealing IU

Example 3.3. Regarding the example in Figure 3.5(b), suppose that k = 2 and

objects U1 and U4 are initially chosen. When computing the probability value of U5,

we may find that the Psky(U5)|U4 is already smaller than Pk. Thus, we no longer

need to do a further computation between U5 and U6, nor U5 and U1.

Continuing this example, suppose that the distributions of instances in U1,

U5, U4, and U6, respectively, are as what illustrated in Figure 3.6. Clearly, it is

better to start with the pair of U4 and U5 as the Psky(U5)|U4 is intuitively smaller

than Psky(U5)|U1 , or Psky(U5)|U6 . Thus, there is a great chance to eliminate U5 by

computing Psky(U5)|U4 only.

Ideally we would like to find a perfect permutation, {Ui : 1 ≤ i ≤ |PD(U)|},

of the objects in PD(U) such that Psky(U)|{U1,...,Ui} is minimum among any subset

of PD(U) with i objects for each 1 ≤ i ≤ |PD(U)|. That is, when U is pruned

away from the candidates, the number of objects accessed from PD(U) is always

minimized. Nevertheless, such a permutation is not always possible.

Example 3.4. For example, suppose that there are 4 objects U , U1, U2, and U3,

where U is the master object and has only two instances u1 and u2 with the equal

probability 0.5 such that:

Chapter 3. The Probabilistic Top-k Skyline Operator 53

• the probabilities that u1 is not dominated by U1, U2, and U3 are 0.15, 0.3, and

0.4, respectively;

• the probabilities that u2 is not dominated by U1, U2, and U3 are 0.9, 0.8, and

0.7, respectively.

It can be immediately verified that to follow the property specified above for each i

in a perfect purnutation, the first associated object has to be accessed is U1. Never-

theless when i = 2, the skyline probability of U against U2 and U3 is the minimum.

Therefore, such a perfect permutation does not exist.

Below we develop a ranking function in (3.4) to order associated objects so that

a good permutation may be obtained. It is based on the following observation.

Let U and V be two uncertain objects where U is a master object. Consider that

M(U) approximately represents the instance distribution of object U . Intuitively,

when M(U) is dominated by an M(V), we may expect that U has more chances

to be dominated by V ; in this case, the further the distance between M(U) and

M(V) is, the larger the chance that the probability of U dominated by V has a

larger value (i.e., the smaller the skyline probability of U).

∆(U, V) = δ(U, V)d(M(U),M(V)).

Here, d is a distance metric; Manhattan distance is used in our implementation;

δ(U, V) = 1 if M(V) ≺ M(U), otherwise −1. Based on the above observations, in

our algorithm we choose associated objects one-by-one increasingly according to ∆

values.

Order of Master Objects. The goal is to make Pk increase as quickly as possible

to reach the k-th largest skyline probability. Sharing with the same intuition in

seeding algorithm (Algorithm 3.1), we choose a master object according to the

priority described in Algorithm 3.1.

54 Chapter 3. The Probabilistic Top-k Skyline Operator

Algorithm. We present our algorithm to determine the final Top-k according to

the above discussions.

Algorithm 3.2 Final-Computation
Input: L1: a sorted list of remaining objects (with the weighted centroids as skyline

points) on dM (U);

L2: a sorted list of remaining objects (with the weighted centroids as non-skyline

points) on dM (U);

Output: TOPk: min-heap on the skyline probabilities of k objects, together with the

corresponding object IDs;

Description:

1: for each U of initial k objects do TOPk.push (U);

2: Pk := TOPk.top.key;

3: for each U ∈ L1 ∪ L2 do

4: if Prob B (U,UNR) > Pk then

5: TOPk.pop(); TOPk.push(U);

6: Pk := TOPk.top.key;

7: end if

8: end for

9: return TOPk

As described in the seeding phase (Section 3.2.2), L1 is a by-product of BBS

algorithm, while L2 is a by-product of the modified BBS. In Algorithm 3.2, UNR

is the set of non-redundant objects from a given set U of objects. We accessing

L1∪L2 by firstly accessing L1 and then accessing L2 according to their sorted order,

respectively.

To save the storage space, in TOPk we only keep object IDs and their corre-

sponding skyline probabilities. The method Prob B (U,UNR) checks the candida-

ture of U and then (possibly) calculates the skyline probability of object U ; this will

Chapter 3. The Probabilistic Top-k Skyline Operator 55

be conducted differently in the exact algorithm and the randomized algorithm with

different pruning techniques; details will be presented in the next two sections.

3.3 Exactly Computing TOPK-SOUND

The exact algorithm for discrete cases follows the framework of 3 steps in Section

3.2. In this section, we present the details of computing the skyline probability in

Step 2 - Section 3.2.2, and our pruning strategies in Step 3 - Section 3.2.3.

Computing the skyline probability. The last part of Step 2 computes the

skyline probabilities of the initially chosen k objects.

Note that an in-memory R-tree on MBBs of non-redundant objects has been

built as a by-product of our modified BBS, corresponding to the in-memory R-tree

on skyline points in the original BBS.

For each U of these initially chosen k objects, our algorithm to compute its

skyline probability is conducted in two stages. At stage 1, it iteratively traverses

the in-memory R-tree in a depth-first manner to search for objects with MBBs

partially dominating U ; that is, search for objects in PD(U). Once such an object

V is found, it performs an update of the skyline probability of each instance of U .

In our implementation, the Synchronous Traversal (ST) join paradigm ST (U, V)

[HJR97] is adopted instead of trivially comparing each pair of instances from U

and V . Let CHR denote the set of children of the root of R. Algorithm 3.3

presents our algorithm to update the skyline probability. Note that there are

only two relationships among non-redundant objects: partially dominating or not

dominating. If R′ does not (partially) dominate U , then R′ can be simply passed-

over since each u ∈ U has the probability 1 not being dominated by any object in

R′.

56 Chapter 3. The Probabilistic Top-k Skyline Operator

Algorithm 3.3 Prob(U,R)
Input: R: an in-memory R-tree index of non-redundant objects;

U : an object;

Output: Psky(U)

Description:

1: Q := CHR;

2: remove entries from Q that do not (partially) dominate U ;

3: While {Q ̸= ∅}

4: R′ := Q.pop();

5: if {R′.MBB does not (partially) dominate U} then

6: pass-over R′;

7: else

8: if {R′ is an object V ̸= U} then

9: ST(U, V);

10: U := REMOV E ZERO(U);

11: else Q := Q ∪ CHR′ − {R′};

12: Psky(U) :=
∑

u∈U pu × Psky(u);

13: end while

14: return Psky(U)

In Algorithm 3.3, Q is maintained as a queue. To facilitate the synchronous

traversal join paradigm, the instances in each object are pre-organized by an in-

memory R-tree data structure such that at each node E, we also record pE - the

summation of the probabilities of the instances (to appear) in E. ST (U, V) is a

simple modification of the synchronous traversal join algorithm to conduct an in-

memory update of the skyline probability of each instance in U due to an addition

of object V . We only need to modify the join condition to “one rectangle (point)

fully dominates another rectangle (point)”. In ST (U, V), for a pair of node E ∈ U

Chapter 3. The Probabilistic Top-k Skyline Operator 57

and node E ′ ∈ V , there are 3 cases below.

Case 1: If E ′ does not dominate E, pass-over E ′.

Case 2: If E ′ fully dominates E, then Pr(E) := Pr(E) + pE′ . Note that Pr(E)

is initiated to 0 when a new object is added, and is the summation of the

occurrence probabilities of instances in an E ′ which is captured in ST (U, V)

to fully dominate E.

Case 3: Otherwise (E ′ partially dominates E), put (not Case 1) pairs of children

of E ′ and E in a queue for further traversal.

To compute the skyline probability correctly, after performing ST (U, V) for

an object V , we push down Pr(E) from each internal node E to the leaf nodes

(instances) along the tree path. That is, Pr(u) =
∑

E∈lu Pr(E) where lu is the

path from the root to the leaf u. Note that the whole push-down computation can

be performed in linear time if it is executed in a top-down fashion. Moreover, after

push-down, we update Psky(u) to Psky(u) := Psky(u)(1 − Pr(u))2, and then reset

Pr(E) = 0 for each entry E in the R-tree, including leafs.

Remove Instances with Skyline Probability 0 by REMOVE ZERO (U).

The following Theorem is fundamental.

Theorem 3.4. Suppose that an instance u has 0 skyline probability. Then, there

must be a non-redundant object V such that u is fully dominated by V ; that is,

each instance of V fully dominates u. Moreover, no instance from V has skyline

probability 0.

Proof. Suppose that PS is the set of objects such that the right-upper corners of all

objects in U ∈ PS form the skyline against all those of the non-redundant objects.

2Note that Psky(u) is initialized to 1.

58 Chapter 3. The Probabilistic Top-k Skyline Operator

It can be immediately verified that one object from PS must fully dominate u.

Moreover, it is also immediate that none of instances in an object U in PS has 0

skyline probability.

Instances with skyline probability 0 can be removed from U from further consid-

erations. Firstly, removing them from U implies that while computing the skyline

probability of U , these instances will not be counted. This is equivalent to count-

ing their probabilities as 0. Secondly, removing them from U will not affect the

computation of skyline probabilities of other objects. This is because any instance

v fully dominated by an instance u with skyline probability 0 must be fully dom-

inated by a non-redundant object V ′ without any instance removed according to

Theorem 3.4. Consequently, the 0 skyline probability can be discovered from the

relationship between V ′ and u. Thirdly, removing these instances not only saves

the memory space for the scalability but also reduces the computation costs when

U is used in computing the skyline probabilities of other objects.

Example 3.5. Regarding the example in Figure 3.6, once the instances in U6 with

skyline probability 0 are removed, we no longer need to use them when update the

skyline probability of U5 by adding U6.

In REMOV E ZERO(U), we remove the instances with 0 skyline probability;

if an entry in the R-tree on U ’s instances only contains the instances with 0 skyline

probability, then the entry is removed as well. We do not re-balance the R-tree of

U as our initial experiment demonstrates that such re-balance costs cannot be paid

off. Note that we do not physically remove instances or entries from a pre-built

in-memory R-tree; instead, we mark out those “removed” instances and entries to

prevent them from being involved in further computation.

Processing Prob B (U,UNR). It can be done exactly in the same way as Algorithm

Chapter 3. The Probabilistic Top-k Skyline Operator 59

3.3. However, as implied by Theorem 3.3, we do not have to always conduct the

entire computation of Psky(U)|UNR
. To facilitate this, we always choose an entry

with the largest ∆ value. As discussed above, UNR is the set of non-redundant

objects that are indexed by an in-memory R-tree as a by-product of our modified

algorithm.

It can be immediately verified that Theorem 3.3 also holds for the situation

where instances with skyline probability 0 are removed; this together with Theo-

rem 3.3 yields that we can add associated objects one-by-one to calculate skyline

probability and prune away a master object U against a subset of PD(U) based

on Pruning Rule 3.1.

Prob B (U,UNR) modifies Prob(U,R) (Algorithm 3.3) as follows.

• In Prob B (U,UNR), we maintain a max-heap Q based on ∆ values of the

R-tree entries instead of a queue where ∆ values are calculated on the fly. To

retain the monotonic property that for each internal entry E, its ∆ value is

the maximum of ∆ values of the entries/objects contained,

for each entry E, we record the lower-left corner uE,M of the mini-

mum bounding box of the weighted centroids of objects contained

in E; then compute the ∆ value using M(U) and uE,M .

• Between lines 10 and 11 in Algorithm 3.3, we calculate the current skyline

probability after adding one associated object; that is, add
∑

u∈U puPsky(u).

If it is already not larger than Pk, then we terminate Prob B (U,R); con-

sequently U is excluded from the candidates of top-k SOUND; that is, the

condition in line 4 of Algorithm 3.2 does not hold.

Remark. A non-redundant object may have 0 skyline probability for every in-

stance. As illustrated in Figure 3.8, U is a non-redundant object. Nevertheless,

60 Chapter 3. The Probabilistic Top-k Skyline Operator

y

x

V

V'

U

Figure 3.8: Multiple Dominance Relationships.

the skyline probability of U is zero if its instances are located in the two black-

colored boxes only.

Generally, an object U may have a subset IU of instances such that each instance

in IU has 0 skyline probability. IU can be removed from U without further consid-

eration, as explained before. This can be done by using window query techniques

to detect the instances dominated by the skyline points on the upper-right corners

of MBBs of non-redundant objects. However, our initial experiments suggest that

such pre-computation costs cannot be paid off.

In our algorithm, we only remove a subset of instances, captured with 0 skyline

probability on the fly, in examining its top-k candidature. For instance, regarding

the example in Figure 3.7, U5 may be excluded from a top-k candidate after com-

puting Psky(U5)U4 without examining U10. Consequently, before U5 is excluded

from a further consideration (i.e. examining U10 etc.) as a master object we are

only able to capture the set of instances in U5 fully dominated by U4 but not those

fully dominated by U10 only.

3.4 Randomized Algorithm

In this section, we present a randomized algorithm to deal with both continuous

(with the assumption that PDFs are continuous functions) and discrete cases. Let

Chapter 3. The Probabilistic Top-k Skyline Operator 61

U = {Uj|1 ≤ j ≤ n} be the set of non-redundant objects. The basic idea is to

sample all possible worlds,
∏n

i=1 Uj, by m possible worlds Si; that is, each sample

Si (1 ≤ i ≤ m) consists of n randomly chosen points for the continuous case (or

instances for the discrete case) - one per each object. Then, we use mU

m
as the

approximation of the skyline probability of an object U to determine the solution

for top-k SOUND. Here, mU is the number of times that object U is involved as

the skyline points in these m samples (worlds).

Example 3.6. Consider the example in Figure 3.3. Regarding the two samples

(worlds) (i.e., m = 2) (a1, b1, c2) and (a2, b1, c1), mB = 1.

Algorithm 3.4 Randomized Algorithm
Input: U = {Ui|1 ≤ i ≤ n}; m: an integer.

Output: Tk: k objects.

Description:

1: for i := 1 to m do

2: for j := 1 to n do

3: ui,j := random(Uj);

4: end for

5: end for

6: Sky-COUNT ({ui,j |1 ≤ i ≤ m, 1 ≤ j ≤ n});

7: TK := the k objects U with the largest mU
m ;

8: return Tk

In Algorithm 3.4, regarding the discrete case we use random(Uj) to randomly

select an instance from Uj such that each instance u ∈ Uj has the probability pu to

be selected. Regarding a continuous case, we first divide the whole data space, the

MBB of U , into very small regions such that in each region, the difference of values

of a PDF is bounded by a very small value ξ. Then, random(Uj) randomly selects

62 Chapter 3. The Probabilistic Top-k Skyline Operator

a point from a region r with probability Pr(r). Sky-COUNT ({ui,j|1 ≤ i ≤ m, 1 ≤

j ≤ n}) computes mU for each object U . Computing the skyline of each sample

Si = {ui,j|1 ≤ j ≤ n} (for 1 ≤ i ≤ m) to get each mU is expensive, even more

expensive than the exact algorithm, when m is reasonably large. Below, we will

present an efficient counting technique. First, we present the accuracy guarantee

of Algorithm 3.4.

3.4.1 Accuracy Guarantee

For each object Uj, in Algorithm 3.4 the events whether ui,j = random(Uj) is

a skyline point of Si is described by the following totally independent random

variable.

Xi,j =

 1 if ui,j is a skyline in sample i

0 otherwise
(3.4)

It is immediate that E(Xi,j) =
∑

u∈Uj
puPsky(u) in a discrete case for each

i and j. For a continuous case, without loss of generality we may assume that

for each object U its PDF domain is a finite region and S is the maximum of

the region volumes of these n uncertain objects.3 We choose ξ such that ξ <

ϵ
2n×S×4

. Consequently, it is immediate that E(Xi,j) =
∫
u∈Uj

fUj
(u)

∏
V ̸=Uj

(1 −∫
v≺u,v∈V fV (v)dv)du) + ξUj

where for each U , 0 ≤ |ξU | < ϵ
4
; that is, E(Xi,j) =

Psky(Uj) + ξUj
. Let

Xj =

∑m
i=1 Xi,j

m
(3.5)

We have
mUj

m
= Xj and E(Xj) = Psky(Uj) + ξ′′Uj

where |ξ′′Uj
| ≤ ϵ

8
. Given a set of

objects, for 1 ≤ l ≤ k let Pl denote the skyline probability of the object with the

3For a PDF of an uncertain object U with a infinite domain, we can simply cut the infinite

part of the domain with a very small probability ξ′U . Then, the following analysis still holds.

Chapter 3. The Probabilistic Top-k Skyline Operator 63

l-th largest skyline probability. Suppose that for 1 ≤ l ≤ k, Ujl is ranked as the

top l-th object by Algorithm 3.4. Note that the object Ujl could be different than

the real top l-th object (with skyline probability Pl). Nevertheless, the following

theorem states that when the sample size m is sufficiently large, Xjl (=
mUjl

m
) will

be an ϵ-approximation of Pl with confidence 1− δ.

Theorem 3.5. Given an ϵ (0 < ϵ < 1), a δ (0 < δ < 1), and n non-redundant

objects, if m = O(1
ϵ2
log n

δ
) and ξ is chosen with ξ < ϵ

8×2n×S
, then

Pr(∧k
l=1{|Xjl − Pl| ≤ ϵ}) ≥ 1− δ.

To prove Theorem 3.5, we need the following Lemmas. By the Cher-

noff/Hoeffding bound (Theorem 2.7 in [Gol]), the following Lemma is immediate.

It implies that when the sample size is sufficiently large, Xj is very close to the

skyline probability of Uj with a high confidence.

Lemma 3.1. Pr(|Xj − Psky(Uj)| ≥ λ) ≤ 2exp−2m(λ− ϵ
8
)2 (0 < λ ≤ 1) ∀j ∈ [1, n].

The following lemma states that if the sample size is sufficiently large, then

with a high confidence, Algorithm 3.4 can only reverse the order, against their

skyline probabilities, of two objects with a small difference between their skyline

probabilities.

Lemma 3.2. For j and j′, suppose that Psky(Uj) < Psky(Uj′). Then, Pr(Xj ≥

Xj′) ≤ exp−m(Psky(U
′
j)−Psky(Uj)− ϵ

4
)2/2.

Proof. Let Z = Xj −Xj′ . We have Pr(Xj ≥ Xj′) ≤ Pr(Z − E(Z) > Psky(Uj′) −

Psky(Uj) − ϵ
4
). By Hoeffding inequality (Theorem 2 in [Hoe63]), the lemma is

immediate.

Proof of Theorem 3.5 Without loss of generality, suppose that for an l ∈ [1, k],

the object Ul has the l-th largest skyline probability Pl (i.e. Psky(Ul) = Pl). For

64 Chapter 3. The Probabilistic Top-k Skyline Operator

each object Ujl (ranked the l-th by Algorithm 3.4), we prove the probability of the

following 3 events to appear is small when m is chosen appropriately.

Event 1: Psky(Ul)− Psky(Ujl) > ϵ/2.

Event 2: Psky(Ujl)− Psky(Ul) > ϵ/2.

Event 3: |Xjl − Psky(Ujl)| > ϵ/2.

Let m = 8
ϵ2
log 2(n+1)k2

δ
.

If Event 1 occurs, then ∃Ui such that Psky(Ui) ≥ Pl (i.e. i ≤ l) and Xi ≤ Xjl .

This implies that Ui and Ujl change their order by Algorithm 3.4. Consider that

there are l such objects. Consequently, from Lemma 3.2, the total probabilities

that Ujl change the order with these l objects is bounded by lδ
4k2(n+1)

. Therefore,

Pr(Event 1) ≤ lδ
4k2(n+1)

.

If Event 2 occurs, then ∃Ui such that Psky(Ui) ≤ Pl (i.e. i ≥ l) and Xi ≥ Xjl .

Note that there are (n− l + 1) such objects. Similarly, from Lemma 3.2, we have

Pr(Event 2) ≤ (n−l+1)δ
4k2(n+1)

.

Let λ = ϵ/2. By Lemma 3.1, Pr(Event 3) < δ
2k
.

Therefore, for all l (1 ≤ l ≤ k) the probability of that one of these 3k events

occurs is not greater than δ. Consequently, the theorem holds since 16
ϵ2
log 2(n+1)k2

δ
=

O(1
ϵ2
log n

δ
).

Discussions. Note that the sample size in Theorem 3.5 is irrelevant to the num-

ber of instances in an object. If we run the seeding phase, and choose ϵ as ϵ1Pk if

Pk ̸= 0, then we can guarantee a relative ϵ-approximation theoretically. Theoret-

ically, to guarantee ϵ-approximation, we need a sample size as stated in Theorem

3.5; nevertheless, our experiment demonstrate that m = 1000 can provide a quite

accurate solution to top-k SOUND.

Chapter 3. The Probabilistic Top-k Skyline Operator 65

a1 a2 c1 c2

samples

A's sample
instances

b1

1 2 3 1 2 31 2 3

C's sample
instances

B's sample
instances

Figure 3.9: Example of Samples.

3.4.2 Efficient Algorithm

The Sky-COUNT in Algorithm 3.4 follows the framework in Section 3.2; that is, 3

steps: preprocessing, seeding, and final computation. While others are exactly the

same as those in the exact algorithm, we present efficient techniques to compute

mU

m
(corresponding to Algorithm 3.3 - Prob()) for the initially chosen k objects in

the seeding phase and execute Prob B () in Algorithm 3.2 in Step 3. We aim to

directly compute mU for each object U by avoiding computing the skyline for each

sample.

In our techniques, we organize sampled instances (points) of each object U as

a list U.list to save the storage space by removing duplicates.4 Initially, the i-th

node of this linked list contains the integer i, and the reference referring to the

instance of U in the i-th sample. For instance, regarding the example in Figure

3.3, 3 samples are dropped, S1 = {a1, c1, b1}, S2 = {a2, c2, b1}, and S3 = {a1, c2, b1}.

Their linked lists are illustrated in Figure 3.9.

The basic idea of our counting algorithm is as follows. If a sampled instance

(point) u of an object U is dominated by a sampled instance (point) of another

object V from the same sample, we simply remove the sampled instance u from the

4An instance may appear in several samples especially in the discrete case.

66 Chapter 3. The Probabilistic Top-k Skyline Operator

linked list. In the end, the number of sampled instances remained in each object

U is mU . Regarding the above example in Figures 3.3 and 3.9, in A.list three

sampled instances {a1, a2, a1} are left after our algorithm; thus mA = 3. In C.list

and B.list, 0 and 2 sampled instances ({b1, b1}) are left, respectively; thus mC = 0

and mB = 2.

While our counting techniques follow the framework of EXACT algorithm ex-

cept that Prob(U, V) and Prob B (U, V) are executed differently. We do not use a

tree-like data structure to organize the sampled instances (points). Consequently,

we replace the ST (U, V) in both Prob(U, V) and Prob B (U, V) by dominance

check DC(U, V) which checks the dominance relationship between the instances of

U and V within the same sample.

In DC(U, V) where U is a master object, we adopt the same traversal strategy

as the sort-merge join between U.list and V.list since they are sorted on sample

subindexes. Once u and v are found in the same sample (by their corresponding

sample subindexes), we remove the sampled instance (point) from U.list if v ≺ u,

or remove the sampled instance (point) from V.list if u ≺ v. An instance (point)

is removed if there is no sampled instance (point) referring to it any more.

Example 3.7. In the example in Figure 3.9, in DC(C,A) after checking against

the first sample index 1, element 1 is removed from C.list. Since instance c1 only

has element 1 referring to it, instance c1 is also removed.

Clearly, the complexity of DC(U, V) is O(dm) where d is the dimensionality.

Moreover, Sky-COUNT runs in time O(d × n ×m × a + dnF(n)). Here, a is the

average number of associated objects to a master object and F(n) represents the

average costs for one master object to obtain associated objects. Consequently,

if a is a constant and m is a constant (say, 1000), then the time complexity of

our Sky-COUNT is O(dnF(n)). While there is no theoretical guarantee on F(n)

Chapter 3. The Probabilistic Top-k Skyline Operator 67

regarding an R-tree, we could expect that F(n) is poly-log (n) in practice in a low

dimensional space when a is a constant.

3.5 Computing p-Skyline

Our exact and randomized algorithms can be immediately extended to compute p-

skyline proposed in [PJLY07]; that is, for a given threshold p (0 ≤ p ≤ 1), compute

all uncertain objects U such that Psky(U) ≥ p. Below are the modifications.

Regarding the framework in Section 3.2, in our exact and randomized algorithms

for computing p-skyline we keep Step 1 but do not use Step 2. In Step 3 of both

algorithms, we prune away the objects U with skyline probabilities (or mU

m
) below a

pre-given threshold p, the Step 3 of both exact and randomized algorithms can be

immediately applied to compute the p-skyline. The modified algorithms are named

p-EXACT and p-RAND, respectively.

It can be immediately verified that the p-EXACT is correct. Moreover, by the

Chernoff/Hoeffding bound (Theorem 2.7 in [Gol]) together with the fact that for

each output object U mU

m
≥ p, the following theorem regarding accuracy immedi-

ately holds.

Theorem 3.6. Given an ϵ (0 < ϵ < 1) and a δ (0 < δ < 1), let m = O(1
ϵ2
log 1

δ
) (the

sample size in p-RAND). For each object U output by p-RAND, Pr(Psky(U)− p <

−ϵ) ≥ 1− δ, where p is a given probability threshold in the problem of p-skyline.

Theorem 3.6 states that with confidence 1− δ, the objects output by the algo-

rithm p-RAND with the skyline probability not less than p−ϵ. Note that Theorem

3.6 immediately implies that if we replace m = O(1
ϵ2
log 1

δ
) by O(1

(pϵ)2
log 1

δ
), then

we will have an relative ϵ-approximation guarantee, that is, with confidence 1− δ,

the objects output by the algorithm p-RAND with the skyline probability not less

68 Chapter 3. The Probabilistic Top-k Skyline Operator

than (1− ϵ)p.

Following similar arguments to those in TOP-k SOUND, the algorithm p-RAND

is immediately applicable to the continuous case with the above accuracy guarantee.

Beside the theoretical guarantee of accuracy as above, our experiment demon-

strated that p-RAND has already been very accurate when m reaches 1000.

3.6 Performance Evaluation

We report an extensive empirical study to evaluate the effectiveness and the effi-

ciency of our algorithms. All algorithms are implemented in C++ and compiled

by GNU GCC. Experiments are conducted on PCs with Intel P4 2.8GHz CPU and

2G memory under Debian Linux.

The following algorithms are implemented and evaluated.

1. EXACT : the exact algorithm proposed in Sections 3.2 and 3.3.

2. TEXACT : the trivial version of the exact algorithm in which the order of

accessing master objects and associated objects of a given master object is

randomly conducted instead of being arranged as described in Sections 3.2

and 3.3.

3. RAND : the randomized algorithm proposed in Section 3.4.

4. TRAND : the trivial randomized algorithm using SFS algorithm [CGGL03]

to compute the skyline of each sample.

Our experiments are conducted on the real dataset and synthetic datasets.

Real dataset. We use the NBA game-by-game technique statistics from 1991 to

2005. The NBA dataset is downloaded from www.nba.com and consists of 339,721

records (instances) of 1,313 players. We treat each player as an uncertain object

Chapter 3. The Probabilistic Top-k Skyline Operator 69

and the records of a player as the instances of the corresponding object. Instances

of an object take equal probability to appear. Three attributes are selected in our

experiments: the number of points, the number of assistants, and the number of

rebounds. The larger the attribute values, the better.

Synthetic datasets. We generate discrete synthetic datasets and continuous syn-

thetic datasets where objects are represented by instances and PDFs, respectively.

For both kinds of datasets, the domain of each dimension is [0, 1] and the dimen-

sionality d varies from 2 to 5 with the default value 3. We first generate the centres

of n uncertain objects using the benchmark data generator in [BKS01], where n

varies from 10, 000 to 100, 000 with the default value 10, 000. Anti-correlated and

Independent distributions of n object centres are used in our experiments. By

default, we use Anti-correlated distribution. Then, for each uncertain object we

create a hyper-rectangle region where the instances or the PDF of this object ap-

pear. The edge size of the hyper-rectangle region follows a Normal distribution in

range [0, 0.2] with expectation 0.1 and standard deviation 0.025.

For discrete synthetic datasets, the number of instances of an uncertain object

follows a Uniform distribution in range [1, h] where h varies from 400 to 5, 000 with

the default value 600. In expectation, each object has h
2
instances and the total

number of instances in a dataset is hn
2
; by default, it is 3, 000, 000. In our exper-

iments, two largest datasets have total instances of 5,000
2
× 10, 000 = 25, 000, 000

and 600
2
× 100, 000 = 30, 000, 000, respectively.

Instances of an uncertain object follow a Uniform or Zipf distribution in our

experiments. In Uniform distribution, the instances of an object are distributed

uniformly in the region and have the same probability. In Zipf distribution, for an

object firstly an instance u is randomly generated, the distances of other instances

to u follow a Zipf distribution with z = 0.5; the probabilities of each generated

70 Chapter 3. The Probabilistic Top-k Skyline Operator

instances also follow a Zipf distribution with z = 0.2.

Consider distributions of object centres and the instances within an object,

we have Anti-Uniform datasets where the centers of object MBBs follow Anti-

correlated distribution, while instances follow Uniform distribution. Similarly, we

have Inde-Uniform, Anti-Uniform, Anti-Zipf, and Inde-Zipf datasets.

For continuous synthetic datasets, the PDF of each object is Uniform or

Constrained-Normal (Con-Nor for short), while other settings are generated in the

same way as the discrete case. For a Uniform distribution, the PDF of an object

U is a constant. The Con-Nor distribution is a Normal distribution constrained

within the region (i.e., MBB) of an object U given by the formula below,

pdfCN(x) =

 pdfN(x)/λ ifx ∈ U

0 otherwise
(3.6)

Here, λ =
∫
x∈U pdfN(x)dx and the d dimensional pdf of Normal distribution

pdfN(x) =
1

(
√
2πσ2)d

e−
1

2σ2

∑d
i=1(x.Di−µ.Di)

2

, where µ.Di (1 ≤ i ≤ d) is the coordinate

of the centre of U on dimension Di and the standard deviation σ = 0.025.

We use Anti-Uniform-PDF to denote continuous synthetic datasets with Anti-

correlated distribution for the centers of object MBBs and Uniform PDF for each

object. Similarly, we have Anti-Con-Nor-PDF datasets.

In our experiments, k varies from 10 to 100 with the default value 30. The

sample size m varies from 1000 to 2500 with the default value 1000.

Note that in our experiments all parameters use default values unless otherwise

specified. Table 6.2 summaries the experiment settings.

3.6.1 Evaluating Efficiency

In this subsection, we evaluate the efficiency of our algorithms on the NBA dataset

and discrete synthetic datasets. Note that we only report the performance of

Chapter 3. The Probabilistic Top-k Skyline Operator 71

Notation Definition (Default Values)

n number of uncertain objects in the dataset (10K)

k number of uncertain objects in SOUND (30)

d dimensionality of the dataset (3)

h largest number of instances in an objects (600)

m number of samples in randomized algorithms (1000)

D dataset types (Anti-Uniform)

Table 3.2: Experiment Settings.

algorithm RAND against discrete synthetic datasets because for the same type of

probability distribution of instances (e.g., instances follow Uniform distributions),

RAND has almost the same performance for the discrete and continuous cases;

consequently we only report the results for the discrete case.

10-1

100

101

102

103

104

Anti
-Uniform

Inde
-Uniform

Anti
-Zipf

Inde
-Zipf

NBA

P
ro

ce
ss

in
g

T
im

e
(s

)

1.6

29.5
17.6

260.5

1.7

6.5

38.2

279.1

0.9

12.6

3.1

55.4

0.7

2.7

9.4

71.7

3.6 5.2

361.1

2806.9

RAND TRAND EXACT TEXACT

Figure 3.10: Different Datasets

Figure 3.10 shows the running time of the four algorithms on various datasets.

While both EXACT and RAND are quite efficient, RAND is more efficient than

EXACT on both synthetic and real datasets. EXACT performs poorly on the

NBA dataset. This is because in the NBA dataset most objects are partially

dominated by many others; thus many join-like operations (i.e., ST (U, V)) have

been performed. In this case, the linear time complexity of DC(U, V) of RAND

shows a great advantage.

Figure 3.10 also demonstrate that TEXACT is upto 9 times slower than EX-

ACT; this shows the great advantage of developed accessing order techniques re-

72 Chapter 3. The Probabilistic Top-k Skyline Operator

garding associated and master objects, respectively. RAND is also significantly

more efficient than the trivial randomized algorithm TRAND. Therefore, in the

remaining experiment part we can exclude the performance evaluation of TEX-

ACT and TRAND since they provide the same results as EXACT and RAND,

respectively, but are much more slower.

 0

 50

 100

 150

 200

10K 20K 30K 40K 50K 100K

P
ro

ce
ss

in
g

T
im

e
(s

)

EXACT
RAND

Figure 3.11: Varying n

100

101

102

103

400 600 800 1K 2K 3K 4K 5K

P
ro

ce
ss

in
g

T
im

e
(s

)

EXACT
RAND

Figure 3.12: Varying h

 0

 1

 2

 3

 4

 5

1000 1500 2000 2500

P
ro

ce
ss

in
g

T
im

e
(s

) RAND

Figure 3.13: Varying m

The results of the second experiment reported in Figure 3.11 demonstrates that

the performance of both EXACT and RAND are quite scalable when the number

of uncertain objects increases.

The third experiment reported in Figure 3.12 shows that RAND is not sensitive

to the number of instances (regarding the discrete case) since only a fixed number

of samples are generated in randomized computation. On the other hand, the

performance of EXACT drops when the number of instances grows.

Figure 3.13 shows that the running time of RAND increases linearly against

the increment of the sample size m. This is because our counting technique runs

in linear time with respect to m.

Figure 3.14 demonstrates the impact of k on performance. RAND is more

efficient and the processing time grows much slower than EXACT because the cost

for seeding the first k objects in RAND is not as dominating as that in EXACT.

Figure 3.15 evaluates the impact of dimensionality. It shows that the running

time of EXACT significantly decreases when d increases. This is because when d

is large, the dominating relationships among objects are weak.

Chapter 3. The Probabilistic Top-k Skyline Operator 73

 0

 10

 20

 30

 40

 50

20 40 60 80 100

P
ro

ce
ss

in
g

T
im

e
(s

)

EXACT
RAND

Figure 3.14: Varying k

 0

 5

 10

 15

 20

 25

2d 3d 4d 5d

P
ro

ce
ss

in
g

T
im

e
(s

)

EXACT
RAND

Figure 3.15: Varying d

 0

 0.01

 0.02

 0.03

Anti-
Uniform

Inde-
Uniform

Anti
Zipf

Inde-
Zipf

NBA

R
el

at
iv

e
er

ro
r

0.006

0.019

0.001

0.009

0.026

Figure 3.16: Different Datasets

 0

 0.01

 0.02

 0.03

 0.04

 0.05

10 20 30 40 50

R
el

at
iv

e
er

ro
r

Anti-Uniform
NBA

Figure 3.17: Varying k

3.6.2 Evaluating Accuracy

We evaluate the accuracy of RAND regarding both discrete and continuous cases.

We use the average relative errors, the average of
|P ′

i−Pi|
Pi

(for 1 ≤ i ≤ k), to measure

the accuracy, where Pi is the i-th largest skyline probability and P ′
i is the estimated

skyline probability of the i-th element returned by RAND.

Discrete Cases

We first evaluate RAND on the NBA dataset and discrete synthetic datasets.

Figure 3.16 illustrates the accuracy of RAND on various datasets. It shows that

m = 1000 already gives very accurate results (average relative error < 0.03). The

NBA dataset has the worst performance; this is because that skyline probabilities

are small due to a high overlapping degrees among MBBs of uncertain objects.

Figure 3.17 reports the impact of k on accuracy. It shows that when k is not

74 Chapter 3. The Probabilistic Top-k Skyline Operator

large (typical situation for a top-k problem), the accuracy is not very sensitive to

k.

 0

 0.005

 0.01

 0.015

10K 20K 30K 40K 50K 100K

R
el

at
iv

e
er

ro
r

RAND

Figure 3.18: Varying n

 0

 0.005

 0.01

 0.015

1000 1500 2000 2500
R

el
at

iv
e

er
ro

r

RAND

Figure 3.19: Varying m

Figure 3.18 shows that the accuracy is not quite related to the number of objects

n.

Figure 3.19 shows that the accuracy increases (i.e., relative errors decrease)

when the sample size grows, as what we expected.

 0

 0.01

 0.02

 0.03

2d 3d 4d 5d

R
el

at
iv

e
er

ro
r

RAND

Figure 3.20: Various d

 0

 0.005

 0.01

1000 1500 2000 2500

R
el

at
iv

e
er

ro
r

Uniform
Con-Nor

Figure 3.21: Various m

Figure 3.20 shows that the average relative error drops (i.e., accuracy increases)

quickly as the dimensionality increases. This is because the average skyline prob-

ability of objects increases when the dimensionality increases.

Continuous Cases

RAND is also very accurate in the continuous case. We run RAND on contin-

uous synthetic datasets with Anti-Uniform-PDF and Con-Nor-PDF, while other

Chapter 3. The Probabilistic Top-k Skyline Operator 75

parameters adopt default values.

For datasets of Anti-Uniform-PDF, the skyline probability of an object is com-

puted following Equation (3.3) where all integrals can be computed as the volumes

of the corresponding regions. To generate samples in RAND, the coordinates of

sampled points are generated uniformly within the MBB of an object.

For datasets of Anti-Con-Nor-PDF, since the integral of Gaussian function can-

not be evaluated exactly, each object is discretized by drawing 10, 000 samples

and then run the algorithm EXACT against the discretized objects to get the sky-

line probability of each object. To generate samples, the coordinates of sampled

points are generated according to the Con-Nor distribution of each object. We use

GNU Scientific Library to generate the Normal distribution and transform it into

Con-Nor distribution.

The experiments reported in Figure 3.21 show that the accuracy of RAND is

already very high when the sample size reaches 1000; that is, the relative skyline

probability error as defined in the last subsection is very low.

The experiment reported in Figure 3.22 evaluate the impact of dimensionality

on accuracy. The trends for both Anti-Uniform and Con-Nor-PDF are similar to

that for discrete case as depicted in Figure 3.20.

 0

 0.01

 0.02

 0.03

2d 3d 4d 5d

R
el

at
iv

e
er

ro
r

Uniform
Con-Nor

Figure 3.22: Various d

 0

 50

 100

 150

 200

10K 20K 30K 40K 50K

P
ro

ce
ss

in
g

T
im

e
(s

) p-EXACT
p-RAND

BU
TD

Figure 3.23: Various n

76 Chapter 3. The Probabilistic Top-k Skyline Operator

3.6.3 p-skyline computation

We run an experiment to compare the efficiency of p-EXACT and p-RAND with

BU and TD algorithms in [PJLY07]. p = 0.9 and the 3d Anti-Uniform datasets

are employed in the experiment with the number of objects varies from 10K to

50K and h = 600. Figure 3.23 shows that p-RAND and p-EXACT significantly

outperform BU and TD. Moreover, as the number of objects grows, p-RAND and

p-EXACT are quite scalable.

3.6.4 Summary

As a short summary, our experimental results indicate that EXACT is efficient

for datasets with a medium number of instances per object. RAND is much more

efficient and scalable than EXACT. Meanwhile, it provides high accuracy in both

discrete case and continuous case. Moreover, applying these two algorithms to p-

skyline problem significantly improves the efficiency of the existing p-skyline tech-

niques.

3.7 Conclusions

In this chapter, we tackle the problem of computing the top-k probabilistic skyline

objects on uncertain data. We employ an R-tree index to efficiently conduct the

initial computation. Two efficient algorithms are proposed. The exact algorithm

aims to precisely rank the top-k skyline objects against skyline probabilities. To

deal with the applications where each object has a large set of instances, we develop

a randomized algorithm with ϵ-approximation accuracy guarantee, together with

a novel, efficient counting algorithm. These two algorithms can be immediately

extended to compute p-skyline [PJLY07] to improve the efficiency of the existing

Chapter 3. The Probabilistic Top-k Skyline Operator 77

techniques and to leading to the first work for computing p-skyline in the contin-

uous case. The extensive experiments demonstrate the efficiency, scalability, and

accuracy of our algorithms.

Chapter 4

Probabilistic Skyline Operator

over Sliding Windows 1

Skyline computation over uncertain streaming data has many applications. For

instance, in an on-line shopping system products are evaluated in various aspects

such as price, condition (e.g., brand new, excellent, good, average, etc), and brand.

In addition, each seller is associated with a “trustability” value which is derived

from customers’ feedback on the seller’s product quality, delivery handling, etc.

This “trustability” value can also be regarded as occurrence probability of the

product since it represents the probability that the product occurs exactly as de-

scribed in the advertisement in terms of delivery and quality. A customer may

want to select a product, say laptops, according to multi-criteria based ranking,

such as low price, good condition, and brand preference. For simplicity we assume

the customer prefers ThinkPad T61 only and remove the brand dimension from

ranking. Table 4.1 lists four qualified results. Both L1 and L4 are skyline points,

1The techniques presented in this chapter originally appear in the paper “Probabilistic Skyline

Operator over Sliding Windows”, Wenjie Zhang, Xuemin Lin, Ying Zhang, Wei Wang and Jeffrey

Xu Yu, 25th International Conference on Data Engineering (ICDE), 2009

78

Chapter 4. Probabilistic Skyline Operator over Sliding Windows 79

L1 is better than (dominates) L2, and L4 is better than L3. Nevertheless, L1 is

posted long time ago; L4 is better than (dominates) L3 but the trustability of the

seller of L4 is low.

Table 4.1: Laptop Advertisements.
Product ID Time Price Condition Trustability

L1 107 days ago $ 550 excellent 0.80
L2 5 days ago $ 680 excellent 0.90
L3 2 days ago $ 530 good 1.00
L4 today $ 200 good 0.48

In such applications, customers may want to continuously monitor on-line ad-

vertisements by selecting the candidates for the best deal - skyline points. Clearly,

we need to “discount” the dominating ability from offers with too low trustability.

Moreover, too old offers may not be quite relevant. We model such an on-line selec-

tion problem as probabilistic skyline against sliding windows by regarding on-line

advertisements as a data stream (see Section 4.1 for details).

Such a data stream may have a very high speed. Consider the stock market

application where clients may want to on-line monitor good deals (transactions)

for a particular stock. A deal is recorded by two aspects (price, volume) where

price is the average price per share in the deal and volume is the number of shares.

In such applications, customers may want to know the top deals so far, as one of

many kinds of statistic information, before making trade decisions. A deal a is

better than another deal b if a involves a higher volume and is cheaper (per share)

than those of b, respectively. Nevertheless, recording errors caused by systems or

human beings may make unsuccessful deals be recorded successful, and vise versa;

consequently each successful deal recorded has a probability to be true. Therefore,

a stream of deals may be treated as a stream of uncertain elements and some

clients may only want to know “top” deals (skyline) among the most recent N

80 Chapter 4. Probabilistic Skyline Operator over Sliding Windows

deals (sliding windows); and we have to take into consideration the uncertainty of

each deal. This is another example of probabilistic skyline against sliding windows.

In this chapter we investigate the problem of efficiently processing probabilistic

skyline against sliding windows. To the best of our knowledge, there is no similar

work existing in the literature in the context of skyline computation over uncertain

data steams. In the light of data stream computation, it is highly desirable to de-

velop on-line, efficient, memory based, incremental techniques using small memory.

Our contribution may be summarized as follows.

• We characterize the minimum information needed in continuously computing

probabilistic skyline against a sliding window.

• We show that the volume of such minimum information is expected to be

bounded by logarithmic size in a lower dimensional space regarding a given

window size.

• We develop novel, incremental techniques to continuously compute proba-

bilistic skyline over sliding windows.

• We extend our techniques to support multiple pre-given probability thresh-

olds, as well as “top-k” probabilistic skyline.

Besides theoretical guarantee, our extensive experiments demonstrate that the

new techniques can support on-line computation against very rapid data streams.

The rest of the chapter is organized as follows. In Section 4.1, we formally de-

fine the problem of sliding-window skyline computation on uncertain data streams

and present background information. Section 4.2 and Section 4.3 present our the-

oretic foundation and techniques for processing probability threshold based sliding

window queries. Results of comprehensive performance studies are discussed in

Chapter 4. Probabilistic Skyline Operator over Sliding Windows 81

Section 4.4. Section 4.5 extends our techniques to top-k skyline, time-based sliding

windows, and a data object with multiple instances. Section 4.6 concludes the

chapter.

4.1 Background

We use DS to represent a sequence (stream) of data elements in a d-dimensional

numeric space such that each element a has a probability P (a) (0 < P (a) ≤ 1) to

occur where a.i (for 1 ≤ i ≤ d) denotes the i-th dimension value. For two elements

u and v, u dominates v, denoted by u ≺ v, if u.i ≤ v.i for every 1 ≤ i ≤ d, and

there exists a dimension j with u.j < v.j. Given a set of elements, the skyline

consists of all points which are not dominated by any other element.

4.1.1 Problem Definition

Given a sequence DS of uncertain data elements, a possible world W is a subse-

quence of DS. The probability of W to appear is P (W) = Πa∈WP (a)×Πa̸∈W (1−

P (a)). Let Ω be the set of all possible worlds, then
∑

W∈Ω P (W) = 1.

We use SKY (W) to denote the set of elements in W that form the skyline of

W . The probability that an element a appears in the skylines of the possible worlds

is Psky(a) =
∑

a∈SKY (W),W∈Ω P (W). Psky(a) is called the skyline probability of a.

The equation (4.1) below can be immediately verified.

Psky(a) = P (a)× Πa′∈DS,a′≺a(1− P (a′)) (4.1)

In many applications, a data stream DS is append-only [JYC+08, LYWL05,

TP06]; that is, there is no deletion of data element involved. In this chapter, we

82 Chapter 4. Probabilistic Skyline Operator over Sliding Windows

study the skyline computation problem restricted to the append-only data stream

model. In a data stream, elements are positioned according to their relative arrival

ordering and labelled by integers. Note that the position/label κ(a) means that

the element a arrives κ(a)th in the data stream.

Problem Statement. In this chapter, we study the problem of efficiently re-

trieving skyline elements from the most recent N elements, seen so far, with the

skyline probabilities not smaller than a given threshold q (0 < q ≤ 1); that is,

q-skyline. Specifically, we will investigate the problem of efficiently processing such

a continuous query, as well as ad-hoc queries with a probability threshold q′ ≥ q.

4.1.2 Preliminaries

Various Dominating Probabilities. Let DSN denote the most recent N ele-

ments. For each element a ∈ DSN , we use Pnew(a) to denote the probability that

none of the new arrival elements dominates a; that is,

Pnew(a) = Πa′∈DSN ,a′≺a,κ(a′)>κ(a)(1− P (a′)) (4.2)

Note that κ(a′) > κ(a) means that a′ arrives after a. We use Pold(a) to denote

the probability that none of the early arrival elements dominates a; that is,

Pold(a) = Πa′∈DSN ,a′≺a,κ(a′)<κ(a)(1− P (a′)) (4.3)

The following equation (4.4) can be immediately verified.

Chapter 4. Probabilistic Skyline Operator over Sliding Windows 83

Psky(a) = P (a)× Pold(a)× Pnew(a). (4.4)

y

x

a2

a3

a1 a4

a5

q = 0.5
p(a1)=0.9
p(a2)=0.4
p(a3)=0.3
p(a4)=0.9
p(a5)=0.1

y

x

a2

a3

a1 a4

a5

(a) (b)

Figure 4.1: A Sequence of Data Elements

Example 4.1. Regarding the example in Figure 4.1(a) where the occurrence prob-

ability of each element is as depicted, assume that N = 5, and elements arrive

according the element subindex order; that is, a1 arrives first, a2 arrives second,

..., and a5 arrives last. Pnew(a4) = 1−P (a5) = 0.9 and Pold(a4) = (1−P (a2))(1−

P (a3))(1− P (a1)) = 0.042, and Psky(a4) = P (a4)Pnew(a4)Pold(a4) = 0.034.

Dominance Relationships. Our techniques will be based on R-trees. Below

we define various relationships between each pair of entries E ′ and E. We use

E.min to denote the lower-left corner of the minimum bounding box (MBB) of the

elements contained by E, and E.max to denote the upper-right corner of MBB of

the elements contained by E. Note that when E degenerates to a single element

a, E.min = E.max = a.

An entry E fully dominates another entry E ′, denoted by E ≺ E ′, if E.max ≺

E ′.min or E.max = E ′.min with the property that there is no element in E

84 Chapter 4. Probabilistic Skyline Operator over Sliding Windows

allocated at E.max or there is no element in E ′ allocated at E ′.min. E partially

dominates E ′ if E.min ≺ E ′.max but E does not fully dominates E ′; this is denoted

by E ≺partial E
′. Otherwise, E does not dominate E ′, denoted by E ≺not E

′.

y

x
E

E2

E1
E3

Figure 4.2: Dominance Relationships.

As depicted in Figure 4.2, E fully dominates E3, and partially dominates E1

and E2. Note that E1 does not dominate E but E2 ≺partial E. Clearly, some

elements in E1 may be dominated by elements in E but elements in E cannot be

dominated by any elements in E1. This can be formally stated below which can be

verified immediately according to the definitions.

Theorem 4.1. Suppose that E ≺partial E
′. Then some elements in E ′ might be

dominated by elements in E. However, if E ′ ≺not E
′′. Then elements in E ′′ cannot

be dominated by any element in E ′.

4.2 Framework

Given a probability threshold q and a sliding window with length N , below in

Algorithm 4.1 is the framework where aold is the oldest element in current window

DSN and inserting (anew) incrementally computes q-skyline.

Chapter 4. Probabilistic Skyline Operator over Sliding Windows 85

Algorithm 4.1 Continuous Probabilistic Skyline Computation over a Sliding Win-

dow
1: While a new element anew arrives do

2: if κ(anew) ≤ N then Inserting (anew);

3: else Expiring (aold); Inserting (anew);

4: end while

Let SN,q denote the set of elements from DSN with their Pnew values not smaller

than q; that is,

SN,q = {a|a ∈ DSN&Pnew(a) ≥ q} (4.5)

A critical requirement in data stream computation is to have small memory

space and fast computation. In our algorithms, instead of conducting the com-

putation against a whole sliding window (N elements), we do the computation

restricted to SN,q which will be shown logarithmic in size regarding N on average.

Next, we first show the correctness of restricting the computation to SN,q.

4.2.1 Using SN,q Only

In this subsection, we will show the following two things: 1) SN,q contains all skyline

points with Psky ≥ q; and 2) computing Psky and Pnew against SN,q will not lead

to false positive nor false negative to continuously identify SN,q and SKYN,q where

SKYN,q is the solution set; that is, for each element a in SKYN,q, Psky(a) ≥ q.

No Missing Elements. The following Lemma is immediate based on (4.4).

Lemma 4.1. Each q-skyline point a (i.e., Psky(a) ≥ q) must be in SN,q.

86 Chapter 4. Probabilistic Skyline Operator over Sliding Windows

No False Hits to Determine SN,q. Suppose that Pnew|SN,q
(a), Pold|SN,q

(a) and

Psky|SN,q
(a) denote Pnew(a), Pold(a) and Psky(a) restricted to SN,q, respectively.

Example 4.2. Regarding the example in Figure 4.1, suppose that elements a1, a2,

a3, a4, and a5 arrive at time 1, 2, 3, 4, and 5, respectively, and N = 5, q = 0.5.

We have that SN,q = {a2, a3, a4, a5} since values of Pnew for a2, a3, and a5 are

the same 1, while Pnew(a4) = 0.9 as shown in Example 4.1. It can be immediately

verified that their Pnew values restricted to SN,q remain unchanged. Example 4.1

also shows that Pold(a4) = 0.042, while Pold(a4)|SN,q
= 0.6 × 0.7 = 0.42 since a1 is

not contained in SN,q. �
Next, we show that for each element a in SN,q, calculating Pnew(a) against SN,q

is the same as calculating against the whole window DSN .

Theorem 4.2. For each element a ∈ SN,q, Pnew|SN,q
(a) = Pnew(a).

Theorem 4.2 immediately follows from the following Lemma.

Lemma 4.2. For each element a ∈ SN,q, if there is an element a′ ∈ DSN such that

a′ ≺ a and a′ is newer than a, then a′ ∈ SN,q.

Proof. Since a′ ≺ a and a′ is newer than a, each element that is newer than a′ and

dominates a′ must dominate a. Consequently, Pnew(a) ≤ Pnew(a
′). As Pnew(a) ≥ q,

Pnew(a
′) ≥ q. Thus, the theorem holds.

Note that Pold values against SN,q are imprecise; nevertheless, below we will

show that these will not affect a correct determination of SKYN,q.

No False Negative to Determine SKYN,q. We show that there is no a ∈ SKYN,q

such that Psky|SN,q
(a) < q.

Theorem 4.3. For each element a ∈ SN,q, if Pold(a) × Pnew(a) ≥ q then

Pold|SN,q
(a) = Pold(a).

Chapter 4. Probabilistic Skyline Operator over Sliding Windows 87

Theorem 4.3 immediately follows the following lemma - Lemma 4.3

Lemma 4.3. For an element a′ such that a′ ≺ a, a′ arrives earlier than a, and

Pold(a)× Pnew(a) ≥ q, then a′ ∈ SN,q.

Proof. Since a′ ≺ a, any element dominating a′ must dominate a. Consequently,

Pnew(a
′) ≥ Pnew(a)× Pold(a) ≥ q. Thus, a′ ∈ SN,q.

Note that Psky(a) = P (a)Pold(a)Pnew(a) where P (a) ≤ 1. This, together with

Lemma 4.1, Theorems 4.2 and 4.3, immediately implies the following corollary.

Corollary 4.1. For each element a ∈ SN,q, if Psky ≥ q then Psky(a) = Psky|SN,q
(a).

Corollary 4.1 immediately implies there is no false negative; that is, there is no

a ∈ SKYN,q such that Psky|SN,q
(a) < q.

No False Positive to Determine SKYN,q. We show that there is no a ∈ SN,q

such that Psky|SN,q
(a) ≥ q and Psky(a) < q.

Theorem 4.4. For each element a ∈ SN,q, if Pold(a) × Pnew(a) < q, then

Pold|SN,q
(a)× Pnew|SN,q

(a) < q.

Proof. If every element dominating a is in SN,q then Pold(a)|SN,q
× Pnew(a)|SN,q

=

Pold(a)× Pnew(a) < q. The theorem holds.

Suppose that at least one element that dominates a is not in SN,q. From Lemma

4.2, all such elements must be older than a. Let Dom(a) denote the set of elements

that dominate a and are not in SN,q. Suppose that a′ is the youngest element in

Dom(a). It is clear that all elements, which arrive after a′ and dominate a′, must

be contained by SN,q since they dominate a and younger than a′.

Note that Pnew(a
′) < q. Consequently, q > Pnew(a

′) ≥ Pold|SN,q
(a) ×

Pnew|SN,q
(a).

88 Chapter 4. Probabilistic Skyline Operator over Sliding Windows

Note that Psky(a) = P (a)Pold(a)Pnew(a) and P (a) ≤ 1. These, together with

Theorems 4.2, 4.3, and 4.4, immediately imply the following corollary.

Corollary 4.2. For each element a ∈ SN,q, if Psky|SN,q
(a) < q, then Psky(a) < q.

Therefore, in our techniques we only need to maintain SN,q, calculate all prob-

abilities against SN,q, and select elements a with Psky|SN,q
(a) ≥ q. For notation

simplification, in the remaining of the chapter, Psky|SN,q
, Pold|SN,q

, and Pnew|SN,q

are abbreviated to Psky, Pold, Pnew, respectively if there is no ambiguity.

4.2.2 Estimating sizes of SN,q and SKYN,q

Minimality. It can be immediately verified that in order to avoid getting a wrong

solution, SN,q is the minimum information to be maintained.

Theorem 4.5. Each element a in the current SN,q with P (a) × Pnew(a) < q will

never become a q-skyline point; however, there is a data stream such that removing

a away will lead to false positive. Moreover, an a ∈ SN,q with P (a)× Pnew(a) ≥ q

and Psky < q may become a skyline point if old elements dominating e expire and

newly arriving elements do not dominate e.

Theorem 4.5 is quite intuitive and we omit the proof. Below we give an example.

Example 4.3. Regarding the example in Figure 4.1 (a), assume that N = 4.

Considering the first window, there are 4 elements a1, a2, a3, and a4. SN,q =

{a2, a3, a4} since Pnew(a1) = 0.6×0.7 < 0.5, while Pnew values for a2, a3, a4 are all

1. Note that Psky|SN,q
(a4) = 0.378; consequently, a4 is not a q-skyline point based

on the current window.

Regarding the second window when a1 expires and a5 arrives. SN,q =

{a2, a3, a4, a5} where Pnew(a4) = 0.9. Other Pnew values are 1, Psky(a3) = P (a3) =

Chapter 4. Probabilistic Skyline Operator over Sliding Windows 89

0.3 < 0.5, and Psky(a4) = 0.34 < 0.5. If we do not record a3 and a4 in SN,q, then

Psky(a4) will be calculated as (1 − P (a5))P (a4) > 0.5 leading to the false result,

because Psky(a4) should be (1− P (a2))(1− P (a3))(1− P (a5))P (a4) < 0.5.

Assume that a1 and a2 expire, a5 is as illustrated, and a6 does not dominate a4.

Regarding the window containing a3, a4, a5, and a6, Psky(a4) = 0.9 × (1 − 0.3) ×

(1− 0.1) > 0.5; thus, a4 is a skyline point. �
Estimating Sizes. Next we show that the expected sizes of SN,q and SKYN,q are

bounded by a logarithmic number regarding N .

Suppose that χq,i is a random variable such that it takes value 1 if the ith arrival

element is a q-skyline point; and χq,i takes 0 otherwise. Clearly, the expected size

E(SKYN,q) of SKYN,q is as follows.

E(SKYN,q) = E(
N∑
i=1

χq,i) =
N∑
i=1

P (χq,i = 1) (4.6)

Let IN = {j|1 ≤ j ≤ N}. Given a set of N probability values {Pj|1 ≤ j ≤

N & 0 < Pj ≤ 1}, let P (¬w) △
=

∏
j∈W (1 − Pj) where W is a subset of IN . Let

P (W ≺ i) denote the probability that the ith element is dominated and only

dominated by the elements in {aj|j ∈ W}.

Theorem 4.6. Let DSN be a sequence of N data elements with probabilities P1,

P2, ... , PN . Then,

E(SKYN,q) =
∑

∀W,i/∈W,Pi×P (¬W)≥q

P (W ≺ i)× Pi × P (¬W) (4.7)

90 Chapter 4. Probabilistic Skyline Operator over Sliding Windows

Below we show that (4.7) is bounded by a logarithmic size. Given a Pi, let

qk,i
△
= max{Pi × P (¬W)| |W | = k}. Removing the probability value from each

data element in DSN to make DSN be a sequence DSc
N of N certain data elements.

Let P (DOMk
i) denote the probability that there are exactly k elements in DSc

N

dominating an element i. The following lemma immediately follows from (4.6).

Clearly, qk,i is monotonically decreasing regarding k; that is, qk′,i >= qk,i if k
′ < k.

Let ki denote the largest integer such that qk,i ≥ q for a given q.

Lemma 4.4. E(SKYN,q) ≤
∑N

i=1

∑ki
j=0 P (DOM j

i)× qj,i.

Let P (DOMT k
i) denote the probability that there are at most k elements dom-

inating the element i. Clearly, P (DOMk
i) = P (DOMT k

i)− P (DOMT k−1
i).

Corollary 4.3.

E(SKYN,q) ≤
N∑
i=1

(

ki−1∑
j=0

P (DOMT j
i)× (qj,i − q(j+1),i) (4.8)

+ P (DOMT ki
i)qki,i).

Let H1,l =
∑l

i=1
1
i
. The d-th order harmonic mean (for integers d ≥ 1 and

l ≥ 1) is Hd,l =
∑l

i=1
Hd−1,i

i
. The theorem below presents the value of P (DOMT k

i).

Theorem 4.7. For a sequence DSc
N of N certain data points in a d-dimensional

space, suppose that the value distribution of each element on any dimension is the

same and independent. Moreover, we assume the values of the data elements in

each dimension are distinct. Then, P (DOMT k
i) ≤ k+1

N
× (1 +Hd−1,N −Hd−1,k+1)

when d ≥ 2 and P (DOMT k
i) = (k + 1)/N when d = 1.

Proof. Without lose of generality, we assume that the data elements in DSc
N are

sorted on the first dimension. Since the value distribution of each element on

Chapter 4. Probabilistic Skyline Operator over Sliding Windows 91

any dimension is the same and independent, an element has the equal probability

to take jth position on the first dimension among total N positions; that is 1
N

probability to take jth position (1 ≤ j ≤ N) on the first dimension. Note that

when ai takes jth position. any element takes j′th position cannot dominate ai if

j′ > j.

When d = 1, element ai must take the first (k+1) positions to ensure there are

at most k other elements dominating ai. Consequently, P (DOMT k
i) = (k + 1)/N .

We use mathematic induction to prove the theorem for d ≥ 2. For d = 2,

clearly when ai takes the first (k + 1) positions, there are at most (k + 1) other

elements dominating ai. When ai takes a jth position for j > k+1, the conditional

probability that there must be at most k elements dominating ai is
k+1
j

since for

each permutation with ai at jth position on the first dimension, the the value of ai

on the second dimension must take one of the (k + 1) smallest value among the j

elements with the j smallest values on the first dimension. Thus, we have:

P (DOMT k
i) =

(k + 1)

N
+

1

N
(

N∑
j=k+2

k + 1

j
) (4.9)

=
k + 1

N
× (1 +H1,N −H1,k+1)

Assume that the theorem holds for d = l. For d = l + 1, it still holds that

when ai’s value on the first dimension is allocated at the first (k + 1) positions,

then there must be at most k other elements dominating ai. When ai takes a

jth position for j > k + 1, the conditional probability that there are at most

k elements dominating ai is P (DOMk
i)j,l regarding a l-dimensional space and j

elements for each permutation with ai at jth position on the first dimension. Based

on our assumption, P (DOMk
i)|j,l ≤ k+1

j
× (1+Hl−1,j−Hl−1,k+1); consequently, the

P (DOMk
i) regarding the (l + 1)-dimensional space and N data elements is:

92 Chapter 4. Probabilistic Skyline Operator over Sliding Windows

P (DOMT k
i) ≤

k + 1

N
+

1

N

N∑
j=k+2

k + 1

j
× (1 +Hl−1,j −Hl−1,k+1)

Since 1 ≤ Hl−1,k+1, we have:

P (DOMT k
i) ≤

k + 1

N
+

1

N

N∑
j=k+2

k + 1

j
× (Hl−1,j)

=
k + 1

N
(1 +Hl,N −Hl,k+1)

It can be immediately verified that Hd,N = O(lndN); consequently

P (DOMT k
i) = O(k lnd−1 N). This together with Theorem 4.7 and Corollary 4.3

immediately implies that the expected size of SKYN,q in a d-dimensional space is

poly-logarithmic regarding N with order (d− 1) .

Size of SN,q. Elements in the candidate set can be regarded as skyline points in a

(d + 1)-space by including the time as an additional dimension since Pnew can be

regarded as the non-dominance probability in such a (d + 1)-space. We have the

following theorem.

Theorem 4.8. In a d-dimensional space, suppose that the distribution on each di-

mension, including arriving order are independent. On each dimension, the values

of the data items are distinct. Let P (skytji) denote the probability that there are at

most j elements in DSc
N (remove element probabilities from DSN) dominating the

ith element. Let pk,i
△
= max{P (¬W)| |W | = k}

E(SKYN,q) ≤
N∑
i=1

ki−1∑
j=0

P (skytji)× (pj,i − p(j+1),i) (4.10)

+ P (skytkii)pki,i.

Chapter 4. Probabilistic Skyline Operator over Sliding Windows 93

Note that P (skytkii) can be estimated in the same way as that in Theorem 4.7

by replacing d by d + 1. Therefore, the expected size of SN,q is poly-logarithmic

regarding N with the order of d.

4.3 Algorithms

A trivial execution of Algorithm 4.1 is to visit each element in SN,q to update

skyline probability when an element inserts or deletes; then choose elements a

from SN,q with Psky(a) ≥ q. Note a new data element may cause several elements

to be deleted from SN,q, nevertheless, the amortized time complexity is O(|SN,q|)

per element which is poly-logarithmic regarding N with the order of d (Section

4.2.2).

In this section, we present novel techniques to efficiently execute Algorithm 4.1

based on aggregate-R trees with the aim to visit as few elements as possible. We

continuously, incrementally maintain SKYN,q and SN,q.

The rest of the section is organized as follows. We first present data structures

to be used. Then we present our efficient techniques to deal with the arrival of a

new element for a given probability threshold. This is followed by our techniques

to deal with the expiration of an old element for a given probability threshold.

Then, we extend our techniques to deal with applications where multiple probability

thresholds are given. Finally, correctness and complexity of our techniques are

shown.

4.3.1 Aggregate R-trees

Since SKYN,q ⊆ SN,q, we continuously maintain SKYN,q and (SN,q − SKYN,q) to

avoid store a data element twice.

94 Chapter 4. Probabilistic Skyline Operator over Sliding Windows

In-memory R-trees R1 and R2 on SKYN,q and (SN,q−SKYN,q), respectively will

be used and continuously maintained. We aim to conduct an efficient computation.

Thus, we develop in-memory aggregate R-trees based on the following observation.

y

x

a8

a4

a1

P(a1)=0.1
P(a2)=0.1
P(a3)=0.4
P(a4)=0.1
P(a5)=0.8

0 =0.2

a2

a9

a12

a10
a3

a11

a5a7

a6

P(a6)=0.8
P(a7)=0.6
P(a8)=0.2
P(a9)=0.5
P(a10)=0.2
P(a11)=0.6
P(a12)=0.1

a13

P(a13)=0.1

a4a2 a13a12

E8E7

R2

a14

P(a14)=0.8

R1

a5 a6 a7 a9 a11a10 a8 a3

E1 E2

E3 E4 E5 E6

q

Figure 4.3: Aggregate R-trees

Observation. Regarding the example in Figure 4.3, assume that N = 13, q = 0.2,

the occurrence probabilities are as depicted, and DSN = {ai|1 ≤ i ≤ 13}. Suppose

that elements arrive according to the increasing order of elements sub-indexes. It

can be immediately verified that Pnew(a1) < 0.2, SN,q contains ai for 2 ≤ i ≤ 13,

and SKYN,q contains only the elements in R1. Two R-trees are built: 1) R1 is

built against the elements in SKYN,q; and 2) R2 is built against the elements in

(SN,q − SKYN,q).

When a new element a14 arrives and a1 expires. We need to find out the elements

which are dominated by a14 and then to determine the elements which need to be

removed from SN,q and SKYN,q. In fact a14 dominates entries E4, E2, and R2.root

(root entry of R2). If we keep the maximum and minimum values of Pnew for the

elements contained by those entries, respectively, we have a chance not to visit the

Chapter 4. Probabilistic Skyline Operator over Sliding Windows 95

elements of those entries. Specifically, at an entry if the maximum values of Pnew

multiplied by (1−P (a14)) smaller than q, the entry (i.e. all elements contained) will

be removed from SN,q. On the other hand if the minimum value of Pnew multiplied

by (1 − P (a14)) is not smaller than q, then the entry (i.e. all elements contained)

remains in SN,q. Similarly, at each entry we keep the minimum and maximum

values of Psky for the elements contained to possibly terminate the determination

of whether elements contained are in SKYN,q.

Moreover, in this example elements contained by E2 is in SN,q, we can update

their Pnew values globally by keeping a global value P global
new = P global

new × (1− P (a14))

at E2 to avoid individually update all elements contained in E2.

Furthermore, in this example a2 will be removed from SN,q once a14 arrives. To

avoid update each element contained by E8 individually due to the removal of a2,

we can keep a global value P global
old = P global

old ×(1−P (a2)) at E2 so that we know that

the Pold values for elements in E2 will be updated by multiplying 1

P global
old

. From time

to time, we may remove an entry E from SN,q and E fully dominates another entry

E ′ which stays in SN,q. If we keep the no-occurrence probability of the elements in

E - Pnoc = Πa∈E(1− P (a)), then we can update P global
old at E ′ by multiplying Pnoc.

Aggregate Information. Motivated by the observation above, we maintain R1

and R2 as aggregate R-trees to keep the above information at each entry. We

summarize it below.

• At each entry E, the following information will be stored. P global
new (E) stores

the captured multiplication of non-occurrence probabilities of the elements

which dominate all elements rooted at E. P global
old (E) stores the multiplication

of non-occurrence probability of the elements that expired and dominate the

elements rooted at E.

96 Chapter 4. Probabilistic Skyline Operator over Sliding Windows

• At each entry E, we use Pnoc(E) to store
∏

e∈E(1− P (e)).

• At each entry E, Psky,min(E) and Psky,max(E) store the minimum skyline

probability and maximum skyline probability of the elements rooted at E

without including P global
old and P global

new at E. Pnew,min(E) and Pnew,max(E) store

the minimum and maximum Pnew values of the elements rooted at E without

including P global
new at E.

Example 4.4. Continue the example in Figure 4.3 against the first 13 elements.

P global
old and P global

new at each internal entry are initialized to 1. When a10 arrives,

we update P global
new (E4) from 1 to (1 − P (a10)) = 0.8 since a10 dominates the MBB

of E4, while other P global
new values remain 1.

Here, Pnoc(E3) = (1 − P (a10))(1 − P (a8)) = 0.64. Similarly, we can calculate

values of Pnoc at entries E4, E5, and E6. Then, Pnoc(E1) = Pnoc(E3) × Pnoc(E4)

and Pnoc(E2) = Pnoc(E5)× Pnoc(E6). The multiplication of Pnoc(E1) and Pnoc(E2)

gives Pnoc at the root. Similarly, Pnoc values at each internal entry in R2 can be

calculated.

The information that a10 dominates both a5 and a6 has not been pushed down

to leaf-level and is only captured at the entry E4; consequently the captured skyline

probabilities for a6 and a5 are P (a6)×(1−P (a8)) (0.64) and P (a5) (0.8). Therefore,

at E4, Psky,max = 0.8 and Psky,min = 0.64; Pnew,max = 1 and Pnew,min = (1 −

P (a8)) (0.8). These multiplied by P global
new give the exact values of Psky,max, Psky,min,

Pnew,max, and Pnew,min at E4, respectively. At other entries, Psky,max, Psky,min,

Pnew,max and Pnew,min take exact values.

Once a2 removes, at E8, P
global
old is updated from 1 to (1− P (a2)) = 0.9. �

Removing an Entry. When an entry E removes from R1 or R2, we first push

down the aggregate information along the path from the root to E and update

Chapter 4. Probabilistic Skyline Operator over Sliding Windows 97

the siblings’ aggregate information for each entry on the path. For example, when

remove E3, we first recalculate the max and min probabilities at the root by Cal-

Prob (R.root), Algorithm 4.2. Then we push-down Pnew and Pold to E1 and E2,

respectively by UpdateOldNew (R1.root, E1) and UpdateOldNew (R1.root, E2)

(Algorithm 4.3). Then we reset P global
old and P old

new at R.root by 1. We perform the

same operations from E1 to E3 and E4.

Algorithm 4.2 CalProb (E)

1: if {P global
old (E) < 1} then

2: update Psky,min(E), Psky,max(E) by multiplying 1

P global
old

;

3: if {P global
new (E) < 1} then

4: update Psky,min(E), Psky,max(E), Pnew,min(E), Pnew,max(E) by multiply-

ing P global
new ;

Algorithm 4.3 UpdateOldNew (E, E ′)

1: if {P global
old (E) < 1} then

2: P global
old (E ′) := P global

old (E ′)× P global
old (E);

3: if {P global
new (E) < 1} then

4: P global
new (E ′) := P global

new (E ′)× P global
new (E);

After E removes from R, we recalculate min and max probabilities, as well as

Pnoc along the path in a bottom-up fashion from E.

Inserting an Entry. In our algorithm, we may need to remove an entry from R1

and insert it to R2, and vice versa. When an entry E inserts into R1 (or R2), we

find an appropriate level to insert E; that is, the level with the length to the leaf to

be the same as the depth of E. We also first push down the aggregate information,

in the same way as a deletion, to the level. After inserting E, we also recalculate

the same aggregate information in the same way as that in a deletion.

98 Chapter 4. Probabilistic Skyline Operator over Sliding Windows

Re-balancing. When a re-balancing of R1 or R2 as an R-tree is called, we treat

it as a deletion followed by an insertion.

4.3.2 Inserting a New Element

As depicted in the last subsection, once a new element anew arrives, we need to

conduct the following tasks: 1) update Pnew values of the elements dominated

by anew by multiplying (1 − P (anew)), 2) remove the elements a with updated

Pnew(a) < q from R1 and R2, 3) update Psky (via Pold and Pnew) values for the

elements dominated by some of those removed elements, 4) move elements a in

R1 with Psky(a) < q to R2, and 5) calculate Psky(anew) and insert it to R1 or R2

accordingly since Pnew(anew) = 1.

According to Lemma 4.2, if a remaining element a in SN,q is dominated by a

removed element a′, then a′ must be older than a; consequently in the task 3) above,

we only need to update Pold values. Moreover, by dominance transitivity all the

tasks 1) - 4) only need to be conducted against the elements dominated by anew.

Clearly, the task 5) is conducted against entries/elements which dominate anew.

Therefore, it is critical to identify entries/elements in R1 and R2 which are fully

dominated by anew, as well as the entries/elements which dominate anew. Algorithm

4.4 is an outline of our techniques.

In Algorithm 4.4, we use C1 to store the entries partially dominate anew, C2

to store the entries partially dominated by anew, and C12 to store the entries

which are partially dominated by anew and partially dominate anew. Then, we

use Probe (C1, Psky(anew)) and Probe (C12, R, Psky(anew)) to traverse the two

aggregate R-trees to get all entries/elements dominating anew. We also use Probe

(C2, R) and Probe (C12, R, Psky(anew)) to traverse the two aggregate R-trees to

get all entries/elements fully dominated by anew and put in R. Finally, UpdateProb

Chapter 4. Probabilistic Skyline Operator over Sliding Windows 99

Algorithm 4.4 Inserting (anew)
Input: N : window size; q: skyline probability threshold. anew : data element. R1 and R2: two aggregate trees on SKYN,q and

(SN,q − SKYN,q) respectively.

Output: Updated R1 and R2

1: Psky(anew) := P (anew); Pold(anew) := 1; Pnew(anew) := 1;

2: for each E ∈ {R1.root, R2.root} do

3: if {E ≺ anew} then

4: Psky(anew) := Psky(anew) × Pnoc(E);

5: Pold(anew) := Pold(anew) × Pnoc(E);

6: else

7: if anew ≺ E then add E to R;

8: if E ≺partial anew & anew ≺not E then add E to C1;

9: if E ≺partial anew & anew ≺partial E then add E to C12;

10: if anew ≺partial E & E ≺not anew then add E to C2;

11: end for each

12: if C1 ̸= ∅ then Probe (C1, Psky(anew));

13: if C2 ̸= ∅ then Probe (C2, R);

14: if C12 ̸= ∅ then Probe (C12, R, Psky(anew));

15: if R ̸= ∅ then UpdateProb (R);

16: if Psky(anew) ≥ q then Add anew to R1; else add anew to R2;

(R) conducts tasks 2)-4) and the task 5) is conducted in line 16 by the inserting

operation to an aggregate R-tree (R1 or R2) as described in Section 4.3.1. Next,

we provide details for the procedures Prob () and UpdateProb().

Probe (C1, Psky(anew)) (Algorithm 4.5). According to Theorem 4.1, entries in

C1 cannot contain any element which is dominated by anew. Probe (C1, Psky(anew))

is to iteratively traverse the aggregate R-trees to get entries which dominate anew

and then update Psky and Pold of anew. In Algorithm 4.5, we use Dequeue ()

combining with UpdateOldNew () (Algorithm 4.3) to push down the aggregate

information. Algorithm 4.6 gives details of Dequeue ().

Probe (C2, R). Note that entries in C2 do not contain any elements that dominate

anew according to Theorem 4.1. Similarly, Probe (C2, R) is to iteratively traverse

to get all entries/elements which are dominated by anew and then place them in

R. As a by-product, we push down the aggregate information and update P global
new

values of those entries/elements in R. The details are presented in Algorithm 4.7.

Probe (C12, R, Psky(anew)). Entries in C12 partially dominate anew and are

100 Chapter 4. Probabilistic Skyline Operator over Sliding Windows

Algorithm 4.5 Probe (C1, Psky)

1: While C1 ̸= ∅ do

2: E := Dequeue (C1);

3: for each Children E ′ of E do

4: UpdateOldNew (E, E ′);

5: if E ′ ≺ anew then

6: Psky(anew) := Psky(anew)× Pnoc(E
′);

7: Pold(anew) := Pold(anew)× Pnoc(E
′);

8: else

9: if E ′ ≺partial anew then add E ′ to C1;

10: if E ′ is the last child of E then

11: reset P global
new (E) and P global

old (E) to 1;

12: end while

13: return Psky(anew);

also partially dominated by anew. Consequently, elements contained by entries in

C12 might dominate anew or are dominated by anew. Probe (C12, R, Psky(anew)),

combing with Algorithms 4.5 and 4.7, is to iteratively traverse the aggregate R-

trees to possibly further update Psky(anew) and add more to R. We present the

details below in Algorithm 4.3.2.

UpdateProb (R). R contains all entries/elements which are fully dominated by

anew and obtained by Probe (C12, R, Psky(anew)) and Probe (C2, R). Note that

in our implementation, we use a link list to point to all these entries/elements in

R. UpdateProb (R) is to traverse those entries in R, along the aggregate R-trees

to which they belong, to detect and remove entries/elements with the updated

Pnew values smaller than q. Moreover, it also updates the Pold values of remaining

elements in R which are dominated by some removed elements, as well as detects

Chapter 4. Probabilistic Skyline Operator over Sliding Windows 101

Algorithm 4.6 Dequeue (C1)

1: if C1 ̸= ∅ then

2: get an E in C1;

3: CalProb (E);

4: return E;

the remaining elements in R with Psky < q. Algorithm 4.9 provides details.

Lines 1-11: Iteratively detect the elements/entries to be removed (i.e. with Pnew <

θ) and put them to R3.

Lines 12: UpdateOld (R3, R4) is to update the values of P global
old of elements/entries

in R4 dominated by some in R3 as follows. For each pair E1 ∈ R3 and E2 ∈ R4,

if E1 fully dominates E2, then update P global
old (E2) by multiplying

Pnoc(E1); otherwise, if E1 partially dominates E2 then put the chil-

dren of E1 to R3 and the children of E2 to R4 for the next iteration.

In our implementation, we mark entries from R (i.e., R3 and R4) within R1 and

R2. Then, we use the synchronous traversal paradigm [HJR97] to traverse R3 and

R4 by following the R-tree structures of the entries in R3 and R4. Here, we create

a dummy root for R3 with all entries in R3 to be children of the root; similar

treatments are done for R4.

lines 13: We remove entries/elements in R3 from R1 and R2 as what discussed in

Section 4.3.1.

lines 14: Place (R4) is to determine elements/entries in R4 to be in R1 or R2.

In fact, we only need to check R4 ∩ R1 according to Corollaries 4.1 and 4.2; it is

conducted as follows. For each entry E ∈ R4∩R1, we use depth-first search to find

out all its highest level decedent entries with Psky,min greater than q - Algorithm

4.10. In lines 10-11 of Algorithm 4.10, we first remove E from R1 in the way as

102 Chapter 4. Probabilistic Skyline Operator over Sliding Windows

Algorithm 4.7 Probe (C2, R)

1: While C2 ̸= ∅ do

2: E := Dequeue (C2);

3: for each Children E ′ of E do

4: UpdateOldNew (E ′);

5: if anew ≺ E ′ then

6: P global
new (E ′) := (1− P (anew))× P global

new (E ′);

7: add E ′ to R;

8: else

9: if anew ≺partial E
′ then add E ′ to C2;

10: if E ′ is the last child of E then reset P global
new (E) and P global

old (E) to

1;

11: end while

12: return R

described in Section 4.3.1. Then, we insert E into R2 in the way as described in

Section 4.3.1.

4.3.3 Expiration

Once an element aold expires, we first check if it is in SN,q. If it is in SN,q then

we need to increase the Pold values for elements dominated by aold. After that, we

need to determine the elements that need to be moved from R2 to R1. Algorithm

4.11 below presents details.

In Algorithm 4.11, Move (R ∩ R2) is to move the elements in R ∩ R2 with

updated skyline probability not smaller than q to R1. It is executed in the same

way as Place (R4) but replace R1 ∩R4 by R∩R2 and move from R2 to R1 instead

of R1 to R2.

Chapter 4. Probabilistic Skyline Operator over Sliding Windows 103

Algorithm 4.8 Probe (C12, R, Psky(anew))

1: While C12 ̸= ∅ do

2: E := Dequeue (C12);

3: for each Children E′ of E do

4: UpdateOldNew (E′);

5: if anew ≺ E′ then

6: P global
new (E′) := (1− P (anew))× P global

new (E′); add E′ to R;

7: else

8: if anew ≺partial E
′ & E′ ≺not anew then add E′ to C2;

9: if anew ≺not E
′ & E′ ≺partial anew then add E′ to C1;

10: if anew ≺partial E
′ & E′ ≺partial anew then add E′ to C12;

11: if E′ ≺ anew then

12: Psky(anew) := Psky(anew)× Pnoc(E
′);

13: Pold(anew) := Pold(anew)× Pnoc(E
′);

14: if E′ is the last child of E then reset P global
new (E) and P global

old (E) to 1;

15: end while

16: if C1 ̸= ∅ then Probe (C1, Psky) (Algorithm 4.5);

17: else return Psky(anew);

18: if C2 ̸= ∅ then Probe (C2, R) (Algorithm 4.7);

19: else return R;

4.3.4 Multiple Confidences

Continuous queries Different users may specify different confidences. Suppose

that users specify k confidences q1, q2, ..., qk where qi < qi−1. Our techniques for a

single given confidence can be immediately extended to cover multiple confidences

as follows.

Instead of maintaining a single solution set R1 in Algorithm 4.11, we maintain

k solution sets R1, R2, ..., Rk such that elements in Ri (for 2 ≤ i ≤ k) have

104 Chapter 4. Probabilistic Skyline Operator over Sliding Windows

Algorithm 4.9 UpdateProb (R)

1: While R ̸= ∅ do

2: E := Dequeue (R);

3: if Pnew,min(E) < q ≤ Pnew,max(E) then

4: for each Children E′ of E do

5: UpdateOldNew (E′, E);

6: add E′ to R;

7: if E′ is the last child of E then

8: reset P global
new (E) and P global

old (E) to 1;

9: else

10: if Pnew,min(E) ≥ q then

11: add E to R4;

12: else add E to R3;

13: end while

14: if R3 ̸= ∅ and R4 ̸= ∅ then UpdateOld (R3, R4);

15: if R3 ̸= ∅ then Remove (R3);

16: if R4 ̸= ∅ then Place (R4);

the skyline probabilities in [qi, qi−1) where q0 = 1 and Rk+1 keeps the elements in

(SN,qk − ∪k
i=1Ri). Those Ri for i = 1 to (k + 1) are also maintained as aggregate

R-trees with the same aggregate information.

All the techniques from Algorithm 4.11 are immediately applicable except that

now in Algorithm 4.9, we need to detect where to place some elements in R ∩ Ri

for i ≤ k; that is, we need to consider all Rj for i < j < k + 1. In Algorithm 4.11,

now we need to detect where to move some elements in Rk+1; that is, we need to

consider Rj (for 1 ≤ j ≤ k) instead of just R1 in the case of single confidence.

Ad-hoc Queries. Users may also issue an ad-hoc query, “find the skyline with

skyline probability at least q′”. Assume that currently we maintain k skylines as

Chapter 4. Probabilistic Skyline Operator over Sliding Windows 105

Algorithm 4.10 Place (R4)

1: While R1 ∩R4 ̸= ∅ do

2: E := Dequeue (R1 ∩R4);

3: if Psky,min(E) < q ≤ Psky,max then

4: for each Children E ′ of E do

5: UpdateOldNew (E ′);

6: add E ′ to R1 ∩R4;

7: if E ′ is the last child of E then

8: reset P global
new (E) and P global

old (E) to 1;

9: else

10: if Psky,max(E) < q then Move E from R1 to R2;

discussed above and q′ ≥ qk. Then, we first find an Ri such that qi ≤ q′ < qi−1;

clearly elements {Rj: j < i − 1} } are contained in the solution. We can apply

the search paradigm in Place (R4) (Algorithm 4.10) to get all elements in Ri with

skyline probabilities ≥ q but without updating aggregate probabilities information.

4.3.5 Algorithm Analysis

Correctness. Our sliding window techniques maintain aggregate information

against SN,q and then get skyline according to the skyline probabilities restricted

to SN,q, Theorems, Lemmas and Corollaries in Section 4.2.1 ensure that our algo-

rithms are correct.

Space Complexity. Clearly, in our algorithm we use aggregate-R trees to keep

each element in SN,q and each element is kept only once. Thus, the space complexity

is O(|SN,q|).

Time Complexity. It seems hard to provide a sensible time complexity analysis;

106 Chapter 4. Probabilistic Skyline Operator over Sliding Windows

Algorithm 4.11 Expiring (aold)
1: if aold ∈ SN,q then

2: Remove (aold);

3: for each E ∈ {R1.root, R2.root} do

4: if aold ≺ E then

5: Pold(E) = Pold(E)/(1− P (aold)); add E to R;

6: else

7: if aold ≺partial E then add E to C;

8: while C ̸= ∅ do

9: E := Dequeue (C);

10: for each Children E′ of E do

11: UpdateOldNew (E′);

12: if aold ≺ E′ then

13: Pold(E
′) := Pold(E

′)/(1− P (aold); add E′ to R;

14: else

15: if aold ≺partial E then add E′ to C;

16: if E′ is the last child of E then reset P global
new (E), P global

old (E) to 1;

17: end while

18: if R ̸= ∅ then Move (R ∩R2);

nevertheless, our experiment demonstrates the algorithms in this section is much

faster than the trivial algorithm against SN,q as what discussed in the beginning of

this section.

4.4 Performance Evaluation

In this section, we only evaluate our techniques since this is the first work studying

the problem of probabilistic skyline computation over sliding windows. Specifically,

Chapter 4. Probabilistic Skyline Operator over Sliding Windows 107

we implement and evaluate the following techniques.

SSKY Techniques presented in Section 4.3 to continuously compute q-skyline

(i.e., skyline with the probability not less than a given q) against a sliding

window.

MSKY Techniques in Section 4.3.4 to continuously computing multiple q-

skylines currently regarding multiple given probability thresholds.

QSKY Techniques in Section 4.3.4 to processing an ad-hoc skyline query with

a probability threshold.

All algorithms are implemented in C++ and compiled by GNU GCC. Experi-

ments are conducted on PCs with Intel Xeon 2.4GHz dual CPU and 4G memory

under Debian Linux. Our experiments are conducted on both real and synthetic

datasets.

Real dataset is extracted from the stock statistics from NYSE (New York Stock

Exchange). We choose 2 million stock transaction records of Dell Inc. from Dec

1st 2000 to May 22nd 2001. For each transaction, the average price per volume

and total volume are recorded. This 2-dimensional dataset is referred to as stock

in the following. We randomly assign a probability value to each transaction; that

is, probability values follows uniform distribution. Elements’ arrival order is based

on their transaction time.

Synthetic datasets are generated as follows. We first use the methodologies

in [BKS01] to generate 2 million data elements with the dimensionality from 2

to 5 and the spatial location of data elements follow two kinds of distributions,

independent and anti-correlated . Then, we use two models uniform or normal

distributions to randomly assign occurrence probability of each element to make

them be uncertain. In uniform distribution, the occurrences probability of each

108 Chapter 4. Probabilistic Skyline Operator over Sliding Windows

element takes a random value between 0 and 1, while in the normal distribution,

the mean value Pµ varies from 0.1 to 0.9 and standard deviation Sd is set 0.3. We

assign a random order for elements’ arrival in a data stream.

Choosing q. q is the probability threshold in evaluating efficiency of query pro-

cessing. To evaluate SSKY, we use 0.3 as a default value of q, while to evaluate

MSKY with k given probability thresholds q1, ..., qk, we let these k values evenly

spread [0.3, 1]. To evaluate QSKY, we issue 1000 queries across [q, 1] where q is the

minimum probability threshold when multiple thresholds are pre-given for multiple

continuous skylines. We record average time to process these 1000 queries.

Table 4.2 summarizes parameters and corresponding default values. In our ex-

periments, all parameters take default values unless otherwise specified.

Table 4.2: System Parameters
Notation Definition (Default Values)

n Number of points in the dataset (2M)
N Sliding Window size (1M)
d Dimensionality of the of the dataset (3)
D Dataset (Anti)
DP Probabilistic distribution of appearance (uniform)
Pµ expected appearance probability (0.5)
q probabilistic threshold (0.3)
q′ probabilistic threshold q′ (q ≤ q′ ≤ 1)

In our experiments, we evaluate the efficiency of our algorithm as well as space

usage against dimensionality, size of sliding window, probabilistic threshold, distri-

bution of objects’ spatial location and appearance probability distribution.

4.4.1 Evaluate Space Efficiency

We evaluate the space usage in terms of the number of uncertain elements kept in

SN,q against different settings. As this number may change as the window slides,

Chapter 4. Probabilistic Skyline Operator over Sliding Windows 109

we record the maximal value over the whole stream. Meanwhile, we also keep the

maximal number of SKYN,q.

The first set of experiments is reported in Figure 4.4 where 4 datasets are

used: Inde-Uniform (Independent distribution for spatial locations and Uniform

distribution for occurrence probability values), Anti-Uniform, Anti-Normal, and

Stock-Uniform. We record the maximum sizes of SN,q and SKYN,q. It is shown

that very small portion of the 2-dimensional dataset needs to be kept. Although

this proportion increases with the dimensionality rapidly, our algorithm can still

achieve a 89% space saving even in the worst case, 5 dimensional anti-correlated

data. Size of SKYN,q is much smaller than that of candidates. Since the anti-

correlated dataset is the most challenging, it will be employed as the default dataset

in the following.

Inde-Uniform ��Anti-Uniform Anti-Normal�� Stock-Uniform

101

102

103

104

105

106

2d 3d 4d 5d

 M
ax

. C
an

di
da

te
 s

iz
e

(a) Max. Candidate Size

100

101

102

103

104

105

106

2d 3d 4d 5d

 M
ax

. S
ky

lin
e

si
ze

(b) Max. Skyline Size

Figure 4.4: Space Usage vs Diff. Data set

The second set of experiment evaluates the impact of sliding window size N on

the space efficiency. As depicted in Figure 4.5, the space usage is sensitive towards

the increment of window size.

Figure 4.6 reports the impact of occurrence probability distribution against the

space usage and number of skyline points on different datasets. The occurrence

probability follows normal distribution and the mean of the appearance proba-

110 Chapter 4. Probabilistic Skyline Operator over Sliding Windows

Anti (2d) Anti (3d) Anti (4d) Anti (5d) Stock

102

103

104

105

106

200K 400K 600K 800K 1M

M
ax

. C
an

di
da

te
 S

iz
e

(a) Max. Candidate Size(uniform))

101

102

103

104

105

200K 400K 600K 800K 1M
M

ax
. S

ky
lin

e
S

iz
e

(b) Max. Skyline Size (uniform)

Figure 4.5: Space Usage vs Window Size

Anti (2d) Anti (3d) Anti (4d) Anti (5d) Stock

102

103

104

105

106

0.1 0.3 0.5 0.7 0.9

M
ax

. C
an

di
da

te
 S

iz
e

(a) Max. Candidate Size

101

102

103

104

105

0.1 0.3 0.5 0.7 0.9

M
ax

. S
ky

lin
e

S
iz

e

(b) Max. Skyline Size

Figure 4.6: Space Usage vs Appearance Probability

bility Pµ increases from 0.1 to 0.9. It demonstrates that the smaller the average

appearance probability of the points, the more points will be kept in SN,q. As

shown in Figure 4.6(a), the size of the candidate decreases with the increase of

average appearance probability. Interestingly, although the candidate size is large

with smaller average occurrence probability, the number of probabilistic skyline is

small, as illustrated in Figure 4.6(b). This is because the small occurrence proba-

bility prevents the uncertain objects from becoming probabilistic skyline.

Figure 4.7 reports the effect of probabilistic threshold q on space efficiency. As

expected, both candidate set size and skyline set size drop as q increases.

Chapter 4. Probabilistic Skyline Operator over Sliding Windows 111

Anti (2d) Anti (3d) Anti (4d) Anti (5d) Stock

102

103

104

105

106

0.1 0.3 0.5 0.7 0.9

M
ax

. C
an

di
da

te
 S

iz
e

(a) Max. Candidate Size(uniform)

100

101

102

103

104

105

0.1 0.3 0.5 0.7 0.9

M
ax

. S
ky

lin
e

S
iz

e

(b) Max. Skyline Size (uniform)

Figure 4.7: Space Usage vs Probability Threshold

4.4.2 Evaluation Time Efficiency

We evaluate the time efficiency of our continuous query processing techniques,

SSKY and MSKY, as well as ad-hoc query processing technique QSKY. We first

compare SSKY with the trivial algorithm against SKYN,q as described in the be-

ginning of Section 4.3. We find it is about 20 times slower than SSKY against anti

(3d). Thus, we exclude the trivial algorithm from further evaluation.

Since the processing time of one element is too short to capture precisely, we

record the average time for each batch of 1K elements to estimate the delay per

element.

10-5

10-4

10-3

1M 1.2M 1.4M 1.6M 1.8M 2M

A
vg

. D
el

ay
(s

)

3d

4d

5d

2d
stock

Figure 4.8: Time Efficiency vs n

10-5

10-4

10-3

200K 400K 600K 800K 1M

A
vg

. D
el

ay
(s

)

2d
stock

3d

4d

5d

Figure 4.9: Avg. Delay vs W

The first set of experiment is depicted in Figure 4.8. It shows that SSKY is

112 Chapter 4. Probabilistic Skyline Operator over Sliding Windows

very efficient, especially when the dimensionality is low. For 2 dimensional dataset,

SSKY can support a workload where elements arrive at the speed of more than 38K

per second even for stock and anti-correlated dataset. For 5d anti-correlated data,

our algorithm can still support up to 728 elements per second, which is a medium

speed for data streams.

Figure 4.9 evaluates the system scalability towards the size of the sliding win-

dow. The performance of SSKY is not sensitive to the size of sliding window. This

is because the candidate size increases slowly with N , as reported in Figure 4.5.

Anti (2d) Anti (3d) Anti (4d) Anti (5d) Stock

10-5

10-4

10-3

10-2

0.1 0.3 0.5 0.7 0.9

A
vg

. D
el

ay
(s

)

Figure 4.10: Avg. Delay vs Pµ

10-5

10-4

10-3

10-2

0.1 0.3 0.5 0.7 0.9

A
vg

. D
el

ay
(s

)

Figure 4.11: Avg. Delay vs q

Figure 4.10 evaluates the impact of occurrence probability distribution on time

efficiency of SSKY where normal distribution is used for probability values. As

expected, large Pµ leads to better performance since the candidate size is small

when Pµ is large.

Figure 4.11 evaluates the effect of probability threshold q on SSKY. Since both

size of candidate set and skyline objects set are small when q is large as depicted

in Figure 4.7, SSKY is more efficient when q increases.

The last experiment evaluates the efficiency of our multi probability thresholds

based continuous query processing techniques MSKY and ad-hoc query processing

techniques. Results are reported in Figures 4.12(a) and 4.12(b), respectively. As

Chapter 4. Probabilistic Skyline Operator over Sliding Windows 113

Anti (2d) Anti (3d) Anti (4d) Anti (5d) Stock

10-5

10-4

10-3

10-2

2 4 6 8 10

A
vg

. M
ai

nt
en

an
ce

 T
im

e(
s)

(a) continuous

10-7

10-6

10-5

10-4

10-3

10-2

2 4 6 8 10

A
vg

. Q
ue

ry
 R

es
po

ns
e

T
im

e(
s)

(b) ad-hoc

Figure 4.12: Query Cost vs |Q|

expected, Figure 4.12(a) shows that cost to process each element by MSKY in-

creases when k increases, while Figure 4.12(b) shows the ad-hoc query processing

cost decreases when k increases.

4.4.3 Summary

As a short summary, our performance evaluation indicates that we only need to

keep a small portion of stream objects in order to compute the probabilistic skyline

over sliding windows. Moreover, our continuous query processing algorithms are

very efficient and can support data streams with high speed for 2d and 3d datasets.

Even for the most challenging data distribution, anti-correlated , we can still support

the data stream with medium speed of more than 700 elements per second when

dimensionality is 5.

4.5 Applications

The techniques developed in this chapter can be immediately extended to the

following applications.

114 Chapter 4. Probabilistic Skyline Operator over Sliding Windows

Probabilistic Top-k Skyline Elements. Given an uncertain data stream, a

threshold q, and a sliding window size W , find the k skyline points with the highest

skyline probabilities (but not smaller than q).

We can apply our algorithms in Section 4.3 to remove points with Pnew < q,

update aggregate information at each entry, probabilities (Psky, Pold, Pnew, etc). We

do not move any elements in R4 ∩ R1 to R2. Instead, we treat R1 and R2 as two

“heap trees”. In fact, both R1 and R2 maintain two heaps on Psky: 1) min-heap,

and 2) max-heap; this is because we keep Psky,min and Psky,max at each entry. We

use min-heap on R1 and max-heap on R2 to move elements in top-k from R2 to R1

and move elements in R1 but not in top-k to R2.

Time Stamp based Sliding Windows. In such a model, we expire an old

element if it is not within a pre-given most recent time period T . Our techniques

can be immediately extended to sliding windows based on the most recent time

period T .

Object with Multiple Elements. Suppose that an uncertain stream contains

a sequence of objects such that each object consists of a set of instances [PJLY07]

or PDF. In fact, our skyline probability model is a special case of the model in

[PJLY07]. In our sliding window model, we assume that each object is atomic.2

Then we want to compute objects with skyline probabilities not smaller than q.

It can be immediately verified that all our techniques are immediately applicable

to discrete cases except we compute skyline probability in a different way; that is,

based on the definition in [PJLY07]. For continuous cases, we can use Monte-Carlo

sampling method [KW86] to discrete them.

2When an object arrives, all its instances arrive; when an object expires, all its instances

expire.

Chapter 4. Probabilistic Skyline Operator over Sliding Windows 115

4.6 Conclusion

In this chapter, we investigate the problem of efficiently computing skyline against

sliding windows over an uncertain data stream. We first model the probability

threshold based skyline problem. Then, we present a framework which is based on

efficiently maintaining a candidate set. We show that such a candidate set is the

minimum information we need to keep. Efficient techniques have been presented

to process continuous queries. We extend our techniques to concurrently support

processing a set of continuous queries with different thresholds, as well as to process

an ad-hoc skyline query. Finally, we show that our techniques can also be extended

to support probabilistic top-k skyline against sliding windows over an uncertain

data streams. Our extensive experiments demonstrate that our techniques can

deal with a high-speed data stream in real time.

Chapter 5

Probabilistic Top-k Dominating

Queries 1

Top-k dominating queries and skyline are shown as useful tools in decision mak-

ing [BKS01, PTGS03, TEO01, YM07] to rank certain data. A top-k dominating

query retrieves the k objects with the highest dominating ability, that is, the k

objects that dominate the largest number of other objects. It is formally defined

as follows [YM07]. Suppose that X is a set of d-dimensional points. For a point

x ∈ X , the score function is defined as the number of points dominated by x,

namely, score(x) = |{x′ ∈ X |x ≺ x′}|. Here, x ≺ x′ if the coordinate value of x is

not greater than that of x′ at each dimension with at least one dimension at which

the coordinate value of x is smaller than that of x′. score(x) is a useful ranking

function due to the following ordering property [YM07]: ∀x, x′ ∈ X , x ≺ x′ ⇒

score(x) > score(x′). A top-k dominating query retrieves the k points in X with

the highest scores. The skyline operator retrieves all objects from X which are not

1The techniques presented in this chapter are originally published in the paper “Threshold-

based Probabilistic Top-k Dominating Queries”, Wenjie Zhang, Xuemin Lin, Ying Zhang, Jian

Pei and Wei Wang, accepted by VLDB Journal, 2009

116

Chapter 5. Probabilistic Top-k Dominating Queries 117

dominated by other objects.

The skyline operator and top-k dominating queries rank objects in different

ways: skyline ranks objects in a “defensive” way and outputs the objects which

are not worse than any other objects in a given dataset, while a top-k dominating

query ranks objects in an “assertive” way and provides the objects that are better

than the largest number of other objects. As pointed out in [YM07], the benefit

of using top-k dominating queries is to assimilate the advantages of top-k queries

and the skyline operator. That is, the result size in a top-k dominating query is

strictly controlled by k, while like skyline operators, top-k dominating queries do

not require a specific ranking function and are not affected by potentially different

scales at different dimensions.

Figure 5.1 shows the average performance of 3 popular NBA players from 3 se-

lected games in their rookie seasons with respect to two statistics aspects, number

of assists (AST) and number of points (PTS). To retain the preference of smaller

values, we record (30− PTS) and (6−AST) in Figure 5.1, while the correspond-

ing three game statistics are depicted in Figure 5.2. According to the aggregate

information (average performance), the skyline consists of Shaquille O’neal and

Elton Brand and the top-2 dominating query also returns O’neal and Brand in this

example. Both dominate Brown but there is no dominating relationship between

O’neal and Brand.

Motivating Example. Take NBA players as an example. NBA players may be

ranked in various ways. Dominating queries provide an effective way to rank a

player according to the number of other players whom this player outperforms.

Using aggregates, such as AVERAGE per game, to summarize game statistics

and then to count dominating relationships by the top-k dominating computation

techniques in [YM07] is an option. While aggregates such as AVERAGE per game

118 Chapter 5. Probabilistic Top-k Dominating Queries

5

10

15

20

1 2 3 4 5
(6 -AST)

(30 -PTS)

6

25

30

o

e

b

Figure 5.1: Average

Kwame Brown (B)

Elton Brand (E)

Shaquille Oneal (O)

5

10

15

20

1 2 3 4 5
(6 -AST)

(30 -PTS)

o3

6

25

30

o2

o1

e1

e2

e3

b1

b2

b3

Figure 5.2: NBA Players.

is useful to summarize the statistic information, they do not quite reflect the actual

game-by-game performances and may be potentially affected by “outliers”.

As depicted in Figure 5.2, O’neal’s overall performance is affected by a bad

outlier - o3. Consequently, O’neal ties with Brand if we choose the top-1 dominating

player according to the aggregate information in Figure 5.1. However, intuitively

O’neal should be the winner based on the game-by-game statistics in Figure 5.2.

The examples depicted in Figures 5.1 and 5.2 are quite representative.

We have conducted an evaluation on the fourteen 1st picks from 1991 to 2004

regarding their rookie seasons. To conduct a fair evaluation, we use the first 54

games (i.e. their rookie season games) against 3 kinds of game-by-game statistics,

scores, rebounds, and assists since the year 1997 only has 54 games in the regular

season. The 2nd column of Table 5.1 illustrates the ranks (bold number) of these

players based on the number (the number in the bracket) of players dominated by

them, respectively, using the average statistics per player, where Duncan is ranked

first, Johnson is ranked 2nd, Webber and Brand are tied at 3rd, and O’neal is

ranked 5th. Note that it is commonly believed that O’neal has the best rookie

season among those players especially comparing to Brand’s rookie season 2. Thus,

2See wikipedia and also http://armchairgm.wikia.com/Top_No._1_Overall_NBA_Draft_

Chapter 5. Probabilistic Top-k Dominating Queries 119

the top-k dominating queries against aggregates (average) may not provide right

semantics for the applications where each object has multiple “instances” to occur.

Name
Ranks

agg 2% 5% 10% 20%

O’neal, S 5(4) 5(4) 3(5) 5(4) 5(4)

Johnson, L 2(6) 1(7) 2(6) 1(8) 1(10)

Duncan, T 1(7) 1(7) 1(7) 2(7) 2(7)

Webber, C 3(5) 3(5) 3(5) 3(5) 3(5)

Brand, E 3(5) 3(5) 3(5) 3(5) 3(5)

James, L 6(2) 6(2) 6(2) 6(2) 6(2)

Robinson, G 10(1) 10(1) 10(1) 10(1) 10(1)

Smith, J 6(2) 6(2) 6(2) 6(2) 6(2)

Iverson, A 10(1) 10(1) 10(1) 10(1) 10(1)

Ming, Y 6(2) 6(2) 6(2) 6(2) 6(2)

Howard, D 6(2) 6(2) 6(2) 6(2) 6(2)

Martin, K 10(1) 10(1) 10(1) 10(1) 10(1)

Olowokandi, M 13(0) 13(0) 13(0) 13(0) 13(0)

Brown, K 13(0) 13(0) 13(0) 13(0) 13(0)

Table 5.1: Ranks of NBA 1st Picks after Removing Outliers

Conducting an aggregate (e.g. average) after removing outliers and then apply-

ing the top-k dominating computation technique in [YM07] is a possible paradigm.

To verify the affect of such a paradigm, we conduct the experiment on the above

rookie data. We first employ one of the most popular clustering algorithms, DB-

SCAN [EKSX96], to remove 2%, 5%, 10% and 20% of instances as outliers from

each player by choosing the distance and density parameters. Then, we calculate

the average performance over remaining data for each player and then do the dom-

ination counting against the average performance. The result is depicted in Table

5.1 where x% for x = 2, 5, 10, 20 means x% of outliers have been removed. Table

5.1 shows that removing outliers does not quite affect the above rankings; this is

because that there are bad outliers and good outliers. Therefore, the paradigm of

removing outliers and then applying the top-k dominating computation may suffer

Picks

120 Chapter 5. Probabilistic Top-k Dominating Queries

Name
Ranks

agg 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
O’neal, S 5 (4) 1 (1) 1 (2) 1 (2) 1 (3) 1 (4) 1 (5) 1 (5) 1 (6) 3 (7)
Johnson, L 2 (6) 2 (0) 2 (1) 1 (2) 1 (3) 1 (4) 1 (5) 1 (5) 1 (6) 1 (8)
Duncan, T 1 (7) 2 (0) 2 (1) 1 (2) 1 (3) 3 (3) 3 (4) 1 (5) 1 (6) 1 (8)
Webber, C 3 (5) 2 (0) 2 (1) 4 (1) 4 (2) 3 (3) 3 (4) 4 (4) 4 (5) 3 (7)
Brand, E 3 (5) 2 (0) 5 (0) 4 (1) 4 (2) 5 (2) 5 (3) 5 (3) 5 (4) 5 (6)
James, L 6 (2) 2 (0) 5 (0) 6 (0) 6 (1) 6 (1) 6 (2) 5 (3) 5 (4) 6 (5)
Robinson, G 10 (1) 2 (0) 5 (0) 6 (0) 6 (1) 6 (1) 6 (2) 7 (2) 7 (3) 8 (4)
Smith, J 6 (2) 2 (0) 5 (0) 6 (0) 8 (0) 6 (1) 6 (2) 7 (2) 7 (3) 8 (4)
Iverson, A 10 (1) 2 (0) 5 (0) 6 (0) 8 (0) 6 (1) 9 (1) 7 (2) 7 (3) 8 (4)
Ming, Y 6 (2) 2 (0) 5 (0) 6 (0) 8 (0) 6 (1) 9 (1) 7 (2) 7 (3) 6 (5)
Howard, D 6 (2) 2 (0) 5 (0) 6 (0) 8 (0) 11 (0) 9 (1) 11 (1) 11 (2) 12 (2)
Martin, K 10 (1) 2 (0) 5 (0) 6 (0) 8 (0) 11 (0) 9 (1) 11 (1) 11 (2) 11 (3)
Olowokandi, M 13 (0) 2 (0) 5 (0) 6 (0) 8 (0) 11 (0) 13 (0) 13 (0) 13 (1) 13 (1)
Brown, K 13 (0) 2 (0) 5 (0) 6 (0) 8 (0) 11 (0) 13 (0) 13 (0) 14 (0) 14 (0)

Table 5.2: Ranks of NBA 1st Picks

from the following issues.

• The actual distributions of multiple instances are not addressed.

• Since ‘bad” and “good” performance outliers have different affects, the con-

tributions of “outliers” are not evaluated.

Probabilistic Dominating Queries. To address the applications where an ob-

ject has multiple instances (e.g. game statistics of a NBA player), in this chapter

we develop a probabilistic model to measure the dominating ability of each object.

Unlike conventional dominating queries, from probabilistic point of view each ob-

ject could dominate any number of objects even with a very small probability (say

0, or close to 0). Therefore, we use the probability q by which an object dominates

at least l objects to measure the dominating ability; that is, the dominating ability

of an object U is measured by two parameters (q, l). Generally, the larger l, the

smaller q. Consequently, there are two ways to model a probabilistic dominating

query.

1. Given a probability threshold q, for each object U compute the maximum l

such that U dominates at least l other objects with probability not smaller

than q.

Chapter 5. Probabilistic Top-k Dominating Queries 121

2. Given a threshold l, for each object U compute the maximum q such that U

dominates at least l objects with probability not smaller than q.

In the second model, q could be very small. To control the value of q, in this

chapter we focus on the first model. Nevertheless our techniques can be immedi-

ately applied to the second model; we will discuss this in Section 7. In Table 5.2,

we show the ranking results according to the 1st model where we assign each game

statistic by the same occurrence probability. The 3rd to 11th columns show the

ranks based on different probability thresholds, respectively. For example, in the

column headed by the threshold 0.5, O’neal dominates at least 4 (the number in

bracket) other players with at least the probability 0.5; thus he is ranked 1st (bold

number). Clearly, O’neal is the winner against each of those probability thresholds

except when the probability threshold is 0.1 (worse than Duncan and Johnson).

The probabilistic rankings catch the common perception better. It is also inter-

esting to note that Duncan dominates 7 players with a probability between 0.1

to 0.2, while according to the average (aggregate) game statistics Duncan actu-

ally dominates 7 players. Clearly, the domination counting regarding a small q is

largely biased towards to “good” outliers. On the other hand, the phenomenon for

a very large q (close to 1) is not very meaningful since q is always 1 if l = 0. The

most interesting part of q is towards the middle of (0, 1]; these values will show the

dominating ability among majority instances of objects, respectively. In addition,

our probabilistic model provides a tool for us to “drill down” information against

different probabilistic threshold values to provide the breakdown information like

that in Table 5.2.

Probabilistic Top-k Dominating Queries. In this chapter, we will study the

problem of retrieval of k objects with the maximum values of l for a given probabil-

ity threshold q (i.e., based on the 1st model). We will adopt the assumption that

122 Chapter 5. Probabilistic Top-k Dominating Queries

the probability distribution of the object is independent to each other due to the

following reasons. Firstly, it is a common model currently adopted in probabilistic

query processing. Secondly, handling dependence among a large number of objects

is not only complex but also expensive, while applications with the assumption of

independent distributions exist. For example, regarding the above example there

is no reason to believe a dependence among those 1st picks’ performance in their

rookie season across different years, given the game rules are the same and the

other players in each year have similar talents. Similarly, we could also evaluate

the top-k all-round gymnastics players with the same gender by treating each com-

petition record as an instance of a player where each competition record consists

of scores for each individual programs. In male competitions, scores from Vault,

Floor, Parallel bars, Rings, Pommel horse and Horizontal bar are recorded in each

competition, respectively, as a 6-dimensional instance. While the performances

of each female player in four programs (Vault, Floor, Uneven bars and Balance

beam) are recorded per each competition. Clearly, the performances of the players

are independent with each others.

Contributions. As shown above, dominating relationships among uncertain ob-

jects are quite complex and probabilistic distribution dependent. Moreover, due to

the nature of uncertain data and dominating queries, an expensive computation will

be involved in exactly computing “probabilistic” scores of objects; consequently, it

is too expensive to compute such scores for all objects.

In this chapter, we investigate the problem of efficiently computing the top-k

dominating queries against uncertain objects where object PDFs are not available;

that is, we deal with discrete cases. To the best of our knowledge, this is the first

work addressing the top-k dominating query over uncertain data. Our contributions

may be summarized as follows.

Chapter 5. Probabilistic Top-k Dominating Queries 123

• We formally define a top-k dominating query on uncertain data with a given

probability threshold imposed to support different confidence requirements.

• An efficient, threshold-based exact algorithm is proposed to take an advantage

of the threshold-based paradigm [FLN03]. Based on a novel application of

laws of large numbers [Gol01] and mathematic characterizations, a set of

novel, effective pruning techniques have been proposed to pursue efficiency.

• We develop an efficient randomized algorithm with an accuracy guarantee.

Novel processing techniques and data structures are developed in our ran-

domized techniques.

An extensive experimental study over synthetic and real data shows that our exact

algorithm performs well, while our randomized algorithm is not only highly accurate

and more efficient than the exact algorithm but also quite scalable against data

sizes, object uncertain areas, k values, etc.

Organization. The rest of this chapter is organized as follows. Section 5.1 for-

mally defines probabilistic top-k dominating queries and presents preliminaries.

Section 5.2 briefly outlines the framework of our exact and randomized algorithms.

In Section 5.3, we present our exact algorithm. Following the framework of exact al-

gorithm, a novel randomized algorithm is presented in Section 5.4. Our experiment

results are reported in Section 5.5. This is followed by the discussions regarding the

model where a threshold of a domination counting is given and the general cases

where probabilistic distributions may be correlated. We conclude this chapter in

section 5.6.

124 Chapter 5. Probabilistic Top-k Dominating Queries

5.1 Background Information

We first model the problem and then, present the preliminaries of the chapter. For

reference, notations used in this chapter are summarized in Table 6.1.

Notation Definition

U set of uncertain objects

U , V uncertain objects

u, v instances of uncertain objects

E entry in an aR-tree of objects, instances, and
samples

MBBU (MBBE) minimum bounding box of U(E)

µU (µE) upper-right corner of MBBU (MBBE)

ıU (ıE) lower-left corner of MBBU (MBBE)

P (τ) probability of τ to occur

q probability threshold of a query

pscore(υ) probabilistic score of υ (υ = U or u)

pscore+ upper bound of pscore

P=l(U)(P=l(u)) probabilities to dominate l objects

P≥l(U)(P≥l(u)) probabilities to dominate ≥ l objects

γk minimum pscore of the top-k objects

λk minimum pscore of the current top-k objects

P (u ≺ V) probability of u dominating V

Ω set of possible worlds

Li(U) ith level entries in an aR-tree of U

P upper upper bound of probability P

PD(U) (FD(U)) set of objects partially (fully) dominated by U

PD(E) (FD(E)) set of entries (objects) partially (fully)
dominated by E

−→
U

partially ordered list of uncertain objects

Table 5.3: The Summary of Notations.

5.1.1 Problem Statement.

Our investigation in the chapter will focus on discrete cases. An uncertain object

U is represented by a set of instances such that each instance u ∈ U is a point in a

d-dimensional numeric space D = {D1, ..., Dd} with the probability P (u) to occur

Chapter 5. Probabilistic Top-k Dominating Queries 125

where 0<P (u)≤1 and
∑

u∈U P (u)=1.

Given a set of uncertain objects U = {U1, · · · , Un}, a possible world W =

{u1, · · · , un} is a set of n instances - one instance per uncertain object. The prob-

ability of W to appear is P (W) =
∏n

i=1 P (ui). Let Ω be the set of all possible

worlds; that is, Ω = U1 × U2 · · · × Un. Then,
∑

W∈Ω P (W) = 1.

Ωℓ,U denotes the set of possible worlds in each of which the instance u ∈ U dom-

inates exactly ℓ other instances. Clearly, the probability P=ℓ(U) of U dominating

exactly ℓ objects is:

P=ℓ(U) =
∑

W∈Ωℓ,U

P (W). (5.1)

Example 5.1. Regarding the example in Figure 5.2, we treat every player as an uncer-

tain object and each game statistic as an instance of the object. Unless specified other-

wise, the occurring probability of each instance is 1/3. Ω1,O = {{o3, e1, b3}, {o3, e2, b3},

{o3, e3, b3}, }. Dominating probabilities of each player are as follows.

P=0(O) = 2/9, P=1(O) = 3/27, P=2(O) = 2/3;

P=0(E) = 0, P=1(E) = 2/3, P=2(E) = 1/3;

P=0(B) = 1, P=1(B) = 0, P=2(B) = 0.

As mentioned earlier, unlike dominating queries on certain objects, an uncertain

object can dominate any number of objects with some probability. Nevertheless,

such dominating probabilities could be very small (even zero); results with a small

probability to occur are not very interesting. To resolve this, in our problem defi-

nition we enforce a probability threshold, and we model probabilistic dominating

queries in an accumulative way; that is, we look for the objects that dominate at

least ℓ other objects with at least probability (confidence) q. We assign a proba-

bilistic score, pscoreq(U), to each uncertain object U as follows.

Let P≥ℓ(U) denote the probability of U dominating at least ℓ other objects.

126 Chapter 5. Probabilistic Top-k Dominating Queries

Clearly,

P≥ℓ(U) =
n∑
i=ℓ

P=i(U). (5.2)

Definition 5.1 (pscoreq). pscoreq(U) is the maximum ℓ such that P≥ℓ(U) ≥ q.

Note that for notation simplification, pscoreq is hereafter abbreviated to pscore

whenever there is no ambiguity.

Definition 5.2 (PtopkQ). Given a probability threshold q, an integer k, and a

set U of uncertain objects, PtopkQ retrieves the k objects with the highest pscore

values. Ties are broken arbitrarily.

Example 5.2. Regarding the example in Figure 5.2 when q = 2/3, pscoreq(O) = 2,

pscoreq(E) = 1 and pscoreq(B) = 0; that is, O’neal is the top dominating player.

We will develop efficient exact algorithms as well as efficient and effective ran-

domized algorithms to compute PtopkQ.

5.1.2 Preliminaries

Centroid. The dominating ability of an object is determined by the distribution of

its instances and its relationships to the distributions of instances of other objects.

The centroid ω(U) of instances will be used in our algorithms to approximately

represent the distribution of instances. Formally, ω(U) =
∑

u∈U P (u)× u.

aR-tree. An aggregate R-tree (aR-tree) [PKZT01] is an extension of R-

tree [Gut84] where each entry keeps the number of objects contained. Figure 5.3

illustrates 9 data points indexed by an aR-tree, bounded by 3 MBBs at the leaf

level.

Top-k Dominating Query on Certain Data. Given a k and a set of points,

the CBT (cost-based traversal) algorithm in [YM07] selects the k points with the

Chapter 5. Probabilistic Top-k Dominating Queries 127

Y

X

E1

E3

E2

root

Figure 5.3: Certain Data

Y

X

U1

U2

U3

U4

U5

U6

U7

U8

U9

Figure 5.4: Uncertain Data

highest dominating score values. Recall that score(x) of a point is the number of

other points dominated by x. Below we briefly introduce CBT, to be used as a

black-box in the preprocessing of our algorithm in Section 5.3.1.

In CBT, an aR-tree is used. The algorithm CBT traverses the aR-tree level

by level to calculate a lower bound score−(E) and an upper-bound score+(E) of

the number of points dominated by a point in an entry E of aR-tree. An entry E

is pruned if score+(E) is not greater than the current kth largest score− and the

points in E are the solution if score−(E) is not smaller than the current kth largest

score+; otherwise E will be drilled down to the lower level; these are conducted by

taking the consideration of the number of points in intermediate entries of aR-tree.

In our preprocessing, we will make use of the entries that are either pruned or

stayed in the job queue when the algorithm CBT terminates. Clearly, these entries

are disjoint and cover all points. Note that these entries can be either points or

intermediate entries. Below is an example.

Example 5.3. Regarding the example in Figure 5.3, if k=2, the algorithm terminates

with the following entries in the job queue:

{ω1.[6, 6], ω4.[4, 4], ω2.[3, 3], ω3.[3, 3], ω5.[0, 3], ω6.[0, 0]},

128 Chapter 5. Probabilistic Top-k Dominating Queries

while E3.[0, 2] is pruned. In each entry representation, the left-end in the bracket is

score− and the right-end is score+. Top-2 dominating results retrieved is thus ω1 and

ω4.

Efficient Computation of Dominating Probabilities. P (u ≺ V) denotes

the probability that an instance u ∈ U dominates an uncertain object V ; that

is, the sum of the probabilities of the instances in V which are dominated by u.

For instance regarding the example in Figure 5.2, P (o3 ≺ B) = 1/3 (recall each

instance takes the probability 1/3 to occur).

Let P=ℓ(u) denote the probability that an instance u ∈ U dominates ℓ other

objects. ΩU−U
ℓ (u) denotes the subset of possible worlds in

∏
V ∈U−U V in each of

which u dominates exactly ℓ instances. Clearly, P=ℓ(u) =∑
W∈ΩU−U

ℓ (u) P (W).

Example 5.4. Regarding Figure 5.2, let U = E, and ℓ = 2. Then, ΩU−U
ℓ (e1) =

{(o3, b1), (o3, b2), (o3, b3)}. P=2({e1}) = 1/3 ∗ 1/3 +1/3 ∗ 1/3 + 1/3 ∗ 1/3 = 1/3.

We can immediately verify that (5.1) can be re-written as follows.

P=ℓ(U) =
∑
u∈U

P (u)P=ℓ(u). (5.3)

Based on (5.2) and (5.3), P≥ℓ can be rewritten as:

P≥ℓ(U) =
∑
u∈U

(P (u) · (1−
ℓ−1∑
i=0

P=i(u))). (5.4)

According to Equation 5.3, a key to compute pscore(U) and P=ℓ(U) is to efficiently

compute P=ℓ(u) for each u ∈ U . Suppose that we already computed P (u ≺ V) for

every V ∈ U−U . The dynamic programming based techniques in [YLKS08] can be

immediately used to compute P=ℓ(u) (∀u ∈ U) with time complexity O(|U −U |×ℓ)

for a given u. Assume that uncertain objects in U −U are represented by {Vi : 1 ≤

Chapter 5. Probabilistic Top-k Dominating Queries 129

fully dominated
y

x

partially dominated

not dominated

U

V2V3

V1

Figure 5.5: Dominating Relationships.

i ≤ n− 1}; note that objects in U − U can follow any order. We use pi to denote

P (u ≺ Vi). For 0 ≤ n1 ≤ n2, let Pn1,n2 denote the probability that u exactly

dominates n1 objects from the first n2 objects of U −U . It is shown [YLKS08] that

∀0 ≤ i ≤ j (P0,0 = 1),

P0,j = P0,j−1 · (1− pj) = Πj
k=1(1− pk)

Pi,j = pi · Pi−1,j−1 + (1− pi) · Pi,j−1

(5.5)

Let FD(u) denote the set of objects fully dominated by u; that is, ∀U ∈ FD(u),

P (u ≺ U) = 1. Let PD(u) denote the set of objects partially dominated by u. It

can be immediately verified that:

P=ℓ(u) = P=(ℓ−|FD(u)|)|PD(u)(u ≺ PD(u)). (5.6)

Here, P=(ℓ−|FD(u)|)(u)|PD(u) denotes the probability that u dominates exactly (ℓ −

|FD(u)|) objects in PD(u) since the probability for u to dominate each object in

FD(u) is always 1. Consequently, in our techniques for each u we apply the dynamic

programming technique on objects in PD(u) only. Whenever there is no ambiguity,

P=l(u) (or P≥l(u)), thereafter, always refers to the dominating probability against

PD(u) and l = ℓ − |FD(u)| where ℓ > |FD(u)| since all objects in FD(u) are

dominated by u with the probability 1.

Example 5.5. Regarding Figure 5.2, p1 = P (e1 ≺ O) = 1/3, and p2 = P (e1 ≺ B) =

1. By the above dynamic programming based algorithm, P0,1 = 1 − p1 = 2/3, P0,2 =

130 Chapter 5. Probabilistic Top-k Dominating Queries

P0,1 ∗ (1 − p2) = 0, P1,1 = p1 = 1/3 , P1,2 = P0,1 ∗ p2 + P1,1 ∗ (1 − p2) = 2/3. Thus,

P=1(e1) = 2/3.

5.1.3 Challenges

1. A solution to PtopkQ highly depends on the probability distribution of ob-

jects even if spatial locations of the instances are fixed.

Example 5.6. Regarding the example of Figure 5.2, if we fix the spatial loca-

tions of these 9 instances but change the probability of instances from O’neal as

follows, P (o1) = 1/6, P (o2) = 1/6 and P (o3) = 2/3. The occurrence probability

of every other instance remains 1/3. Then, we can immediately verify that regard-

ing q = 2/3, pscore(O) = 1, pscore(E) = 2 and pscore(B) = 0. In this case,

the top-1 dominating query retrieves Brand instead of O’neal (the top-1 result in

Example 5.2).

2. Techniques developed solely on aggregate information cannot provide a cor-

rect solution to PtopkQ. It should be very straightforward to construct two

different scenarios with the same aggregate information as depicted in Figure

5.1 such that they lead to different solutions towards PtopkQ.

3. The computation of pscore(U) for an uncertain object U takes O(|U | ×

pscore(U)× |PD(U)|) time as shown above. Trivially computing pscore(U)

for all U ∈ U and then choosing k objects with the highest pscore values is

computationally very expensive and slow.

5.2 Framework

Our exact and randomized algorithms both follow the threshold-based paradigm

by using a combination of two thresholds based on q and pscores, respectively,

Chapter 5. Probabilistic Top-k Dominating Queries 131

to efficiently prune away objects not in PtopkQ as early as possible. Below, Algo-

rithm 5.1 is an outline of the framework to be adopted in the exact and randomized

algorithms. It follows three steps, pre-ordering, initial computation and final com-

putation.

Algorithm 5.1 Exact Algorithm

Step 1: Pre-ordering. For all uncertain objects U , generate an ordered list
−→U of U .

Step 2: Initial Computation. Choose the first k objects {Ui : 1 ≤ i ≤ k} in −→U and

compute their pscore (for exact algorithm) or pscorer (for randomized algorithm)

values.

Step 3: Final Computation. Determine the solution of PtopkQ in a “level-by-level”

fashion.

Using
−→
U resulted in Step 1, score values for the first k objects are computed in

Step 2. Such values serve as thresholds in Step 3.

5.2.1 Data Structures

In the exact and randomized algorithms, we maintain an aR-tree on centroids to

run CBT algorithm [YM07] as preprocessing (Step 1). We also maintain an aR-tree

on the MBBs of uncertain objects to speed-up our pruning techniques at the object

level.

Moreover, in the exact algorithm, for each object U , we build a local data

structure, aR-tree, to organize its instances to efficiently support a level-by-level

pruning computation in Step 3. However, the randomized algorithm indexes the

sampled instances of each uncertain object using a novel data structure gCaR-tree

for efficiency.

132 Chapter 5. Probabilistic Top-k Dominating Queries

5.2.2 Monotonic Property

The following monotonic property will be effectively used to terminate our algo-

rithm as early as possible. It immediately derives from Equation(5.2).

Monotonic Property: For an uncertain object U and two integers ℓ1 and ℓ2, if

ℓ1 ≥ ℓ2, P≥ℓ1(U) ≤ P≥ℓ2(U).

5.2.3 Efficient Level-by-level Computation

In the exact algorithm, for each uncertain object U in U , instances in U are indexed

using an aR-tree. Suppose that E ∈ U is at the ith level of the aR-tree. Let Li(U)

denote the set of entries in the ith level of local aR-tree of U . The equation (5.4)

can be rewritten as:

P≥l(U) =
∑

E∈Li(U)

P≥l(E) (5.7)

It will be too expensive to compute P≥l(E) in our level-by-level computation. In-

stead, we use upper-bound techniques to bound P≥l(E) for efficiency.

Let (U − U)i denote the objects in U − U with the following modification

regarding level i. For each object V ∈ U −U and each entry EV at the ith level of

the local aR-tree of V , we move all the instances contained by EV to the upper-right

corner µEV
of EV . Let ıE denote the lower-left corner of E. Let P≥λ(ıE ≺ (U−U)i)

denote the probability that ıE dominates at least λ objects in (U − U)i.

Theorem 5.1. P≥λ(E) ≤ P≥λ(ıE ≺ (U − U)i)
∑

u∈E P (u).

Proof. It can be immediately verified that for each possible world in the original

case where an instance u from E dominates at least λ instances from different

objects, its corresponding instance as modified above retains such a property. �

Chapter 5. Probabilistic Top-k Dominating Queries 133

It is immediate that an application of the dynamic programming based algo-

rithm in Section 5.1.2 leads to the time complexityO(m1×C×λ) to compute P≥l(E)

where m1 is the number of instances in E and C is the average cost to compute

dominating probability between an instance and an object, while the computation

of the upper-bound in Theorem 5.1 only takes O(λ × m2) time where m2 is the

number of entries partially dominated by E. Clearly, m2 is much smaller than C.

Example 5.7. In Figure 5.4, assume that we want to compute P≥λ(U). Theorem 5.1

states that we can get an upper-bound of P≥λ(U) at the root level of local aR-trees of

objects. Let ı3 be the lower left corner of the MBB of U3 and µi (for 1 ≤ i ≤ 9) be the

upper right corner of Ui.

Then, (U − U3)1 = {µi|1 ≤ i ≤ 9 & i ̸= 3 & P (µi) = 1}. Theorem 5.1 states that

P≥λ(U) ≤ P≥λ(ı3 ≺ (U − U3)1) since
∑

u∈U3
P (u) = 1.

5.3 Exact Algorithm

We present detailed techniques developed based on the framework in Section 6.2.

The first step and the second step are quite straightforward and mainly based on

the techniques in [YM07, YLKS08]. The third step is the most important step in

Algorithm 5.1 to prevent as many objects as possible from an exact computation

of pscore; novel, effective, efficient pruning techniques are developed.

5.3.1 Step 1: Pre-ordering Objects

Step 1 aims to generate such an access order so that the maximal possible threshold

value regarding pscore can be reached as soon as possible. Clearly, the maximum

possible threshold value regarding pscore should be the minimum value of the

pscores of the top-k objects. Nevertheless, this is infeasible to achieve without

134 Chapter 5. Probabilistic Top-k Dominating Queries

conducting an exact computation of PtopkQ. The following heuristic is developed

to resolve this.

The centroid ω(U) (∀U ∈ U) is used to approximately represent the proba-

bilistic distribution of an uncertain object U with the aim to use score(ω(U)) to

approximately reflect the rank of pscore(U). Note that it is quite expensive to

compute score(ω(U)) for each object U . Instead, we apply the CBT algorithm

(briefly introduced in section 5.1.2) to generate an approximately ordered list
−→
U

as follows.

In
−→
U , we keep the scored entries of the aR-tree of centroids, generated by CBT;

that is, the entries pruned by CBT or the entries remained in the job queue once

it terminates (as described in Section 5.1.2). Then, we sort entries in
−→
U non-

increasingly according to their accompanied score+ values. When a centroid ω(U)

and the intermediate entry E have the same score+ value, we always rank ω(U)

before E in
−→
U . Then, if two score+ values from two centroids are the same, we

always rank a centroid with the exact score value higher. In other cases, entries

with the same score are ranked randomly among them. Note that in an entry, each

contained centroid ω(U) corresponds to the object U ; we use U to replace ω(U) in

−→
U .

Example 5.8. Regarding the example in Figure 5.3 and Figure 5.4, Figure 5.3 shows

the centroids of uncertain objects in Figure 5.4. As shown in Example 5.3 when k = 2,

{ω1.[6, 6], ω4.[4, 4], ω2.[3, 3], ω3.[3, 3], ω5.[0, 3], ω6.[0, 0]},

remain in job queue, while E3.[0, 2] is pruned by CBT. Consider that ωi (for 1 ≤ i ≤ 9)

corresponds to the uncertain object Ui. Therefore,
−→
U = {U1, U4, U2, U3, U5, E3, U6} when

k = 2. Their score+ values are 6, 4, 3, 3, 3, 2, and 0, respectively.

Chapter 5. Probabilistic Top-k Dominating Queries 135

5.3.2 Step 2: Initial Computation

Our algorithm to calculate the pscores for each U of the first k objects in
−→
U is

outlined below in Algorithm 5.2.

Algorithm 5.2 Calculate pscore
Step 2.1: Traverse the aR-tree of objects’ MBBs to obtain the number of objects that U

fully dominates |FD(U)|, and the set PD(U) of objects that U partially dominates.

Step 2.2: Do a synchronous traversal [BKS93, PMT99] of the local aR-tree of U against

the local aR-trees of the objects in PD(U) to calculate P (u ≺ V) for each V ∈

PD(U) and each instance u ∈ U .

Step 2.3: Calculate the pscore(U).

We conduct step 2.1 by window query techniques [Gut84] by using ıU to get

all objects that U dominates (fully or partially) and then use µU to check the full

dominance.

We conduct Step 2.2 by the well known synchronous traversal paradigms

[BKS93, PMT99] to compute P (u ≺ V) (∀u ∈ U and ∀V ∈ PD(U)) since the syn-

chronous traversal paradigm has been shown effective in join computation. More-

over, [YM07] shows that on average the synchronous traversal strategy is the most

cost effective way to count the dominance relationships. Finally, our techniques

can be extended to cover any traversal strategies.

Note P≥l(U) =
∑

u∈U P (u)P≥l(u). In Step 2.3, to calculate P≥l(U) we apply

the dynamic programming based algorithm in Section 5.1.2 to calculate P≥l(u)

(∀u ∈ U) restricted to the objects in PD(U). Based on the monotonic property

in Section 5.2.2, when P≥l(U) ≥ q and P≥(l+1)(U) < q, the computation stops and

(l+|FD(U)|) is the pscore for U . To avoid any redundant computation, we conduct

the calculation in Equation (5.4) iteratively from l = 0. After the completion of

136 Chapter 5. Probabilistic Top-k Dominating Queries

calculation of P≥l(u) for each u ∈ U for the current l, we examine if P≥l(U) ≥ q

to determine whether we should stop a further calculation of such probability. We

can immediately verify that the time complexity of Step 2.3 is O(l×|PD(U)|×|U |)

for each U .

5.3.3 Step 3: Final Computation

The final computation is conducted by bounding-

pruning-refining. This will be based on a threshold of pscore and the given

confidence q. Clearly, the best available threshold of pscore is the minimum value,

denoted by λk, of pscores of the current top-k objects. To pursue efficiency, for each

remaining U the Step 3 will be conducted level-by-level in a synchronous traversal

fashion among the local aR-trees of U and the objects in PD(U);3 nevertheless,

our techniques can be extended to any traversal strategies. Our algorithm for Step

3 is outlined in Algorithm 5.3.

While Steps 3.1 and 3.3 are relatively straightforward, Step 3.2 is critical in

Algorithm 5.3; it can significantly speed-up the algorithm by avoiding as many

objects as possible to enter into the expensive Step 3.3; our experiment results

demonstrate that our pruning techniques can speed-up the computation by orders

of magnitude. We show the basic idea of our algorithm of Step 3.2 in Example 5.9.

Suppose that E is an entry, at the ith level, of the local aR-tree of U , let PD(E)

denote the set of entries at the ith level of the local aR-trees of other objects,

which are partially dominated by E. #obj(PD(E)) denotes the number of distinct

objects containing the entries in PD(E), while FD(E) denotes the set of objects

fully dominated by E.

3Note that if local aR-trees have different height, the one that reaches the bottom level first

will stay at the bottom, while others traverse down to the lower levels.

Chapter 5. Probabilistic Top-k Dominating Queries 137

Algorithm 5.3 Final Computation

Tk := {the first k objects from
−→U }; −→U :=

−→U − Tk;

WHILE
−→U ̸= ∅ DO

Step 3.1 - Pruning at Object Level: Dequeue the first entry E from
−→U ; Use window

queries to check if objects in E can be completely pruned away - if not, then go to

Step 3.2.

Step 3.2 - Level-by-Level Pruning: For each remaining U , do a level-by-level syn-

chronous traversal among the local aR-tree of U and the local aR-trees of the

objects in PD(U) to conduct a level-by-level pruning.

Step 3.3 - Compute pscore: For each remaining object U after Step 3.2,

• calculate the pscore(U);

• if pscore(U) > λk, then replace an object V in Tk with pscore(V) = λk by

U , and Update γk.

ENDWHILE

Return Tk.

Example 5.9. In Figure 5.6, the 3 local aR-trees of U1, U2, and U3 have 3 levels,

respectively, with one intermediate level Ej (∀1 ≤ j ≤ 9). Assume that λk = 1 and Step

3.2 is conducted against U1.

Note that PD(U1) = {U2, U3} and FD(U1) = ∅. As pscore+(U1) = |PD(U1)|+

|FD(U1)| ≥ λk, we expand U1, U2, and U3 synchronously to the next level. The following

is immediate where each Ej (for 1 ≤ j ≤ 9) is at level 2.

• PD(E1) = {U2.(E5, E6)}4 and FD(E1) = {U3}. Note that #obj(PD(E1)) = 1.

• PD(E2) = {U3.(E9)} and FD(E2) = ∅. Note that #obj (PD(E2)) = 1.

4Note that E6 is fully dominated by E1; consequently we no longer need to expand E6

regarding E1 but just add P (E6) to calculate the probabilities and scores of the children of E1.

138 Chapter 5. Probabilistic Top-k Dominating Queries

U1

U2

U3

other objects
E4

E5

E6

E7

E8

E9

E1
E2

E3

Figure 5.6: Level-by-level Computation.

• PD(E3) = ∅ and FD(E3) = ∅.

Since pscore+(E3)(, #obj(PD(E3)) + |FD(E3)|) = 0 (< λk), we can exclude E3 from

a further consideration. We only need to check E1 and E2 by the following bounding-

pruning techniques to determine whether or not they need to be expanded to the next

level.

The key in Step 3 is to develop efficient and effective bounding-pruning tech-

niques for pruning purposes. They will be conducted based on the following two

principles.

1. probability-based: Efficiently and effectively computing an upper-bound

P upper
≥λk

(U) of P≥λk
(U) so that U can be pruned if P upper

≥λk
(U) ≤ q.

2. score-based: Efficiently and effectively computing a pscore+(U) such that

U can be pruned if pscore+(U) < λk.

Efficient and Effective Bounding Techniques

In Theorem 5.1, for each entry E, we use P≥λ(ıE ≺ (U − U)i), multiplied by∑
u∈E P (u), as an upper bound of P≥λ(E). This takes O(λk × |PD(E)|) time

for each entry E. To further speed-up the computation, the following two upper-

bounds of P≥λ(ıE ≺ (U − U)i) are developed; they reduce the costs from O(λk ×

|PD(E)|) to O(|PD(E)|). This is significant when λk is large.

Chapter 5. Probabilistic Top-k Dominating Queries 139

1. Chernoff-Hoeffding Bound based Upper-bound. For an uncertain object

V and an instance u in another uncertain object U , we can regard the event that u

dominates V as a random variable. Consequently, we can employ the probabilistic

bounds to compute the upper bound of the pscore of an uncertain object, which is

very time efficient. Due to the independence assumption, we apply a strong version

of Chernoff-Hoeffding Bound [DP98] in the chapter.

Chernoff-Hoeffding Bound [DP98]. Let X1, X2, X3, ..., Xn be independent

random variables with values in [0, 1], X =
∑n

i=1 Xi and ϵ > 0. Then,

P (X > (1 + ϵ)E(X)) < exp−E(X)ϵ2/3 (5.8)

Recall ıE is the lower-left corner of an entry E. ıE partially dominates l objects

V1, V2, ... Vl. Since each Vi (1 ≤ i ≤ l) is an uncertain object, the probability of

ıE dominating a Vi can be treated as the expected value of the following random

variable.

XVi
=

 1 if ıE dominates one instance of Vi

0 otherwise.
(5.9)

We can view the number of objects, dominated by ıE, as the sum of following

random variables.

XıE = XV1 +XV2 + ...+XVl
(5.10)

Clearly, E(XVi
) = P (ıE ≺ Vi), and E(XıE) =

∑l
i=1 P (ıE ≺ Vi). Since all Vis

are mutually independent, we can apply the above Chernoff-Hoeffding bound with

ϵ =
(γ−E(XıE

))

E(XıE
)

to get Lemma 5.1, where γ = γk − |FD(ıE)| and |FD(ıE)| is the

number of objects fully dominated by ıE.

Lemma 5.1. If E(XıE) < γ, then P≥γ(ıE ≺ (U − U)i) ≤ exp
−

(γ−E(XıE
))2

3E(XıE
) .

140 Chapter 5. Probabilistic Top-k Dominating Queries

In our pruning technique, we will use exp
−

(γ−E(XıE
))2

3E(XıE
) as an upper-bound of

P≥γ(ıE ≺ (U − U)i). This will reduce the complexity of calculation from O(γ × l)

to O(l) when γ > E(XıE). This is significant when γ is large. Below, we present

another upper-bound estimation of P≥γ(ıE) when γ is relatively small — γ ≤

E(XıE); in this case, Chernoff-Hoeffding Bound does not yield interesting results.

2. Bisection-based Upper-bound. Due to the above limitation when apply-

ing the Chernoff-Hoeffding Bound based Upper-Bound, we further develop a more

general Upper-Bound called Bisection-Based Upper-bound. Following theorem is

the key to obtain this upper bound. Without loss of generality, suppose that the

l objects, partially dominated by the lower-left corner ıE of an entry E, are sub-

indexed such that P (ıE ≺ Ui) ≤ P (ıE ≺ Uj) if i < j. Let pi = P (ıE ≺ Ui) for

1 ≤ i ≤ l.

Theorem 5.2. Suppose that we replace pi by p∗i for 1 ≤ i ≤ l such that pi ≤ p∗i .

Then, the probability that u dominates at least λ objects (for 1 ≤ λ ≤ l) regarding

{pi : 1 ≤ i ≤ l} is not greater than that regarding {p∗i : 1 ≤ i ≤ l}.

Theorem 5.2 is quite intuitive, but the proof is lengthy. Please refer to the

appendix for the detailed proof.

Now, we can divide the probabilities of those partially dominated objects (by

ıE) into two groups G1 = {p1, p2, ..., pj} and G2 = {pj+1, pj+2, ...pl} such that we

replace each probability value in G1 by pj and replace each probability value in G2

by pl. The following Lemma is immediate.

Lemma 5.2. Without loss of generality, we assume that j ≤ (n − j), let y0 =

Chapter 5. Probabilistic Top-k Dominating Queries 141

max{0, λ− l + j}

P≥γ(ıE ≺ (U − U)i) ≤
j∑

y=y0

Cy
j p

y
j (1− pj)

j−y × (5.11)

(

l−j∑
x=λ−y

Cx
l−jp

x
l (1− pl)

l−j−x)

Proof. Suppose that the instance u dominates l objects with the probabilities,
j︷ ︸︸ ︷

pj, pj · · · , pj,
l−j︷ ︸︸ ︷

pl, pl, · · · , pl. It can be immediately verified that the probability that

ıE dominates at least λ objects among these l objects is as what is stated on the

right hand-side of the inequality of (5.11). The lemma immediately follows from

Theorem 5.2. �

Lemma 5.2 states that we can bisect the set of partially dominated objects

into two groups such that in each group, we use the largest probability value as

a representative. Then, we use the right-side part of the inequality in (5.11) as

an upper-bound. Clearly, it can be calculated in O(l) time if we accumulatively

compute the part,
∑l−j

x=λ−y C
x
l−jp

x
l (1− pl)

l−j−x, from the tail.

The key to deliver a good upper-bound is to choose a pj such that the value of

upper-bound can be minimized. This problem can be trivially solved in time O(l2)

by enumerating all possible cases; nevertheless, such costs are even more expensive

than the costs O(λ × l) of the dynamic programming based algorithm to produce

the exact probability value.

In our computation, we choose the median to divide the set into two groups. It

is clear that the median can be calculated in O(l) time [CLRS01]. Therefore, the

whole computation of upper-bound can be executed in time O(l).

Remark 1. It seems hard to find an efficient algorithm with costs lower than

O(λl) to divide l probability values into more than 2 groups; consequently we settle

for a bisection. The bisection-based upper-bound can also be used in case when

142 Chapter 5. Probabilistic Top-k Dominating Queries

γ > E(XıE). However, our experiments, in Section 6.5, demonstrate that the

above Chernoff-Hoeffding bound based upper-bound is tighter than the bisection-

based upper-bound. Therefore, in our implementation we only use the Chernoff-

Hoeffding bound for the case where γ > E(XıE). These two bounds will be used to

calculate the upper-bounds of P≥λ(ıE ≺ (U −U)i) in our level-by-level computation.

We also examined Markov’s inequality [Gol01] and Chebyshev’s inequality

[Gol01]; the upper-bounds generated by them are not as tight as the above two

upper-bounds.

3. Utilizing Existing Computation Results. Below we show two upper-

bounds by utilizing the existing computation results. One is dominating probability

based, while another is pscore based.

Theorem 5.3. Suppose that u is a point (or an instance of U1) and u fully domi-

nates an uncertain object, say, U2. Then, P≥γ(u) ≥ P≥γ(U2) (∀γ ≥ 1).

The proof of Theorem 5.3 is quite lengthy and we leave it to Appendix.

Note that Theorem 5.3 will be used to prune away objects, fully dominated by

u, if P≥λ(u) < q. The following Theorem is immediate.

Theorem 5.4. Suppose that a point u (partially or fully) dominates λ′ objects in

total, and u dominates the lower-left corner of the MBB of an entry E of the local

aR-tree of an object U at the level i. Then, pscore+(E) ≤ λ′.

Note that in Theorem 5.4, level i = 1 means an object.

Effective Pruning Rules

The pruning rules below can be immediately verified from the definitions; thus we

omit the proofs.

Chapter 5. Probabilistic Top-k Dominating Queries 143

Pruning Rule 5.1. Score-Based: ∀U , if pscore+(U) ≤ λk, then U can be ex-

cluded from the solution of PtopkQ.

Let L+
i (U) denote the subset of entries of Li(U) with the property that ∀E ∈

L+
i (U), the captured P upper

≥λk
(E) ̸= 0. Based on equation (5.7), the following pruning

rule is immediate.

Pruning Rule 5.2. Level’s Probability-based: Suppose that∑
E∈L+

i (U) P≥λk
(E) ≤ q. Then, U can be excluded from the solution of PtopkQ.

Note that when i = 1, L+
i (U) in Pruning Rule 5.2 only contains the root entry:

U .

In our computation if instances or entries in U are found with 0 probability

to dominate λk objects, we mark and exclude them in further computation. For

each entry E of a local aR-tree, let I+E denote the set of instances each of which

is not yet detected with 0 probability to dominate at least λk objects, and P (I+E)

denotes the sum of probabilities of instances in I+E . The Pruning Rule 5.3 below is

also immediate if we make the upper-bound of probability for an instance in I+E to

dominate at least λk objects be 1.

Pruning Rule 5.3. Drilling-down based: At the level i (for an i), if∑
E∈L+

i (U) P (I+E) < q, then U can be excluded from the solution of PtopkQ.

Pruning rules 5.2 and 5.3 are fundemental to a level-by-level computation (de-

tails in Section 5.3.3).

Remark 2. Note that in our level-by-level algorithm, an I+E may change when

levels progress down. For instance, regarding the example in Figures 5.7 and 5.8,

E13 and E15 are initially detected with P≥λk
(E15) = 0 and P≥λk

(E13) = 0 because

they are fully dominated by one point that (partially or fully) dominates no more

144 Chapter 5. Probabilistic Top-k Dominating Queries

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

E13

E14

E15

Figure 5.7: Entry Distribution

U

Level 1

Level 2

Level 3

Level 4

E1

E2 E3

E4 E5 E6 E7

E8 E9 E10 E11 E12 E13 E14 E15

Figure 5.8: Tree Structure Map

than the current λk objects (formally stated in Theorem 5.4); consequently, I+E6

contains the instances contained by E12. Nevertheless, once progress to level 2, we

may find that the total number of objects (fully or partially) dominated by E6 is less

than threshold λk; consequently, in I+E6
we replace E12 by ∅. Thus I+E6

is empty.

Algorithm Details

Step 3.1. Objects corresponding to the centroids in an entry E of the aR-tree on

centroids may be spread to different entries of the aR-tree on object MBBs.

Example 5.10. Regarding the centroids ω1, ω2, and ω3 in Figures 5.3, their corre-

sponding objects U1, U2, and U3 are spread to 2 entries in the local aR-tree on object

MBBs.

In each entry E of the local aR-tree on object MBBs, we record the lower left

corner of the MBB encompassing the objects that correspond to the contained

centroids in E, denoted by ȷE. Note that ȷE is not the lower left corner of E.

Below is the algorithm presented in Algorithm 5.4.

To compute pscore+(E) - an upper-bound of the maximum number of objects

(partially or fully) dominated by an object in E, we use window query techniques

by the “half-open” window with ȷE as the lower-left corner to probe the aR-tree

on MBBs of objects and then count the number of objects overlapping with the

Chapter 5. Probabilistic Top-k Dominating Queries 145

Algorithm 5.4 Step 3.1

Description:

1: get pscore+(E);

2: if pscore+(E) ≤ λk (Pruning Rule 5.1) then

3: prune other objects dominated by ȷE

4: else

5: if E is an object U then

6: record PD(U) and goto Step 3.2;

7: else

8: for each child E ′ of E do

9: call Algorithm 5.4 regarding E ′;

10: end for

11: end if

12: end if

window as pscore+(E).

If the condition in line 2 holds, then objects corresponding to the centroids in

E will be excluded from a further consideration. In this case, we can prune other

objects by ıE by using the above window to probe the aR-tree of objects to get the

objects fully dominated by ȷE. These objects will be removed from
−→
U or from an

entry in
−→
U . Note that when objects removed from an entry E of

−→
U , we need to

update ȷE and the corresponding information in its descendants. Moreover, if an

entry in the aR-tree of objects is detected to be fully dominated by ȷE, then it is

marked so that the entry can be skipped when another ȷE′ is used to prune away

objects.

Example 5.11. In Step 3.1, suppose the current λk is 3. When the entry containing ω7,

ω8, and ω9 is selected, we use the recorded lower-left corner (with this entry) of the MBB

146 Chapter 5. Probabilistic Top-k Dominating Queries

of objects U7, U8, and U9 to do the window query on the aR-tree of objects. The window

query does not intersect any object. Consequently, the entry containing ω7, ω8, and ω9

will be removed from candidates, and U7, U8, and U9 are excluded from the candidates of

PtopkQ.

Remark 3. At the object level, we also use Pruning Rule 5.3 to check (line 2 of

Algorithm 5.4) if an object should be removed from the candidates of PtopkQ.

Step 3.2. For each remaining object U , we synchronously traverse the local aR-

trees of U and objects in PD(U) level-by-level such that at each internal level i,

we conduct the following two substeps.

Step 3.2a. Use Pruning Rule 5.3 to check if U should be removed. If U cannot be

removed, then go to Step 3.2b.

Step 3.2b. For each E ∈ L+
i (U), we compute PD(E) and |FD(E)|. Then, based

on Theorem 5.1 we use Chernoff-Hoeffding bound based upper bound or Bi-

section based upper bound to bound P≥λ(ıE ≺ (U −U)i), which is multiplied

by
∑

u∈E P (u) to give an upper bound P upper
≥λk

(E) of P≥λk
(E). Then, we use

Pruning Rule 5.2 to check if U should be excluded or goto the next level. Note

that when applying Pruning Rule 5.2, we replace P≥λk
(E) by min{P upper

≥λk
(E),

P (I+E)}.

To efficiently execute Pruning Rule 5.3, for each entry E we record the summation

p0(E) of occurrence probabilities of detected instances that have 0 probability to

dominate at least λk objects. Once an entry E is detected to have every instance

with 0 probability dominating at least λk objects, this information is propagated

to all ancestors as follows if E is the first time, (i.e. full(E) = 0), detected. Let

full(E) = 1 denote the situation that every instance in E has already been detected

to be with 0 probability dominating at least λk objects.

Chapter 5. Probabilistic Top-k Dominating Queries 147

Algorithm 5.5 Propagation to Ancestors

Description:

1: if full(E) = 0 then

2: full(E) = 1; p′ := p0(E); p0(E) := P (E);

3: for each ancestor E ′ of E do

4: if full(E ′) = 0 then

5: p0(E ′) := p0(E ′) + P (E)− p′;

6: if P (E ′) = p0(E ′) then

7: full(E ′) = 1

8: end if

9: else

10: Terminate

11: end if

12: end for

13: end if

Example 5.12. Regarding the example in Figures 5.7 and 5.8, suppose that E15 is

detected to be fully dominated by a point that has zero probability to dominate at least

λk objects. Then, P≥λk
(E15) = 0. Further suppose that each entry at the bottom level

has instances with the total probability 1/8. Thus, we record full(E15) = 1, P 0(E15) =

P 0(E7) = P 0(E3) = P 0(E1) = 1/8.

Assume that another such point is found to fully dominate E3. Then, update full(E3)

to be 1, and P 0(E3) = 1/2 and P 0(E1) = 1/2. If we find the third such point that fully

dominates E15, the search of E15 will stop at E3 since full(E3) = 1.

Remark 4. Once the lower-left corner ıE of an entry E is detected to have 0 prob-

ability to dominate at least λk objects, we use window query techniques to check if

entries from other objects are fully dominated by ıE. For any entry fully dominated

148 Chapter 5. Probabilistic Top-k Dominating Queries

by ıE, we apply Algorithm 5.5 to propagate to ancestors of the entry. Moreover,

when an object is processed as a candidate in Step 3.2, we do not need to expand

its entries E with full(E) = 1.

Step 3.3. We use the dynamic programming method to calculate pscore(U) as

what is described in Step 2. Note that when an instance u is detected P≥λk
(u) < q,

we can apply Theorem 5.3; that is, we do window queries, in the same way as

described in the above step, by excluding all objects fully dominated by u, and

update
−→
U accordingly.

5.4 Randomized Algorithm

The basic idea of our randomized algorithm is to sample all possible worlds,
∏n

i=1 Ui

from U = {Ui|1 ≤ i ≤ n}, by a small number m of possible worlds Si (1 ≤ i ≤ m),

where each Si consists of n instances - one instance per object. An instance u

homo-dominates another instance v if u dominates v, and they are in one sample

Si. Let ui,j denote an instance in sample Si from object Uj. pscore
r(ui,j) is defined

as the number of instances in sample Si that are dominated by ui,j; that is, the

number of instances homo-dominated by ui,j. For 1 ≤ j ≤ n, pscorer(Uj) is the

(q ∗m)th largest in {pscorer(ui,j)|1 ≤ i ≤ m}.

Example 5.13. Regarding the example in Figure 5.9, suppose that m = 8, k = 2, and

q = 0.5. A circled number j in object Ui means the sampled instance (from Ui) is in the

sample j. The pscorer of object U1 is 2. This is because that the samples 1, 2, 3 and 4

homo-dominate two other samples respectively (i.e. samples with the same sub-indexes)

from U2 and U3, while samples 5, 6, 7, and 8 homo-dominate 1 sample, respectively.

Similarly, we obtain that pscorer(U2) = 1 and pscorer(U3) = 0. Therefore, Algorithm

5.6 returns U1 and U2 as the top-k objects.

Chapter 5. Probabilistic Top-k Dominating Queries 149

G1 G2 G3 G4

G5 G6

root

Global Tree
U1

U2
U3

8

8

4

4

5

5

7

7

3

3

2

6
6

E1,1

E2,1

E3,1

E4,1

E5,1

E6,1

E1,2

E2,2

E3,2

E4,2

E5,2

E6,2

E1,3

E2,3

E3,3

E4,3

E5,3

E6,3

1

1 2

7
8

5
6

3

4

1
2

Figure 5.9: Samples

Below, Algorithm 5.6 outlines our randomized algorithm.

Algorithm 5.6 Randomized Algorithm
Input: {Si : 1 ≤ i ≤ m}; 0 < q ≤ 1.

Output: Tk : the k objects with the largest pscorer.

Description:

1: Tk := Calculating-pscorer ({Si : 1 ≤ i ≤ m}, q);

2: return Tk

In Algorithm 5.6, Calculating-pscorer ({Si : 1 ≤ i ≤ m}, q) returns the k objects

with the highest pscorers. A naive way of Calculating-pscorer is to compute the

dominating number for each sampled instance in Si for 1 ≤ i ≤ m; consequently, we

need to perform such computationm times if there arem samples. Our experiments

demonstrate such a naive algorithm is very expensive, slow, and not scalable against

m. Below, we present a novel, efficient algorithm for Calculating-pscorer with the

aim to share the computation among samples and to effectively prune away objects.

First, we show an accuracy guarantee of the algorithm.

150 Chapter 5. Probabilistic Top-k Dominating Queries

5.4.1 Accuracy Guarantee

For each object Uj, the events whether in sample Si, the randomly selected instance

ui,j dominates at least l other instances may be described by the following totally

independent random variables.

X≥l,i,j =

 1 if ui,j dominates at least l instances in Si

0 otherwise

Clearly, E(X≥l,i,j) =
∑

u∈Uj
P (u)P≥l(u) = P≥l(Uj). Let

X≥l,j =

∑m
i=1 X≥l,i,j

m
.

It is immediate that E(X≥l,j) = P≥l(Uj). Theorem 6.6 immediately follows the

Hoeffding’s inequality [Gol01] (Theorem 5.6).

Theorem 5.5. If m = O(1
ϵ2
log 1

δ
) where 0 < δ, ϵ < 1, then P (|X≥l,j − P≥l(Uj)| ≥

ϵ) < δ.

Theorem 5.6. Hoeffding’s Inequality: Suppose that Y1, Y2, ... , Ym are inde-

pendent random variables such that 0 ≤ Yi ≤ 1 for 1 ≤ i ≤ m. Let Y =
∑m

i=1 Yi.

Then, we have that:

P (Y − E(Y) ≥ ϵm) ≤ exp(−2ϵ2m) (5.12)

P (E(Y)− Y ≥ ϵm) ≤ exp(−2ϵ2m)

Theorem 6.6 implies that P≥l(Uj)− ϵ ≤ X≥l,j ≤ P≥l(Uj) + ϵ with confidence 1− δ.

In our randomized algorithm — Algorithm 5.6, we use Xl,j to approximately

represent P≥l(Uj); consequently, (q ∗m)th greatest number (pscorer(Uj)) of homo

dominated instances is used to approximately represent pscoreq (Uj). Below is a

theoretical guarantee of our randomized algorithm.

Chapter 5. Probabilistic Top-k Dominating Queries 151

Lemma 5.3. In Algorithm 5.6, suppose that we replace q by (1− ϵ)q in Algorithm

5.6, replace ϵ by ϵq in Theorem 6.6, and change m from O(1
ϵ2
log 1

δ
) to O(1

ϵ2q2
log n

δ
).

Then the top-k objects retrieved by Algorithm 5.6 have the following properties with

confidence 1− δ. For 1 ≤ i ≤ k (∀k ≤ n),

Property 1: the pscorer of the top ith object Ui is not smaller than the pscore of

the top ith object to PtopkQ (regarding q);

Property 2: P≥pscorer(Ui) > (1− 2ϵ)q.

Proof. It can be immediately verified that for each object Ui,

Xpscorer(Ui)+1,i > (1− ϵ)q. (5.13)

Consequently, we have P≥pscorer(Ui)+1(Ui) ≤ q with very small probability δ
n
apply-

ing Theorem 6.6. The Property 1 immediate follows.

From Theorem 6.6, Property 2 immediately follows. �

Note that the sample size in Theorem 6.6 and Lemma 6.6 is irrelevant to the

number of instances in an object; thus, the randomized algorithm has a potential

to support the applications where a large number of instances is involved.

While Theorem 6.6 and Lemma 5.3 provide theoretical performance guarantee,

our experiments demonstrate that Algorithm 5.6 is quite accurate when m is up to

1000 and q, instead of (1− ϵ)q used in Algorithm 5.6.

5.4.2 Efficient Algorithm

We present an efficient algorithm to execute Calculating-pscorer. It follows the

framework of 3 Steps in Section 6.2, Pre-ordering, Initial Computation, and Final

Computation. We first present a novel data structure to replace local aR-trees.

152 Chapter 5. Probabilistic Top-k Dominating Queries

gCaR-tree. The sampled instances of each object are organized into an R-tree like

structure, gCaR-tree (Global Constrained aR-tree). Different from a conventional

R-tree, n gCaR-trees for n objects (one gCaR-tree per object) follow a global tree

structure as follows.

Corresponding to each node Gi in the global tree, for all 1 ≤ j, j′ ≤ n,

entries Ei,j and Ei,j′ of Uj and Uj′ contain the instances from the same

samples, respectively. For example, in Figure 5.9, corresponding to G2,

E2,1, E2,2, and E2,3 contain the sampled instances from the samples 5

and 6, respectively.

In a gCaR-tree, the number of sampled instances in each entry is also recorded.

Given a global tree structure, we aim to minimize the sum of areas of gCaR-tree

for all uncertain objects. It can be immediately shown that this optimization

problem is NP-hard since a special case of the problem (i.e., when n = 1) is the

area minimization problem of an R-tree which is NP-hard.

We build n gCaR-trees following the techniques of building an R-tree except

that we enforce the constraint of a global tree structure as above. gCaR-trees

have the advantage that in level-by-level computation, only the homo-dominating

relationships among objects need to be checked. An entry E (fully or partially)

homo-dominates another entry E ′ if E and E ′ correspond to the same entry in the

global tree and E (fully or partially) dominates E ′.5 Consequently, for each entry

E we only need to check one entry per object to determine if there is a homo-

dominating relationship. Thus, the total costs to compute all entries, at the ith

level of gCaR-trees, homo-dominated by an entry in U takes O(n′) where n′ is the

number of objects partially dominated by U . This is much lower than O(N) in the

exact algorithm where N is the number of total entries at the ith level.

5in Figure 5.9, E6,1 fully homo-dominates E6,2 and E6,1 partially homo-dominates E6,3.

Chapter 5. Probabilistic Top-k Dominating Queries 153

However, such a global constraint may also bring a disadvantage — sizes of

MBBs may be too large. Clearly, traversing gCaR-trees from a parent E to a child

E ′ does not bring much extra geometric information if the MBB of E ′ has a similar

size to that of E. To resolve this, we introduce a post-processing as follows while

building gCaR-trees.

Post-processing a gCaR-tree. We enforce the constraint that for each group

Gi,

area(Gi)

area(Gp
i)
≤ ρ. (5.14)

Here, area(Gi) denotes the total area of the MBBs from n gCaR-trees correspond-

ing to Gi, while Gp
i denotes such total area corresponding to the parent of Gi. If

a Gi does not satisfy the inequality (5.14), then we go to the children of Gi and

check the children of Gi one by one (still against Gp
i), so on and so forth. Below is

the algorithm.

Example 5.14. In Figure 5.9, suppose that we choose ρ = 1/3. G6 does not follow the

inequality in line 5; thus we link the root to G3 and G4 (thus, remove G6). However, G5

follows the inequality; consequently G5 is used as the root to call Algorithm 5.7. None of

G1 and G2 follows the inequality (5.14). Therefore, the final result is that in these three

gCaR-trees, the root has three children corresponding to G5, G3, and G4, respectively; the

next level contains all sampled instances.

In our algorithm, those gCaR-trees are pre-computed. We assign 1/4 to ρ since

it leads to a very good performance according to our initial experiments.

Calculating-pscorer. Our algorithm closely follows the framework of the exact

algorithm with the following modifications. Let λk denote the smallest pscorer

value of the current top-k candidates.

1: Pruning Rules.

154 Chapter 5. Probabilistic Top-k Dominating Queries

Algorithm 5.7 gCaR Post-processing
Input: n gCaR-trees; the root Gr of the gobal tree; 0 < ρ ≤ 1.

Output: n gCaR-trees following the inequality (5.14).

Description:

1: Q := {children of Gr};

2: while Q ̸= ∅ do

3: get a G from Q;

4: Q := Q− {G};

5: if area(G)
area(Gr) < ρ then

6: if G is not children of Gr then

7: modify the global tree (thus n gCaR-trees) by using Gr as the parent of G;

8: end if

9: call Algorithm 5.7 with G as the root if G is not a data point;

10: else

11: add children of G to Q;

12: end if

13: end while

For each object, we search for the (q ∗m)th greatest homo-dominating number

pscorer among the sampled instances. Below are the pruning rules that we will use

in our randomized algorithm.

Pruning Rule 5.4. ∀U , if pscorer(U) ≤ λk, then U can be excluded from the

solution of PtopkQ.

Note that at the object level, we use the number of objects (totally or partially)

dominated by U as an upper-bound of pscorer(U) for applying Theorem 5.4. Let

M≤λk,Ui
denote the number of sampled instances, from Ui, with their pscorer ≤ λk,

respectively.

Chapter 5. Probabilistic Top-k Dominating Queries 155

Pruning Rule 5.5. An object Ui can be excluded from the solution of PtopkQ

(against the probability threshold q) ifM≤λk,Ui
≥ (1− q)×m+ 1.

Note that Pruning rule 5.5 will be used to replace Pruning Rules 5.2 and 5.3 in

the exact algorithm.

2: Step 1 and 2 - Pre-ordering and Initial computation

While the Step 1 (pre-ordering objects) in our randomized algorithm is the same

as Step 1 in the exact algorithm, Step 2 for computing scores of the first k objects

is conducted differently. We need to compute pscorer for each object instead of

pscore. Below is the algorithm, Algorithm 5.8, to calculate the pscorer for one

object.

Algorithm 5.8 Calculating pscorer

Input: U ; PD(U); FD(U); 0 < q ≤ 1; m samples.

Output: pscorer of U ;

Description:

1: for each sampled u ∈ U do

2: compute pscorer(u) against PD(U);

3: δ := the (q ×m)th largest value of pscorer(u);

4: end for

5: pscorer(U) := |FD(U)|+ δ;

Note that the computation of pscorer(u) (∀u ∈ U) is conducted within the

sample that u belongs to. We incrementally maintain a min-heap [CLRS01] against

the current top-(q × m) instances (i.e., with the largest pscorers) or a max-heap

against the current bottom-[(1 − q)m + 1] objects depending on whether q ≤ 0.5.

Clearly, Algorithm 5.8 runs in time O(m|PD(U)| +m log(q ∗m)) for each object

U .

3: Step 3 - Final Computation.

156 Chapter 5. Probabilistic Top-k Dominating Queries

In this step, we use the same bounding-pruning-refining framework as in the

exact algorithm by effectively using the following Theorem 5.7 in combination with

Pruning Rules 5.4 and 5.5. Let νi,j denote the largest number of instances homo-

dominated by an instance contained by an entry Ei,j of a gCaR-tree of object Uj.

For example, regarding the example in Figure 5.9, ν6,1 = 2.

Theorem 5.7. Suppose that an Ei,j fully homo-dominates l1 entries and partially

homo-dominates l2 entries. Further suppose that ıEi,j
dominates ıEi,j′

. Then,

1. νi,j ≤ l1 + l2,

2. νi,j′ ≤ l1 + l2.

Theorem 5.7 is immediately based on the definitions, and is used in level-by-

level computation. Below we present our algorithm details. It also consists of 3

steps: Step 3.1, Step 3.2, and Step 3.3.

Step 3.1: pruning at the object level. It is the same as Step 3.1 in the exact

computation (Algorithm 5.4).

Step 3.2: level-by-level pruning. The basic idea is to synchronously traverse

the gCaR-trees of a Uj and the uncertain objects in PD(Uj). For an object Uj,

let L+
κ (Uj) denote the set of entries at the κ level of the gCaR-tree such that for

each entry Ei,j in L+
κ (Uj), µi,j is not captured less than λk. In our algorithm, we

initialize each object Uj by assigning 0 to M≤λk,Uj
and the root entry of Uj to

L+
1 (Uj). The step proceeds as follows for each remaining object Uj.

At each level κ, for every entry Ei,j in L+
κ (Uj) we compute l1 and l2. If l1+ l2 ≥

λk, we add the child entries, which are not marked out, of Ei,j to L+
κ+1(Uj) for the

computation at the next level.

Otherwise (l1 + l2 ≤ λk), according to Theorem 5.7 we do the following two

things.

Chapter 5. Probabilistic Top-k Dominating Queries 157

1. For every entry Ei,j′ (∀Uj′ ∈ PD(Uj)) such that Uj′ has not been processed

in Step 3 and Ei,j′ is not marked out, if ıEi,j
≺ ıEi,j′ , M≤λk,Uj′ = M≤λk,Uj′

+ ai,j′ .
6 Uj′ will be marked out for further consideration if the updated

M≤λk,U
′
j
≥ (1 − q) ×m + 1 (Pruning Rule 5.5). In case that Uj′ cannot be

excluded, Ei,j′ is marked out by using Algorithm 5.5; that is, it will not be

considered while processing Uj′ .

2. Update M≤λk,Uj
to M≤λk,Uj

+ ai,j. Then exclude Uj from the result set if

M≤λk,Uj
≥ (1− q)×m+ 1 (Pruning Rule 5.5).

If Uj is not pruned in Step 3.2, then we invoke Step 3.3.

Step 3.3: final computation. At the leaf level, for all instances in the remaining

entries of Uj we compute their actual values of pscorer and return the (q ×m)th

largest value as pscorer(Uj). If pscore
r(Uj) > λk, then we replace the object with

the smallest psocrer (i.e., λk) among the current top-k objects by Uj and update

λk.

10-1

100

101

102

103

A-U A-Z I-U I-Z NBA

P
ro

ce
ss

in
g

T
im

e
(s

)

20.9

2.0

8.7

1.2

16.5

1.1

13.4

1.2

362.5

2.3

EXACT
RAND

(a) Varying datasets

 0

 100

 200

 300

 400

0.04 0.08 0.12 0.16 0.20

P
ro

ce
ss

in
g

T
im

e
(s

)

EXACT
RAND

(b) Varying h

 0

 20

 40

 60

 80

 100

 120

10 20 30 40 50

P
ro

ce
ss

in
g

T
im

e
(s

)

EXACT
RAND

(c) Varying k

 0

 10

 20

 30

 40

0.6 0.7 0.8 0.9 0.95

P
ro

ce
ss

in
g

T
im

e
(s

)

EXACT
RAND

(d) Varying q

 0

 5

 10

 15

 20

 25

 30

 35

2d 3d 4d 5d

P
ro

ce
ss

in
g

T
im

e
(s

)

EXACT
RAND

(e)Varying d

100

101

102

103

400 600 800 1000 2000

P
ro

ce
ss

in
g

T
im

e
(s

) EXACT
RAND

(f) VaryingM

 0

 2

 4

 6

 8

1000 1500 2000 2500

P
ro

ce
ss

in
g

T
im

e
(s

)

RAND

(g) Varying S

 0

 100

 200

 300

10k 20k 30k 40k 50k

P
ro

ce
ss

in
g

T
im

e
(s

)

EXACT
RAND

(h) Varying #objects

Figure 5.10: Runtime with respect to Different Parameters.

6To avoid to over-count already marked-out entries, ai,j′ is the number of instances in the

subentries of Ei,j′ that have not been marked out. To efficiently record such ai,j′ for each entry,

we apply Algorithm 5.5.

158 Chapter 5. Probabilistic Top-k Dominating Queries

5.5 Experimental Study

In this section, we present a thorough performance evaluation of the efficiency and

effectiveness of our algorithms. All algorithms are implemented in C++. Experi-

ments are run on PCs with Intel P4 2.8GHz CPU and 2G memory under Debian

Linux.

We refer to the exact algorithm in Section 5.3 as EXACT, and to the random-

ized algorithm in Section 5.4 as RAND.

Two types of datasets are used in our evaluation process.

Real dataset is extracted from NBA players’ game-by-game statistics

(http://www.nba.com), containing 339,721 records of 1,313 players. Performance

of a player is treated as an uncertain object and the statistics of a player in a

single game is treated as an instance of an uncertain object. For one player, all

instances are assumed to take the same probability to appear. In our experiment,

we use three attributes, points, assistances, and rebounds in an instance. Since

larger values of those attributes are preferred, we adopt the corresponding negative

values7.

Synthetic datasets are generated using methodologies in [BKS01] with respect to

the following parameters. Dimensionality varies from 2 to 5 with default value 3.

Data domain along each dimension is [0, 1]. Number of objects varies from 10, 000

to 50, 000 where default value is 10, 000. Number of instances per object follows

a uniform distribution in [1, M] where M changes from 400 to 2, 000 with the

default value 400. Each MBB to bound an uncertain object is a hype-cube; and

the average edge length of MBB of uncertain objects follows a normal distribution

7Note that there might be correlations among the player statistics. We ignore the correlations

so that NBA data can be used to test efficiency and effectiveness of our techniques.

Chapter 5. Probabilistic Top-k Dominating Queries 159

in the range [0,h] with the expectation value h/2 and standard deviation 0.025; the

default value of h is 0.04 — 4% of the edge length of the whole data space. The

value k in PtopkQ varies from 10 to 50 with default value 10. As for randomized

algorithm, sample size varies from 1000 to 2, 500. Table 6.2 summarizes parameter

ranges and default values (in bold font). Note that in the default setting, the total

number of instances is about 2 millions.

Instances of an object follow either uniform (random) or zipf distribution. In

uniform distribution, instances are distributed uniformly inside the uncertain range

with the same occurrence probability. In zipf distribution, firstly an instance u is

randomly generated and the distances from all other instances to u follow a zipf

distribution with z = 0.5. The occurrence probability for each instance also follows

zipf distribution with z = 0.2.

Centers of objects (objects’ MBBs) follow either anti-correlated or independent

distribution. So, in all we have four types of synthetic datasets combining ob-

ject centers and instances distribution: Anti-Uniform, Inde-Uniform, Anti-Zipf and

Inde-Zipf. These are abbreviated to A-U, I-U, A-Z, and I-Z in our experiment

reports.

dimensionality d 2, 3, 4, 5

number of objects 10k, 20k, 30k, 40k, 50k

edge length h 0.04, 0.08, 0.12, 0.16, 0.20

number of instancesM 400, 600, 800, 1k, 2k

k 10, 20, 30, 40, 50

q 0.6, 0.7, 0.8, 0.9, 0.95

sample size S 1k, 1.5k, 2k, 2.5k

data types A-U, A-Z, I-U, I-Z, NBA

Table 5.4: Parameter Values.

160 Chapter 5. Probabilistic Top-k Dominating Queries

5.5.1 Efficiency Evaluation

We evaluate our algorithms against the parameters in Table 6.2.

Overall Performance. Figure 5.10(a) reports the result of our performance eval-

uation over synthetic (with the default setting) and real datasets. The experiment

demonstrates that while EXACT is very efficient against various synthetic datasets

with the default setting, it is slower against the NBA dataset. This is because in

the NBA dataset, MBB sizes are large relative to the whole data space; this gives

a very high overlapping degree among objects’ MBBs. On the other hand, RAND

very effectively deals with such situation. RAND has a very steady performance

and is at least 10 times faster than EXACT against all these datasets. We run

the trivial exact algorithm as discussed in Section 5.1.3; that is, compute pscore

for each object and then choose the top-k. Our experiment results show that it is

about 100 times slower than EXACT. We also implement the trivial randomized

algorithm as discussed in Section 5.4; that is, compute pscorer for each instance

in a sample. The costs are 1589(s), 1543(s), 3081(s), 3376(s), and 115(s), respec-

tively; it increases to 6685(s) when 2500 samples are used. Consequently we omit

the evaluation of both trivial algorithms in the rest of our experiments. Note that

the trivial randomized algorithm runs fast against NBA data; this is because NBA

data only have about 1000 objects.

Varying MBB sizes, k and q. Figure 5.10(b) reports our second experiment

results, against synthetic datasets with different average MBB sizes. Figure 5.10(c)

reports our performance evaluation against different k values. While the costs of

EXACT linearly increase when k increases, the performance of RAND is quite

steady. This is because that the costs of computing the scores, pscorer, for objects

in RAND are no longer as dominant as that in EXACT. The experiment results,

Chapter 5. Probabilistic Top-k Dominating Queries 161

depicted in Figure 5.10(d), show the impact from different q values is quite minor.

Varying other parameters. Figures 5.10(e) - (g) report the possible impacts

against dimensionality, average instance numbers, and average sample size. It is

interesting to note that the costs of EXACT generally increase with the increment of

dimensionality but the costs in 3d are slightly less than that in 2d; this is because the

ratio of average MBB volume against the data space decreases with the increment

of dimensionality. Nevertheless, the experiment demonstrates that an increment of

dimensionality plays a dominant role in the costs from 3d.

The impact of the number of objects is plotted in Figure 5.10(h). Although

the processing time of two algorithms both increases as more uncertain objects

are involved, RAND has overall better performance and also degrades much more

slowly than EXACT.

 0

 50

 100

 150

 200

 250

 300

10 20 30 40 50

P
ro

ce
ss

in
g

T
im

e
(s

) EXACTNORD
EXACT

(a) Processing Time vs k

 0

 50

 100

 150

 200

 250

 300

 350

10 20 30 40 50

no

de
 a

cc
es

s
(M

)

EXACTNORD
EXACT

(b) # Node Access vs k

Figure 5.11: Performance vs Diff. Object Access Orders

Accessing order. In order to evaluate the effectiveness of the objects accessing

order in Section 5.3.1, we also implement another version of the exact algorithm,

named EXACTNORD, in which the objects are accessed with a random order. We

evaluate the processing time as well as the number of node access of two algorithms

with k varying from 10 to 50 in Figure 5.11. As depicted in Figure 5.11(a), the

accessing order plays an important role for the computation as the EXACT algo-

162 Chapter 5. Probabilistic Top-k Dominating Queries

rithm significantly outperforms the EXACTNORD. We also use the warm-buffer

paradigm to run our algorithms to evaluate I/O costs. In Figure 5.11(b), we record

the number of node access for the aR-Trees of the uncertain objects during the

computation. As expected, the number of node access of EXACT Algorithms is

much less than that of EXACTNORD.

 0

 0.05

 0.1

 0.15

 0.2

10 20 30 40 50

E
rr

or

Bisection
Chernoff-Hoeffding

(a) Varying k

 0

 0.05

 0.1

 0.15

 0.2

0.6 0.7 0.8 0.9 0.95

E
rr

or

Bisection
Chernoff-Hoeffding

(b) Varying q

Figure 5.12: Chernoff-Hoeffding based vs Bisection based

5.5.2 Pruning Powers

Chernoff-Hoeffding vs Bisection. We first evaluate the effectiveness of the

Chernoff-Hoeffding-bound based upper bound and the Bisection-based upper

bound. The experiment is conducted against the real data - NBA dataset. In

our experiment, we first vary k values and then vary q values. We record the

average value of

P upper
≥λk

(U)− P≥λk
(U)

during query processing where P≥λk
(U) is the actual probability and P upper

≥λk
(U)

represents the Chernoff-

Hoeffding-bound based upper bound and the Bisection-based upper bound, re-

spectively. Note that for a fair comparison, we only record such average for the

Chapter 5. Probabilistic Top-k Dominating Queries 163

Bisection-based upper bounds when Chernoff-Hoeffding Bound based upper bound

can be used. The results are reported in Figure 5.12(a) and Figure 5.12(b). They

demonstrate that the Chernoff-Hoeffding Bound based upper bound is tighter than

the Bisection-based upper bound. This is the reason that in our algorithm, we

employ the Chernoff-Hoeffding Bound based upper bound whenever applicable.

 0

 50

 100

 150

 200

 250

 300

10 20 30 40 50

P
ro

ce
ss

in
g

T
im

e
(s

) NoPruning
D

DS
DSP

Figure 5.13: Varying k

 0

 20

 40

 60

 80

 100

 120

 140

0.6 0.7 0.8 0.9 0.95

P
ro

ce
ss

in
g

T
im

e
(s

) NoPruning
D

DS
DSP

Figure 5.14: Varying q

Various Pruning Techniques. Figures 5.13 and 5.14 report our evaluation of

the effectiveness of the pruning rules presented in the chapter with various k values

and q values, respectively. NoPruning denotes the exact algorithm without applying

any pruning rules in Section 5.3.3 at the instance levels, D denotes that we apply

the Drill-down-based pruning rule, DS denotes that we apply the Drill-down-based

pruning rule and the Score based pruning rule at each level, and DSP denotes that

we apply Level’s Probability-based pruning rule (i.e. Chernoff-Hoeffding Bound

based upper-bound and the Bisection-based upper-bound) each level in addition

to DS. They demonstrate that an application of the Drill-down-based pruning rule

alone does not improve much efficiency since it basically still functions at the object

level. While combining with level-by-level score based pruning rule does improve

efficiency noticeably, adding Chernoff-Hoeffding Bound based upper-bound and

the Bisection-based upper-bound significantly improves the performance. This is

because the computation costs at each level are significantly reduced by using those

164 Chapter 5. Probabilistic Top-k Dominating Queries

0%

1%

2%

3%

4%

5%

2 3 4 5

E
ar

ly
 P

ru
nn

ed
 O

bj
ec

ts
 R

at
io

EXACT
RAND

(a) Varying d

0%

1%

2%

3%

4%

5%

10 20 30 40 50
E

ar
ly

 P
ru

nn
ed

 O
bj

ec
ts

 R
at

io

EXACT
RAND

(b) Varying k

0%

5%

10%

15%

0.04 0.08 0.12 0.16 0.20

E
ar

ly
 P

ru
nn

ed
 O

bj
ec

ts
 R

at
io

EXACT
RAND

(c) Varying h

0%

1%

2%

3%

4%

5%

10k 20k 30k 40k 50k

E
ar

ly
 P

ru
nn

ed
 O

bj
ec

ts
 R

at
io

EXACT
RAND

(d) Varying n

0%

1%

2%

3%

4%

5%

0.6 0.7 0.8 0.9 0.95

E
ar

ly
 P

ru
nn

ed
 O

bj
ec

ts
 R

at
io

EXACT
RAND

(e) Varying q

Figure 5.15: Node Calculated Ratio with respect to Different Parameters.

upper-bounds and the upper-bounds are tight. Note that NoPruning is basically

the combination of the techniques in [YM07] and techniques in [HPZL08b, YLKS08]

on the top of our pre-ordering techniques.

Effectiveness. We report our performance evaluation of pruning power of EXACT

and RAND in Figure 5.15 against dimensionality, k values, edge lengths, object

numbers, and q values. The experiment is conducted against syntectic data in

order to evaluate all possible impacts. We record “early pruned object ratio” - the

ratio of the number of objects, with entries of local aR-trees accessed from the 2nd

Chapter 5. Probabilistic Top-k Dominating Queries 165

 0

 0.01

 0.02

 0.03

A-U A-Z I-U I-Z NBA

R
el

at
iv

e
E

rr
or

(a) Varying dataset

 0

 0.01

 0.02

 0.03

10k 20k 30k 40k 50k

R
el

at
iv

e
E

rr
or

(b) Varying n

 0

 0.01

 0.02

 0.03

10 20 30 40 50

R
el

at
iv

e
E

rr
or

(c) Varying k

 0

 0.01

 0.02

 0.03

0.6 0.7 0.8 0.9 0.95

R
el

at
iv

e
E

rr
or

(d) Varying q

 0

 0.01

 0.02

 0.03

0.04 0.08 0.12 0.16 0.20

R
el

at
iv

e
E

rr
or

(e) Varying h

 0

 0.01

 0.02

 0.03

2 3 4 5

R
el

at
iv

e
E

rr
or

(f) Varying d

 0

 0.01

 0.02

 0.03

500 1k 1.5k 2k 2.5k

R
el

at
iv

e
E

rr
or

(g) Varying S

Figure 5.16: Relative error with respect to Different Parameters

level onwards, over the total number of objects. Our evaluation reports that the

exact algorithm has a very powerful set of pruning techniques and up to 97% of

objects have been pruned from the candidate sets even when MBB is large.

5.5.3 Accuracy Evaluation

We evaluate possible impacts of different parameters on the accuracy of RAND.

Evaluation is based on average relative errors for a retrieved object’s dominating

probability with its pscorer computed using RAND regarding a given threshold

q. We use the following relative error metrics to evaluate the ability of RAND to

meet a given threshold q. Without loss of generality, Ui denotes the top-ith object

returned by RAND.

errpi =

 0 if P≥pscorer(Ui) ≥ q

|P≥pscorer (Ui)−q|
q

otherwise.

Figure 5.16 reports our performance evaluation, regarding the average relative er-

ror (
∑k

i=1 err
p
i

k
), against data types, number of objects, k values, q values, differ-

ent average MBB sizes, dimensionality, and sample sizes. Our experiment results

166 Chapter 5. Probabilistic Top-k Dominating Queries

 0

 0.002

 0.004

A-U A-Z I-U I-Z NBA

R
el

at
iv

e
E

rr
or

(a) Varying dataset

 0

 0.002

 0.004

10k 20k 30k 40k 50k

R
el

at
iv

e
E

rr
or

(b) Varying n

 0

 0.002

 0.004

10 20 30 40 50

R
el

at
iv

e
E

rr
or

(c) Varying k

 0

 0.002

 0.004

0.6 0.7 0.8 0.9 0.95

R
el

at
iv

e
E

rr
or

(d) Varying q

 0

 0.002

 0.004

0.04 0.08 0.12 0.16 0.20

R
el

at
iv

e
E

rr
or

(e) Varying h

 0

 0.002

 0.004

2 3 4 5

R
el

at
iv

e
E

rr
or

(f) Varying d

 0

 0.002

 0.004

500 1k 1.5k 2k 2.5k

R
el

at
iv

e
E

rr
or

(g) Varying S

Figure 5.17: Relative error of score with respect to Different Parameters

demonstrate that when sample size reaches 1000, the relative error is already very

small. Moreover, the accuracy is not quite related to the dimensionality, object

number, k values, or MBB sizes. Nevertheless, the accuracy decreases when q gets

smaller; this is because when q is smaller, RAND requires more samples to retain

the same accuracy according to our theoretic results in Section 5.4. It also shows

that the accuracy increases when the sample size increases.

We also evaluate the accuracy in the top-k scores output by RAND using the

average relative error metrics -
∑k

i=1 err
l
i

k
where

errli =

 0 if P≥pscorer(Ui) ≥ pscorei

|pscorer(Ui)−pscorei|
pscorei

otherwise.

As demonstrated in Figure 5.17, the performance of RAND is very accurate - the

average relative error is less than 0.4%. It is interesting to note that such accuracy

is not quite related to these parameters.

Chapter 5. Probabilistic Top-k Dominating Queries 167

5.5.4 Summary

Both of EXACT and RAND are efficient when k is not very large (a typical case

for a top-k query), the average MBB size of uncertain objects is reasonable (say,

upto 20% of the edge length of the data space), and the total data size is about a

few millions. Nevertheless, our randomized algorithm is much more efficient and

is also very scalable against dimensionality, k values, data sizes, and object MBB

sizes; it is also highly accurate when the sample size reaches 1000.

5.6 Conclusion

In this chapter, we formally define a probabilistic threshold top-k dominating query.

To process such a query, we firstly propose an exact algorithm. The exact algo-

rithm utilizes novel and efficient pruning techniques based on novel mathematic

characterizations. While fairly efficient, it is quite sensitive to sizes of data set,

uncertain object sizes, k values, etc. To trade-off between efficiency and accuracy,

a randomized algorithm with an accuracy guarantee is proposed together with a

new data structure, gCaR-tree; it is much more efficient than the exact algorithm.

The efficiency and effectiveness of these two algorithms are extensively investigated

in experimental study.

Note that our algorithms are main memory based. It can be immediately ex-

tended to external memory computation using warm buffer; that is, keep things in

the buffer and use a buffer replacement policy once it is full. We have evaluated

the I/O costs for such a paradigm. Moreover, our techniques developed in the

chapter can be immediately extended to cover the dual problem. That is, given a

threshold about the number of objects to be dominated, find top-k objects with the

maximum dominating probabilities. Finally, our randomized algorithm can also be

168 Chapter 5. Probabilistic Top-k Dominating Queries

immediately extended to continuous cases by sampling PDFs using Monte Carlo

sampling [KW86].

Chapter 6

Quantile-Based KNN Over

Multi-Valued Objects 1

Given a set D of objects (points) in a d-dimensional metric space and a d-

dimensional query object (point) q, the K nearest neighbor search retrieves the

K closest objects to q from D. The conventional KNN search has been extensively

studied [HS99, RKF95] with a wide spectrum of applications including data min-

ing, contents-based image retrieval, and location based services. In this chapter,

we study the problem of K nearest neighbor search over objects each of which has

a collection of values (instances) without temporal constraints specified; that is, we

do not deal with sequence databases [AFS93, KS95].

The existing model, probabilistic KNN, is to apply the uncertain semantics to

each object by treating the collection of instances of each object mutually exclu-

sive. It aims to catch relative distributions among objects with multi-instances.

1The techniques presented in this chapter originally appear in the paper “Quantile-Based

KNN Over Multi-Valued Objects”, Wenjie Zhang, Xuemin Lin, Muhammad Aamir Cheema,

Ying Zhang and Wei Wang, to appear in 26th International Conference on Data Engineering

(ICDE), 2010

169

170 Chapter 6. Quantile-Based KNN Over Multi-Valued Objects

The two semantics of ranking top-k uncertain tuples are employed in a proba-

bilistic KNN model: 1) retrieving k tuples that can co-exist in a possible world

(e.g. U-topk) [SIC07], and 2) retrieving tuples according to the probability that

a tuple is top-k or at a specific rank in all possible worlds (e.g. U-kRanks and

PT-k) [SIC07, HPZL08b] 2. While various probabilistic NN models are proposed

in [BSI08, CCMC08, KKR07], a probabilistic KNN model over uncertain data has

been proposed following U-topk ranking semantics [CCCX09]. In these probabilis-

tic KNN models, the probability for an object to be KNN to a query object is

calculated to define the result of a KNN. Nevertheless, below we show that the

probabilistic KNN models may provide results insensitive to relative distributions

of instances of objects.

Motivating Example. Let k = 1. In gymnastics, suppose that we want to

select the “best” balance-beam player among all candidates to participate a world

championship. The scores of two players A and B, based on the most recent n

games/attempts, are depicted in Figure 6.1(a), respectively. Assume that the 2n

scores of A and B (n for A and n for B) are distributed from 9.99 to 9.0 as depicted

in Figure 6.1(a).

Assume that we approximately treat each player as an uncertain object and

the score of an attempt as an instance with the equal occurrence probability. It

can be immediately verified that based on the existing probabilistic NN models,

player A and player B have the same probability, 1
2
, to be the nearest neighbor

of the query point q (i.e. the score 10) if |10 − score| is used as the distance

metric. We permutate the distribution in Figure 6.1(a) by swapping the two pairs

of instances of A and B as depicted in Figure 6.1(b). It is immediate that A and

B still have the same probability, 1
2
, to be the nearest neighbor regarding the score

2When k = 1, these two models are the same.

Chapter 6. Quantile-Based KNN Over Multi-Valued Objects 171

9.0
Score

10.0

 n/2 n n/2

Query Player A Player B

9.99

(a)

9.0
Score

10.0

l

l

9.99

(b)

9.0
Score

10.0

 n/2 n n/2

9.99

(c)

Figure 6.1: Motivating Example

distribution after these two permutations. Choosing l = n
2
, the score distribution in

Figure 6.1(a) is eventually modified to the score distribution in 6.1(c) after n
2
such

pairs of permutations; consequently, the nearest neighbor probabilities of A and B,

respectively, remain unchanged, 1
2
, regarding the distribution in Figure 6.1(c).

Quantile-Based KNN. The examples in Figures 6.1 (a)-(c) demonstrate that the

existing probabilistic KNN models may be insensitive to relative distributions of

object instances. Very recently, in [CLY09] a novel model based on the expected

rank for ranking top-k uncertain objects has been proposed. Regarding the distri-

butions and the permuted intermediate distributions as depicted above in Figures

6.1 (a)-(c), player A and B always have the same expected rank. Moreover, in

the above application we do not need to enforce the uncertain semantics among

172 Chapter 6. Quantile-Based KNN Over Multi-Valued Objects

multi-instances of each player by treating them mutually exclusive. Motivated by

these, we treat each player as a multi-valued object.

Quantiles [YMT06] may provide a succinct summary of data distributions. In

this chapter, we investigate the KNN problem over multi-valued objects based

on a ϕ-quantile distance (ϕ ∈ (0, 1]) from a multi-valued object to a query Q;

for example, the median is the 0.5-quantile. We extend our investigation to the

KNN problem over multi-valued objects based on overall distances in the “best

population” (with a given size specified by ϕ-quantile) regarding each object; such

overall distances are called a ϕ-quantile group-base distance.

Regarding the above example, our KNN problem based on 0.5-quantile distances

is to rank players based on their median performances, respectively. The KNN

problem based on a 0.5-quantile group-base distance is to rank players based on

their overall performances of the top-50% of scores, respectively.

The above example contains multi-valued objects in a 1-dimensional space and

the query is a single-valued point. Nevertheless, our investigation covers the appli-

cations where data objects consist of multiple instances in a d-dimensional space

and a query object may also consist of multiple instances in a d-dimensional space.

For instance, in NBA the performance of a player per game may be measured by

his statistics (scores, assists, rebounds, steals, blocks) and may be treated as an

instance of the player; consequently, each player has a set of instances. Suppose

that a team wants to sign a contract with player A and wants to find his market

value. The team may want to find out the top-k “similar” NBA players, with ex-

isting contracts, to A against their recent game statistics. Then, the team can use

the salaries information of these k-players to project the salary level of A.

Contributions. To the best of our knowledge, this is the first work to study KNN

problems regarding quantiles over multi-valued objects. Yiu et al [YMT06] develop

Chapter 6. Quantile-Based KNN Over Multi-Valued Objects 173

efficient techniques to compute quantile-distances among data points; nevertheless

the techniques are not applicable to our problem due to the following reasons.

Firstly, the query object in our problem setting may have multiple instances and

we count all pair combinations between an object and a given query object, while

the computation of multi-source-based quantile-distances in [YMT06] is to compute

the distance of an instance to its nearest given source. Secondly, the quantile group-

base distance problem studied in this chapter is NP-hard. Our contribution may

be summarized as follows.

• We make the first attempt to identify KNN sensitive to the relative distribu-

tions among multi-valued objects.

• Efficient, novel techniques are proposed for computing quantile distance based

KNN against a set of multi-valued objects and a given query object that is

also multi-valued.

• We show that the problem of KNN against the quantile group-base distance is

NP-hard. Novel and efficient algorithms are proposed with the approximation

ratio 2.

As a byproduct, our techniques to compute a ϕ-quantile distance is O(n) if

single-valued object is involved while the technique in [YMT06] is O(n log n) where

n is the number of instances. Besides the theoretical analysis, an extensive per-

formance evaluation demonstrates that the proposed techniques are both efficient

and effective.

The rest of the chapter is organized as follows. In Section 6.1, we formally define

the problems and provide some necessary background information. In Section

6.2, we present the framework of our algorithms to conduct KNN against these 2

quantile-based KNN problems. Section 6.3 and Section 6.4 present query processing

174 Chapter 6. Quantile-Based KNN Over Multi-Valued Objects

techniques for these two KNN problems, respectively. In Section 6.5, we report our

experiment results. This is followed by conclusions.

6.1 Background Information

We present problem definition and necessary preliminaries. For reference, notions

frequently used in the chapter are summarized in Table 6.1.

Notation Definition

U set of of objects

U (Q) multi-valued (query) object

E entry of R-tree

u (q) instance of U (Q) - a point in d-dimensional space

w(u) (w(S)) (total) weight of u (the set S)

d(q, u) Euclidean distance between q and u

dlo(E,E′) distance lower-bound between E and E′

dup(E,E′) distance upper-bound between E and E′

dϕ(Q,U) ϕ-quantile distance of Q and U

gbdϕ(Q,U) ϕ-quantile group-base distance of Q and U

Q× U Cartesian product of instances from Q to U

Table 6.1: The Summary of Notations.

6.1.1 Problem Definition

Given a collection S of m elements, each element si has a weight w(si) where

0 < w(si) ≤ 1 and
∑m

i=1 w(si) = 1. Let S be sorted increasingly on a search key

f - a function; that is, f(si) ≤ f(sj) if i < j. Without loss of generality, in this

chapter a sorted collection S of data elements, thereafter, always means sorting S

increasingly on a given search key unless otherwise specified.

Definition 6.1 (ϕ-quantile of S). Given a ϕ (0 < ϕ ≤ 1), the ϕ-quantile Sϕ of S is

the first element si in the sorted S on the search key such that
∑i

j=1 w(sj) ≥ ϕ.

Chapter 6. Quantile-Based KNN Over Multi-Valued Objects 175

In our problem definition, an instance of an object U (or Q) is weighted - weight

gives the representativeness of an instance in U . For instance, in the motivating

examples in introduction, a game statistic may appear multiple times; consequently

a normalized weight (the occurrence of an instance over the total occurrences of

all instances) may be used to indicate the representativeness of an instance. Note

that the total of such weights in U (or Q) is 1.

A multi-valued object U is represented as {(ui, w(ui))|1 ≤ i ≤ m} where ui is

a point in a d-dimensional space, 0 < w(ui) ≤ 1 (1 ≤ i ≤ m), and
∑m

i=1 w(ui) = 1.

A query object Q is also a multi-valued object. We use U to denote a set of

multi-valued objects.

For a given Q and each U ∈ U , there are totally (|Q| × |U |) pairs of instances

in Q × U where each pair (qi, uj) (qi ∈ Q and uj ∈ U) has the weight w(qi) ×

w(uj), namely w(qi, uj). Clearly,
∑

qi∈Q,uj∈U w(qi) × w(uj) = 1. The Euclidean

distance d(qi, uj)
3 between qi and uj is called the distance of (qi, uj). Let Q× U =

{((qi, uj), w(qi, uj)) | qi ∈ Q & uj ∈ U}.

Definition 6.2 (ϕ-quantile distance of Q and U). Given a ϕ ∈ (0, 1], let Q×U be

sorted increasingly on the search key - the distance d(qi, uj) of each element (qi, uj).

Then, the distance of the ϕ-quantile of Q × U is called the ϕ-quantile distance of

Q× U , denoted by dϕ(Q,U).

Definition 6.2 states that if (q, u) is the ϕ-quantile of Q × U (i.e., (Q × U)ϕ =

(q, u)) then d(q, u) is dϕ(Q,U).

Example 6.1. Regarding the example in Figure 6.2, |Q| = 3 and |U | = 2. Assume

that w(q1) = 1
2
, w(q2) = w(q3) = 1

4
; w(u1) = w(u2) = 1

2
. Consequently, Q × U

consists of the following six pairs sorted on their distances increasingly:

3Note that our techniques developed in this chapter is based on Euclidean distance; never-

theless they can be immediately extended to cover other distance metrics.

176 Chapter 6. Quantile-Based KNN Over Multi-Valued Objects

Q

U

q1

q2

q3

u1

u2

Figure 6.2: Distances between 2 Multi-Valued Objects

Q × U = {((q2, u1),
1
8
), ((q3, u1),

1
8
), ((q3, u2),

1
8
), ((q1, u1),

1
4
), ((q2, u2),

1
8
),

((q1, u2),
1
4
)}.

Note that the 2.5
8
-quantile and the 3

8
-quantile of Q × U are the same (q3, u2).

The 0.2-quantile distance d0.2(Q,U) of Q and U is d(q3, u1), d0.5(Q,U) is d(q1, u1),

d0.6(Q,U) is also d(q1, u1). �

Below, we specify a measure based on aggregates to define the top/best quantile-

population of S.

Definition 6.3 (ϕ-quantile population of S). Given a S and a ϕ ∈ (0, 1], a ϕ-

quantile population Sϕ,P of S is a sub-collection S ′ of S such that the total weights

of the elements in S ′ is not smaller than ϕ and removing any element from S ′

makes the total weights in the remaining sub-collection smaller than ϕ.

Definition 6.4 (ϕ-quantile group-base distance). Given a ϕ ∈ (0, 1], the ϕ-

quantile group-base distance of Q and U is the minimum total weighted dis-

tance among ϕ-quantile populations of Q × U ; that is, the minimum value of∑
(q,u)∈S′ w(q)w(u)d(q, u) with the constraint that S ′ is a ϕ-quantile population of

Q× U .

The ϕ-quantile group-base distance between Q and U is denoted by gbdϕ(Q,U).

Note that for a ϕ ∈ (0, 1], the example below shows that gbdϕ(Q,U) is not always

Chapter 6. Quantile-Based KNN Over Multi-Valued Objects 177

defined on the set of the “consecutive” smallest distances. In fact, we will show in

Section 5 that the computation of gbdϕ(Q,U) is NP-hard.

Example 6.2. Regarding Example 6.1, let ϕ = 0.5. gbd0.5(Q,U) = 1
8
d(q2, u1) +

1
8
d(q3, u1) +

1
8
d(q3, u2) +

1
8
d(q2, u2) instead of 1

8
d(q2, u1) +

1
8
d(q3, u1) +

1
8
d(q3, u2) +

1
4
d(q1, u1). Here, {((q2, u1),

1
8
), ((q3, u1),

1
8
), ((q3, u2),

1
8
), ((q1, u1),

1
4
)} is not even a

0.5-quantile population of Q× U .

In fact, there are several 0.5-quantile populations of Q × U , including

{((q3, u1),
1
8
), ((q2, u2),

1
8
), ((q1, u1),

1
4
)}, {((q2, u1),

1
8
), ((q2, u2),

1
8
), ((q1, u1),

1
4
)},

etc. �

Definition 6.5 (ϕ-Quantile KNN). Given a ϕ ∈ (0, 1], a set U of multi-valued

objects in a d-dimensional space, and a multi-valued query object Q, the ϕ-quantile

KNN problem is to retrieve the set ΦK of K objects from U such that for each

U ∈ ΦK and each U ′ ∈ U − ΦK, dϕ(Q,U) ≤ dϕ(Q,U ′).

Definition 6.6 (ϕ-Quantile Group-base KNN). Given a ϕ ∈ (0, 1], a set U of

multi-valued objects in a d-dimensional space, and a multi-valued query object Q,

the ϕ-quantile group-base KNN problem is to retrieve the set ΦK of K objects from

U such that for each U ∈ ΦK and each U ′ ∈ U − ΦK, gbdϕ(Q,U) ≤ gbdϕ(Q,U ′).

Problem Statement. In this chapter, for a given ϕ ∈ (0, 1], we study the problems

of efficiently computing the ϕ-Quantile KNN and the ϕ-Quantile Group-base KNN.

6.1.2 Preliminaries

Given a collection S of m elements, each element si has a weight w(si) where

0 < w(si) ≤ 1 and
∑m

i=1 w(si) ≤ 1. A naive way to compute the ϕ-quantile is to

firstly sort S regarding a given search key f , and then scan the sorted list to obtain

the ϕ-quantile of S. Clearly, the naive algorithm runs in O(m logm).

178 Chapter 6. Quantile-Based KNN Over Multi-Valued Objects

In [CLRS01], an efficient and effective partitioning technique PARTITIONING

(S) is proposed to find an element s ∈ S to divide S into two sub-collections S1

and S2 with the following properties:

1. for each s′ ∈ S1, f(s
′) ≤ f(s); and for each s′ ∈ S2, f(s

′) ≥ f(s).

2. |S1| ≥ 3
10
m− 6 and |S2| ≥ 3

10
m− 6.

Using the partitioning technique, in Algorithm 6.1 we present an iteration-based

algorithm to compute a ϕ-quantile when S is not sorted.

Algorithm 6.1 QUANTILE (S, ϕ)

Input: S: a collection of m elements; ϕ: 0 < ϕ ≤
∑m

i=1 w(si); f : specify a search

key;

Output: ϕ-quantile of S

1: (s, S1, S2) ←− PARTITIONING (S);

2: if ϕ ≤ w(S1) then

3: call QUANTILE (S1, ϕ);

4: else

5: if ϕ > w(S1) + w(s) then

6: call QUANTILE (S2, ϕ− w(S1)− w(s));

7: else

8: return s;

In Algorithm 6.1, w(S1) denotes the total weights of the elements in S1. When

S has only one element, S1 = S2 = ∅.

It is shown in [CLRS01] that the time complexity of PARTITIONING (S)

is linear - O(|S|). Consequently, each iteration runs in linear time regarding the

current sub-collection size. Recall the property 2 above in PARTITIONING (S). It

is immediate that the sizes of sub-collections involved in the iterations in Algorithm

Chapter 6. Quantile-Based KNN Over Multi-Valued Objects 179

6.1 are exponentially reduced - at the ith iteration bounded by ((7
10
)i−1m+c) where

c is a constant; consequently, the time complexity of Algorithm 6.1 is linear -

O(m). The correctness of Algorithm 6.1 immediately follows from the property 1

of PARTITIONING (S).

6.2 Framework Overview

Our techniques for solving the ϕ-quantile KNN and and the ϕ-quantile group-base

KNN for a given ϕ ∈ (0, 1] follow a standard seeding-refinement paradigm outlined

in Algorithm 6.2.

Algorithm 6.2 Framework

• Phase 1 - Seeding: Compute the ϕ-quantile (or ϕ-quantile group-base)

distance from each of the K chosen objects to Q.

• Phase 2 - Refinement: Determine the final solution for ϕ-quantile KNN

(or ϕ-quantile group-base KNN).

In the seeding phase, we choose K objects and compute their ϕ-quantile dis-

tances (or ϕ-quantile group-base distances); assume that γk (λK) is the maximal

of these K ϕ-quantile distances (or the ϕ-quantile group-base distances). In the

refinement phase, we use γK (λK) and ϕ to effectively prune objects and iteratively

update γK (λK) (if necessary).

Selecting K Objects in the Seeding Phase. Any K multi-valued objects from

U could be used for the seeding phase. Clearly, the smaller γK is, the more powerful

γK may be used in the refinement for pruning. In our algorithm, we use the mean

aU of the multiple instances for each multi-valued object U , and we use the mean

aQ of the multiple instances of Q. Then we apply the KNN algorithm in [HS95]

180 Chapter 6. Quantile-Based KNN Over Multi-Valued Objects

Q U

E
w(E)

E
w(E)

Figure 6.3: Local aR-trees for Multi-Valued Objects

to obtain the K nearest neighbors to aQ from {aU | U ∈ U}. Subsequently, we

use the K objects corresponding to these K nearest means to aQ as the K objects

in the seeding phase for both ϕ-quantile KNN and ϕ-quantile group-base KNN,

respectively.

Data Structures. Below are the data structures used in the seeding and refine-

ment phases in our techniques. For each multi-valued object U ∈ U , a local aR-tree

is built to organize its multiple instances. The aggregate information kept on each

intermediate entry is the sum of weights of instances indexed by the entry. Namely,

for every intermediate entry E in the local aR-tree, we record the weight of E as

the sum of weights (total weights) of instances having E as an ancestor. Local

aR-trees will facilitate the efficient computation of ϕ-quantile (or ϕ-quantile group-

base) KNN and support effective pruning techniques. Figure 6.3 shows the local

aR-trees for Q and U where each intermediate entry records w(E).

Besides, we maintain an R-tree on the MBBs of multiple instances of objects.

That is, for each object we first obtain the MBB of its multiple instances. Then

we build an R-tree on these MBBs. This R-tree is called the global R-tree. Note in

the global R-tree, each leaf is an MBB of an object.

Distances between MBBs. Given two MBBs E and E ′, we compute the minimal

and maximal distances dlo(E,E ′) and dup(E,E ′) between them as follows. For each

Chapter 6. Quantile-Based KNN Over Multi-Valued Objects 181

dimension i (1 ≤ i ≤ d), let IE,i and IE′,i denote the intervals on which E and E ′

are projected, respectively. The minimum distance mindisti(E,E ′) between IE,i

and IE′,i is defined as follows. If IE,i overlaps with IE′,i then mindisti(E,E ′) = 0

otherwise mindisti(E,E ′) is the minimal value among the distances of 4 pairs of

the ends of IE,i and IE′,i. maxdisti(E,E ′) is the the maximal value among the

distances of 4 pairs of the ends of IE,i and IE′,i.

dlo(E,E′) =

√√√√ d∑
i=1

(mindisti(E,E′))2

dup(E,E′) =

√√√√ d∑
i=1

(maxdisti(E,E′))2

Figure 6.4 below shows representative examples. Note that we can immediately

verify that for each pair of instances (u, u′) where u is contained by E and u′ is

contained by E ′, dlo(E,E ′) ≤ d(u, u′) ≤ dup(E,E ′). Thus, dlo(E,E ′) and dup(E,E ′)

can be used as a lower- and upper- bound of the distance of any pair in E × E ′.

Immediately, computing minimal/maximal distance between the two d-dimensional

MBBs requires O(d) time.

E1

E2
mindist(E1,E2)

maxdist(E1,E2)

E1

E2

mindist(E1,E2)

maxdist(E1,E2)

(a) (b)

Figure 6.4: Minimal/Maximal Distance between 2 MBBs

182 Chapter 6. Quantile-Based KNN Over Multi-Valued Objects

6.3 ϕ-Quantile KNN

We present our techniques for conducting ϕ-quantile KNN for a given ϕ ∈ (0, 1].

We first present an efficient algorithm to compute a ϕ-quantile distance between

Q and U instead of a brute-force computation; this will be used in the two phases.

Then, we present a set of novel pruning techniques in the refinement phase, as well

as the refinement algorithm.

6.3.1 Efficiently Computing ϕ-Quantile Distances.

Given Q, U , and a ϕ ∈ (0, 1], we present an efficient algorithm to compute dϕ(Q,U)

in this section.

Naive Linear Algorithm. Firstly, for each (qi, uj) in Q × U , we calculate its

distance d(qi, uj) and its weight w(qi, uj) (= w(qi)w(uj)). Then call Algorithm 6.1

to produce the ϕ-quantile (q, u) of Q×U regarding the search key value (distance)

of each (qi, uj) and the weight w(qi, uj) of each (qi, uj). Clearly, dϕ(Q,U) = d(q, u)

and the naive algorithm runs in linear time regarding |Q×U |; that is, O(|Q×U |).

Pruning-based Linear Algorithm. While it is costly to enumerate all pairs of

instances in Q × U , intuitively most pairs in Q × U are possible to be removed

without enumerating them. This may be done by using the local aR-trees of Q

and U , respectively. Our algorithm is based on level-by-level synchronous traversal

on the local aR-trres of Q and U . The example below gives the basic idea of the

algorithm.

Basic Idea. Suppose that the root RQ of local aR-tree of Q has 2 entries (E1, E2),

and the root RU of loca aR-tree of U has 2 entries (E ′
1, E

′
2). Totally, the 4 pairs of

entries are depicted in Figure 6.5 where the two ends of each interval, corresponding

to (Ei, E
′
j), are d

lo(Ei, E
′
j) and dup(Ei, E

′
j), respectively, and w(Ei, E

′
j) is also shown

Chapter 6. Quantile-Based KNN Over Multi-Valued Objects 183

w =0.2 w =0.3 w =0.2

w =0.3

(E1, E1') (E1, E2') (E2, E2')

(E2, E1')

Figure 6.5: Prune Entries at the Current Level

as w. Assume that a lower-bound dloϕ and an upper-bound dupϕ of dϕ(Q,U) are as

what are depicted in Figure 6.5, respectively.

Since dup(E1, E
′
1) is smaller than dloϕ , (E1, E

′
1) can be removed. The pair of

(E2, E
′
2) can also be removed because dlo(E2, E

′
2) is larger than dupϕ . Consequently,

we only focus on 2 pairs of entries, (E1, E
′
2) and (E2, E ′

1), in the next level iteration.

As the distance of any pair of instances in (E1, E
′
1) is guaranteed to be smaller than

dϕ(Q,U) and the total weight of (E1, E
′
1) is 0.2, from the next level we only need

to find the (ϕ− 0.2)-quantile distances in the remaining pairs of instances. This is

the basic idea of our algorithm.

Algorithm Description. We outline our algorithm in Algorithm 6.3 below in a

recursive fashion. Note that the input of the algorithm is a collection of pairs of

entries - initially, RQ × RU where RQ (RU) is the set of the entries in the root of

the local aR-tree of Q (U).

In Algorithm 6.3, lines 7 and 8 remove the pairs, with their maximum distances

smaller than dloϕ or minimum distances larger than dupϕ , from T1 (i.e. no further

exploring). Lines 9 and 10 cumulatively record the total weights θ of removed pairs

of entries with the maximum distance smaller than dloϕ . Lines 11 and 12 enumerate

all the remaining pairs of entries in the next level for the next iteration; this will

be shown in the example below. To ensure the correctness, in the next iteration,

184 Chapter 6. Quantile-Based KNN Over Multi-Valued Objects

Algorithm 6.3 QUANTILE-DISTANCE (RQ ×RU , ϕ)

Input: RQ ×RU ; ϕ: 0 < ϕ ≤ 1

Output: dϕ(Q,U)

θ := 0; T1 := ∅; T2 := ∅;

if RQ ×RU only contains leaf entries then

call Algorithm 6.1 on RQ ×RU and ϕ;

else

Calculating dloϕ and dupϕ regarding RQ ×RU ;

for each (E,E ′) ∈ RQ ×RU do

if dup(E,E ′) ≥ dloϕ and dlo(E,E ′) ≤ dupϕ then

T1 := {(E,E ′)} ∪ T1;

else if dup(E,E ′) < dloϕ then

θ := θ + w(E)× w(E ′);

for each (E,E ′) ∈ T1 do

T2 := T2 ∪ ENUMERATING(E,E ′);

QUANTILE-DISTANCE (T2, ϕ− θ);

we compute the (ϕ− θ)-quantile distance from remaining pairs of instances.

Example 6.3. Continue the example (Figure 6.5) in the part of Basic Idea. Using

Algorithm 6.3, T1 = {(E1, E
′
2), (E2, E

′
1)} in the 1st iteration and θ = 0.2.

Assume that the child node, NODE(E1), of RQ corresponding to the en-

try E1 has two entries {E1,1, E1,2}, NODE(E2) contains {E2,1, E2,2}, NODE(E ′
1)

contains {E ′
1,1, E

′
1,2}, and NODE(E ′

2) contains {E ′
2,1, E

′
2,2}. In Algorithm 6.3,

ENUMERATING(E1, E
′
2) generates the 4 pairs of entries, {(E1,1, E

′
2,1), (E1,1, E

′
2,2),

(E1,2, E
′
2,1), (E1,2, E

′
2,2)}. Similarly, ENUMERATING(E2, E

′
1) generates the 4 pairs

of entries, {(E2,1, E
′
1,1), (E2,1, E

′
1,2), (E2,2, E

′
1,1), (E2,2, E

′
1,2)}. These 8 pairs (in T2)

together with (ϕ−0.2) are sent to the next iteration - QUANTILE-DISTANCE (T2,

Chapter 6. Quantile-Based KNN Over Multi-Valued Objects 185

ϕ− 0.2). �

Remark 5. If {E1, E2} are the leafs (i.e. points), then they have no

corresponding children nodes. In this case, ENUMERATING(E1, E
′
2) and

ENUMERATING(E2, E
′
1) generate 4 pairs of entries in total: {(E1, E

′
2,1),

(E1, E
′
2,2), (E2, E

′
1,1), (E2, E

′
1,2)}. Similarly, if {E ′

1, E
′
2} are the leafs, then the fol-

lowing 4 pairs of entires are generated for the next iteration: {(E1,1, E
′
2), (E1,2, E

′
2),

(E2,1, E
′
1), (E2,2, E

′
1)}. �

Calculating dloϕ and dupϕ . In Algorithm 6.3, at each iteration we need to calculate

dloϕ and dupϕ (line 5) except that all entries are at the leaf level. Assume that at the

jth iteration, there are l pairs of entries left; that is, T2 = {ti | 1 ≤ i ≤ l} - each

ti with the form (E,E ′) where E is an entry from the local aR-tree of Q and E ′

is an entry from the local ar-tree of U . Recall that the maximum distance dup(ti)

and the minimum distance dlo(ti) are defined on a pair ti of entries in Section 6.2.

Suppose that in the current iteration, we want to compute the ϕ′-quantile distance

dϕ′(T) in T where T denotes the collection of pairs of instances each of which has

an element in T2 as the ancestor; that is, for each pair of instances (q, u) ∈ T ,

∃(E,E ′) ∈ T2 such that E contains q and E ′ contains u.

Let the ϕ′-quantile of T2, regarding the search key dlo(ti), be (EL,EL′), and

the ϕ′-quantile of T2, regarding the search key dup(ti), be denoted by (EU,EU ′).

Theorem 6.1. dlo(EL,EL′) ≤ dϕ′(T) ≤ dup(EU,EU ′).

Proof. According to the definition of the ϕ′-quantile distance, it is immediate that∑
dlo(t)≤dϕ′ (T),t∈T2

w(t) ≥ ϕ′; consequently, dlo(EL,EL′) ≤ dϕ′(T).

Similarly, according to the definition of ϕ′-quantile distance,∑
dup(t)<dϕ′ (T),t∈T2

w(t) < ϕ′. Therefore, dϕ′(T) ≤ dup(EU,EU ′).

186 Chapter 6. Quantile-Based KNN Over Multi-Valued Objects

Theorem 6.1 implies that dlo(EL,EL′) and dup(EU,EU ′) are a lower-bound

and an upper-bound, respectively, of dϕ′(T). Thus, in line 5 of Algorithm 6.3, we

calculate dlo(EL,EL′) and dup(EU,EU ′). Clearly, this can be done by Algorithm

6.1 in linear time.

Time Complexity. In each iteration, our algorithm is linear regarding |T2|; that

is, O(|T2|). Since the total entries in the local aR-trees of Q and U are (|Q|) and

O(|U |), respectively, Algorithm 6.3 runes in linear time regarding |Q×U |; that is,

O(|Q× U |).

Correctness. The following theorem can be immediately verified based on the

definition of ϕ-quantile distance.

Theorem 6.2. Let θ denote the total weights of the pairs of entries so far pruned by

dloϕ at each iteration. Then, dϕ−θ(T) = dϕ(Q,U) where T consists of all remaining

pairs of instances after the current iteration.

Theorem 6.1 and Theorem 6.2 imply that Algorithm 6.3 is correct; that is, it

can produce dϕ(Q,U).

Filtering while Enumerating. Algorithm 6.3 can be improved when enumerating

children pairs in line 12 - ENUMERATING(E,E ′). For every enumerated pair

t of children entries, before adding to T2 we check if it can be pruned by the

current distance lower and upper bounds. Then T2 keeps only the remaining pairs

of children entries for the next iteration. Note that in θ, we also include the total

weights of children pairs pruned by the current lower bound dloϕ .

Example 6.4. Continue Example 6.3. The enumerated 8 pairs are depicted in

Figure 6.6. The pair (E2,1, E
′
1,1) with the weight 0.1 is pruned by the current dloϕ .

Consequently, the remaining 7 pairs (put in T2) and (ϕ− 0.2− 0.1) are used to call

QUANTILE-DISTANCE () for the next iteration.

Chapter 6. Quantile-Based KNN Over Multi-Valued Objects 187

child entry pairsof(E1, E2')

child entry pairsof(E2, E1')

(E1,1, E2,1') (E1,1, E2,2')

(E1,2, E2,1') (E1,2, E2,2')

w =0.05 w =0.05

w =0.1 w =0.1

(E2,1, E1,1') (E2,1, E1,2')

w =0.1 w =0.05

(E2,2, E1,1')

w =0.1
(E2,2, E1,2')

w =0.05

Figure 6.6: Filtering while Enumerating

Note that the time complexity of Algorithm 6.3, by adding the technique “Fil-

tering while Enumerating”, remains the same O(|Q| × |U |).

6.3.2 Refinement Algorithm

In the seeding phase, after dϕ(Q,U) is calculated for each U of chosen K objects.

A max heap maintains the K objects based on their ϕ-quantile distances; γK is

the maximum of these K ϕ-quantile distances and sits on the top. Our refinement

algorithm for generating the final result for ϕ-quantile KNN is outlined below in

Algorithm 6.4. In the algorithm, we effectively use γK and ϕ to prune as many

entries, in the global R-tree on MBBs of objects and local aR-trees, as possible.

Since “closer” objects have a better chance to be in the final result of KNN (thus

a better chance to reduce γK), we traverse the global R-tree based on the priority

that an entry E with the smallest minimum distance to the MBB of Q will be

visited first. This can be done by maintaining a heap H on the currently extended

188 Chapter 6. Quantile-Based KNN Over Multi-Valued Objects

entries.

Algorithm 6.4 Refinement

1: while H ̸= ∅ do

2: E := deheap(H);

3: if not PRUNED1(Q,E) then

4: if E is an intermediate entry then

5: add MBBs of the child entries to H;

6: else

7: if not PRUNED2(Q,E) then

8: call Algorithm 6.3 to compute dϕ(E,Q);

9: if dϕ(Q,E) < γK then

10: update current KNN;

In Algorithm 6.4, we initially load to H the entries MBBs in the root node of

the global R-tree. Then we iteratively apply PRUNED1(E,Q) to the heap top E

by using the pruning rules below in Section 6.3.3 for the global R-tree. If E cannot

be pruned (i.e. PRUNED1(Q,E) returns FALSE), then we add to H the entries

of the child node with E as the MBB when E is an intermediate entry. When

E cannot be pruned and E is the MBB of an object U , we apply the pruning

rules below in Section 6.3.3 on an individual object, PRUNED2(Q,E), to prune

U (PRUNED2(Q,E) returns TRUE if pruned) or “trim” the entries in the local

aR-tree of U .

6.3.3 Pruning Rules

Pruning Rules 1 and 2 attempt to prune an entry in the global R-tree, while

Pruning Rule 3 is to further examine the “details” of a remaining object using its

local aR-tree.

Chapter 6. Quantile-Based KNN Over Multi-Valued Objects 189

Pruning an Entry E of Global R-tree. Pruning Rules 1 and 2 below use Q

to prune an entry E of the global R-tree. The correctness of Pruning Rule 1 is

immediate.

Pruning Rule 1. (Distance based:) If dlo(EQ, E) ≥ γK , then E can be pruned where

EQ is the MBB of Q and E is an entry of the global R-tree. (E is pruned means

that all objects indexed by E can be pruned).

Note that the minimum distance between two MBBs is defined in Section 6.2

and can be calculated in constant time. Next, we present Pruning Rule 2.

Regarding the local aR-tree aRQ of Q, a set Γ of entries in aRQ is a γK-cover of

aRQ if 1) there are no 2 entries in Γ with the descendent relationship, 2) for each

Ei ∈ Γ, dlo(Ei, E) ≤ γK , and 3) for each entry E ′ which is not an ancestor nor a

descendent of any entry in Γ, dlo(E ′, E) > γK . The following theorem is immediate

from the definition of ϕ-quantile distance.

Theorem 6.3. Let Γ be a γK-cover of RQ. If
∑

E′∈Γw(E
′) ≤ ϕ, then for each

U ∈ E, dϕ(Q,U) ≥ γK.

Clearly, if we can find a γK-cover satisfying the condition in Theorem 6.3, then

E can be pruned.

Pruning Rule 2. (Weights based:) If there is a γK-cover Γ with
∑

E′∈Γw(E
′) ≤ ϕ,

then E can be pruned.

Note that there could be many γK-covers as shown in Example 6.5.

Example 6.5. As depicted in Figure 6.7, the γK-covers can be {E1, E2}, {E1, E2,3},

{E1,3, E2}, {E1,3, E2,3}. If E1,3 and E2,3 have child entries, more alternatives could

be enumerated. They possibly have different total weights.

A γK-cover Γ is minimum if
∑

E′∈Γw(E
′) is minimized. In example 6.5,

{E1,3, E2,3} has the smallest weight among those 4 covers. Clearly, the minimum

190 Chapter 6. Quantile-Based KNN Over Multi-Valued Objects

E1 E2E1,1

E1,2

E1,3

E2,1

E2,2

E2,3E

Figure 6.7: γK-Cover

γK has the maximal pruning power since
∑

E′∈Γw(E
′) is minimized.

Executing Pruning Rule 2. Although a minimum γK-cover can be computed by

traversing aRQ level-by-level from the root, we will not always try to get a minimum

γK-cover if E can be pruned earlier. We visit aRQ level-by-level from the root. At

each level i, we generate a todo list TDi (initially ∅), and remove/trim the child

entries E ′ of the entries in TDi−1, if d
lo(E ′, E) > γK . For each remaining child

entry E ′ (not trimmed), E ′ with dup(E ′, E) ≤ γK will not be extended at the

next level since all its decedent entries always have their minimum (and maximum)

distances not greater that γK - we cumulate w(E ′) in ∆; E ′ with dup(E ′, E) > γK

will be extended in the next level for further trimming (thus, it is put into TDi).

E is pruned and we terminate the execution of Pruning Rule 2 if the value of ∆

plus the total weights of the entries in TDi is not greater than ϕ. Note that if E

cannot be pruned, then the execution terminates if either the the current TDi is

empty or at the leaf level. Moreover, at the root level (i.e. i = 1), we assume that

TD0 consists of the MBB EQ of Q.

Clearly, the execution of Pruning Rule 2 terminates if E is pruned or the mini-

mum value of γK-cover is obtained (∆ + the total weights in current TD). If E is

the MBB of an object U (i.e. corresponds to U) and U cannot be removed, then

we record the obtained total weights of the minimum γK-cover in ∆Q and record

Chapter 6. Quantile-Based KNN Over Multi-Valued Objects 191

its trimmed aR-local tree by aRQ,trim. ∆Q will be used in the next pruning rule,

and aRQ,trim will be used in line 8 to call Algorithm 6.3 if U cannot be pruned by

the next pruning rule.

Example 6.6. Continue Example 6.5 regarding Figure 6.7. Suppose that the root

of aRQ contains entires E1 and E2. TD0 = {EQ}. At the root level, we obtain

TD1 = {E1, E2} regarding the depicted γk. At the next level, E1,1, E1,2, E2,2, E2,1

are trimmed; consequently, TD2 = {E1,3, E2,3} and ∆ = 0 if dup(E1,3, E) > γK and

dup(E2,3, E) > γK. If w(TD2) < ϕ, then E will be pruned; otherwise we go to the

next level for further exploring.

In case that dup(E1,3, E) ≤ γK and dup(E2,3, E) ≤ γK, TD2 remains ∅ and

∆ = w(E1,3) + w(E2,3). If ∆ > ϕ then E cannot be pruned. Since TD2 = ∅, the

execution of Pruning Rule 2 terminates. If E is an object, then we record ∆Q and

aRQ,trim. Here, ∆Q = w(E1,3) +w(E2,3), and in aRQ,trim, E1,1, E1,2, E2,1, E2,3 are

pruned/trimmed. �

Remark 6. When we trim/remove entries of R-trees, we do a “logic” removal by

commenting them out.

PRUNED1(Q,E). For each entry, we first check Pruning Rule 1 - PRUNED1(Q,E)

returns TRUE if E is pruned. If E cannot be pruned by Pruning Rule 1, then we

invoke the above execution of Pruning Rule 2; PRUNED1(Q,E) returns TRUE if

E is pruned.

Trimming the Local aR-Tree of U . Before conducting the computation of ϕ-

quantile distance by Algorithm 6.3, we first trim the entries of the local aR-tree by

γK . We conduct this in a level-by-level fashion from the root of the local aR-tree

in the same way as the execution of Pruning Rule 2 except that we swap the role

Q with U ; that is, Q becomes E, and U becomes Q in the execution of Pruning

192 Chapter 6. Quantile-Based KNN Over Multi-Valued Objects

Rule 2. At each level i of aR-tree of U , we check the flowing pruning rule.

Pruning Rule 3. (Using Local aR-tree:) If (∆+w(TDi))×∆Q ≤ ϕ, then U can be

pruned. 4

Proof. From the definition of ϕ-quantile distance, it is immediate that if (∆ +

w(TDi))×∆Q ≤ ϕ, then dϕ(Q,U) ≥ γK .

PRUNED2(Q,E). As described above, the execution of Pruning Rule 3 is the

same as the execution of Pruning Rule 2 except that we swap the roles of Q and

U and check Pruning Rule 3 instead of Pruning 2 at each level. PRUNED2(Q,E)

terminates and returns TRUE if E is pruned; otherwise, PRUNED2(Q,E) termi-

nates at the leaf-level (or TDi = ∅) and returns FALSE. When PRUNED1(Q,E)

returns FALSE, RQ,trim × RU,trim is used as the input of Algorithm 6.3 for com-

puting dϕ(Q,U) instead of using RQ × RU . Here, RQ,trim (RU,trim) consists of the

untrimmed entries at the root of aRQ,trim (aRU,trim). Note that in Algorithm 6.3,

level-by-level we use only untrimmed entries from both aRQ,trim and aRU,trim. We

can further speed-up the computation by visiting only the intermediate nodes, in

aRQ,trim and aRQ,trim, respectively, with more than one child.

The correctness of Algorithm 6.4 immediately follows from the theorems and

pruning rules. Note that when Algorithm 6.3 is invoked, at each iteration we use

the minimum value of γK and the obtained upper-bound dupϕ as an upper-bound.

4Here, ∆Q is obtained as the weight of the minimum γK-cover of the local aR-tree of Q. ∆

and TDi are recorded when execute the Pruning Rule 2 at level i and swap the roles of Q and U

as described above.

Chapter 6. Quantile-Based KNN Over Multi-Valued Objects 193

6.4 ϕ-quantile Group-base KNN

Our algorithm for solving the ϕ-quantile group-base KNN (ϕ ∈ (0, 1]) (defined

in Section 6.1.1) also follows the seeding-refinement framework, Algorithm 6.2.

For the seeding-phase, firstly we show that computing a ϕ-quantile group-base

distance gbdϕ(Q,U) between Q and U is NP-hard, and then an existing algorithm

is employed with the approximation factor 2 to approximately compute gbdϕ(Q,U).

In the refinement phase, 2 novel, effective pruning techniques are developed.

6.4.1 Computing ϕ-Quantile Group-base Distances

We first show that the Knapsack Problem can be converted to a special case of our

problem.

Knapsack Problem. It is NP-complete and can be formally described below

[GJ90].

INSTANCE: Finite set S, for each element s ∈ S, an integer size c(s), and an

integer value v(s), and positive integers X and Y .

QUESTION: Is there a subset S ′ of S such that
∑

s∈S′ c(s) ≤ X and
∑

s∈S′ v(s) ≥

Y .

NP-hardness. As defined in Section 6.1.1, the problem of computing gbdϕ(Q,U)

can be stated below. Find a subset S ′ from Q× U such that
∑

(q,u)∈S′ w(q, u) ≥ ϕ

and
∑

(q,u)∈S′ w(q, u)d(q, u) is minimized.

A special case of the problem of computing gbdϕ(Q,U) is that Q is a point with

weight 1. In this case, each w(u) (= w(Q, u)) may be arbitrarily assigned with

the constraint
∑

u∈U w(u) = 1, and the location of each u can be chosen so that

w(Q, u)d(Q, u) equals any integer.

If we normalize the above Knapsack Problem by normalizing each v(s) by

194 Chapter 6. Quantile-Based KNN Over Multi-Valued Objects

v(s)∑
s′∈S v(s′)

. Then the normalized version of Knapsack is also NP-complete. The

decision problem of the above spacial case of computing gbdϕ(Q,U) is the same

as the normalized Knapsack Problem. Consequently, the problem of computing

gbdϕ(Q,U) is NP-hard.

Theorem 6.4. The problem of computing gbdϕ(Q,U) is NP-hard.

Approximately Computing gbdϕ(Q,U). If we want to maximize
∑

s∈S′ v(s)

with respect to a given X in the Knapsack Problem, then there is PTAS; that is,

a polynomial-time approximation scheme giving an approximate factor arbitrarily

closer to 1. Nevertheless, there is no PTAS to approximately minimize
∑

s∈S′ c(s)

regarding a given Y .

We adopt the approximate algorithm in [GJ00] for Knapsack Problem. It runs in

time O(m logm), where m is the number of elements in S, with the approximation

factor 2 for minimizing
∑

s∈S′ c(s) for a given Y . The algorithm can be immediately

used to approximately compute gbdϕ(Q,U) if we treat Q × U as S; and for each

(q, u) ∈ Q × U , treat w(q, u) as a v value and treat w(q, u)d(q, u) as a c value in

the Knapsack Problem. Let aproxgbdϕ(Q,U) denote the group distance output by

the approximation algorithm. The following theorem is shown [GJ00].

Theorem 6.5. 1 ≤ aproxgbdϕ(Q,U)

gbdϕ(Q,U)
≤ 2.

We briefly present the basic idea of the algorithm in [GJ00] while applying it

to computing gbdϕ. It iteratively conducts 2 phases: Completion and Growing

Seed-Set ST - initially ∅ (w(ST) is always smaller than ϕ). We firstly sort Q× U

increasingly based on d(q, u). In the Completion phase, for each element (q, u) in

the remaining Q × U with w(q, u) + w(ST) ≥ ϕ, 1) replace the current feasible

solution S ′ if the total weighted distance in ST ∪{(q, u)} is smaller than that in S ′,

and 2) remove (q, u) from Q× U . In Growing Seed-Set ST , move the 1st element

Chapter 6. Quantile-Based KNN Over Multi-Valued Objects 195

from the remaining Q×U to ST . In each iteration, we first conduct Completion and

then Growing Seed-Set; the algorithm terminates and outputs the total weighted

distance in S ′ if there is no element left in the remaining Q× U .

Example 6.7. Suppose that ϕ = 0.5 and Q×U contains 4 elements. To simplify the

presentation, we present these 4 elements only by its (distance, weight): {(1, 0.28),

(2, 0.12), (3, 0.48), (4, 0.12)}. In our algorithm, we first sort the list increasingly

based on the value of weight×distance
weight

= distance.

In the 1st iteration, nothing is chosen in the Completion phase since all elements

with weight less than 0.5; ST becomes {(1, 0.28)} and (1, 0.28) is removed from Q×

U in the Growing Seed-Set phase. In the 2nd iteration, S ′ = {(1, 0.28), (3, 0.48)} is

chosen as a feasible solution and (3, 0.48) is removed Q×U in the Completion phase;

ST grows to {(1, 0.28), (2, 0.12)} and (2, 0.12) is removed from Q×U since (2, 0.12)

was the 1st element. In the 3rd iteration, regarding Completion phase, (4, 0.12)

is removed from Q × U as w(ST) + 0.13 = 0.52 > 0.5 and {(1, 0.28), (2, 0.12),

(4, 0.12)} becomes S ′ as its total weighted distance (1) smaller than that (1.72) in

S ′ = {(1, 0.28), (3, 0.48)}. Consequently, 1 is output as approxgbd0.5(Q,U); in this

example it happens approxgbd0.5(Q,U) = gbd(Q,U). �

Note that this approximate algorithm does not accommodate a pruning-based

level-by-level computation of gbdϕ(Q,U) because it requires to access all elements.

6.4.2 Refinement

In the seeding phase, we use the above approximate algorithm to approximately

compute gbdϕ(Q,U) between Q and each of the chosen K objects. The largest

obtained aproxgbdϕ value is denoted as λK . The refinement algorithm follows the

similar framework outlined in Algorithm 6.4 in Section 6.3.2 except that:

196 Chapter 6. Quantile-Based KNN Over Multi-Valued Objects

• In PRUNDE1(Q,E) we will use the pruning rules below.

• remove line 7.

• call the above algorithm to (approximately) compute gbdϕ(Q,U) instead of

Algorithm 6.3.

• use aproxgbdϕ generated by the above approximate algorithm and λK to

replace dϕ and γK , respectively.

In the group with its total weighted distance gbdϕ(Q,U), instances may be from

many different entries of the local aR-tree of U . Consequently, it is not always

possible to trim many entries (subtrees) from the local aR-tree as what we do for

computing ϕ-quantile KNN. Thus, in our refinement algorithm we only develop

pruning rules to prune entries in the global R-tree.

Pruning Rule 4. Suppose that EQ is the MBB of Q. If ϕ× dL(EQ, E) ≥ λK , then

E is pruned from the global R-tree.

The next pruning rule is used at each level. Suppose that Lk = {Ei | 1 ≤ i ≤ l}

consists of all the entries at the level k of the local aR-tree of Q. Without loss of

generality, we assume that Lk is sorted in the increasing order based on dL(Ei, E);

that is, dL(Ei1, E) ≤ dL(Ei2, E) if i1 < i2. Let Ej denote the ϕ-quantile of Lk

according to the search key dL(Ei, E) and the weight w(Ei) of each element Ei ∈ Lk.

Pruning Rule 5. E is pruned if:

(ϕ−
j−1∑
i=1

w(Ei))d
L(Ej, E) +

j−1∑
i=1

(w(Ei)× dL(Ei, E)) ≥ λK .

Executing PRUNDE1(Q,E). For an E in the global R-tree, we first check

Pruning Rule 4; this is done by constant time. If E cannot be pruned, then we

traverse the local aR-tree of Q level-by-level from the root to test Pruning Rule

Chapter 6. Quantile-Based KNN Over Multi-Valued Objects 197

5. To test Pruning Rule 5 at each level k, we first need to sort Lk. The total

time complexity for traversing the local aR-tree of Q to test Pruning Rule 5 is thus

O(|Q|).

Accuracy Guarantee. Our algorithm for solving ϕ-quantile group-base KNN has

the following accuracy guarantee.

Theorem 6.6. Suppose that for 1 ≤ i ≤ k, Ui is ranked the top-ith in the exact

ϕ-quantile group-base KNN, and U ′
i is ranked the top-ith by our algorithms. Then

for 1 ≤ i ≤ k, gbdϕ(Q,Ui) ≤ aproxgbdϕ(Q,U ′
i) ≤ 2gbdϕ(Q,Ui).

Proof. First, it can be immediately verified that the object U pruned (i.e., the entry

E containing U is pruned) by Pruning Rule 4 or Pruning 5 has the property that

gbdϕ(Q,U) ≥ λK . From Theorem 6.6, it follows that for 1 ≤ i ≤ k, gbdϕ(Q,Ui) ≤

aproxgbdϕ(Q,U ′
i) ≤ 2gbdϕ(Q,Ui).

Theorem 6.6 states that every ith group-base distance (i ∈ [1, K]) output by our

algorithm is between gbdϕ(Q,Ui) and 2gbdϕ(Q,Ui). Our experiment, nevertheless,

indicates the error could be much smaller in practice.

6.5 Experimental Study

We report a thorough performance evaluation on the efficiency and effectiveness of

our algorithms. In particular, we implement and evaluate the following techniques.

Q-KNN: Techniques presented in Section 6.3 to compute KNN based on a

ϕ-quantile distance (ϕ ∈ (0, 1]).

Naive Q-KNN: Remove the pruning rules from Q-KNN.

G-KNN: Techniques in Section 6.4 to compute KNN based on ϕ-quantile

group-base distances.

198 Chapter 6. Quantile-Based KNN Over Multi-Valued Objects

Naive G-KNN: Remove the pruning rules from G-KNN.

All algorithms are implemented in C++ and compiled by GNU GCC. Experi-

ments are conducted on PCs with Intel Xeon 2.4GHz dual CPU and 4G memory

under Debian Linux. Our experiments are conducted on both real and synthetic

datasets.

Real dataset is extracted from NBA players’ game-by-game statistics

(http://www.nba.com), containing 339,721 records of 1,313 players. Each player is

treated as a multi-valued object where the statistics (score, assistance, rebound) of

a player per game is treated as an instance with the equal weight (normalized).

Synthetic datasets are generated using the methodologies in [BKS01] regarding

the following parameters. Dimensionality d varies from 2 to 5 with default value 3.

Data domain in each dimension is [0, 1]. Number n of objects varies from 10, 000

to 50, 000 with default value 10, 000. Number m of instances per object follows a

uniform distribution in [1,M] whereM varies from 400 to 2, 000 with the default

value 400. The value K varies among 5, 10, 20, 30 and 40 with default value 10.

The average length of object MBBs follows a uniform or normal distribution. In

normal distribution, the length of MBB lies in the range [0, h] with the expectation

value h/2 and standard deviation 0.025; in uniform distribution, the length of

MBBs uniformly spreads over [0, h] where h varies from 0.05 to 0.25 with default

value 0.05 (i.e., 5% of the edge length of the whole data space). With the default

setting, the total number of instances is about 2 millions.

Centers of objects (objects’ MBBs) follow either uniform, normal or anti-

correlated distribution. Locations of instances in an object follow uniform or

normal distribution. Weights assigned to each instance follow uniform or normal

distribution. Table 6.2 summarizes the parameters used in our experiment where

Chapter 6. Quantile-Based KNN Over Multi-Valued Objects 199

the default values are in bold font. For each experiment, we randomly choose 100

objects from datasets as query objects and record the average performance. Note

that default values will be used in our experiment unless otherwise specified.

dimensionality d 2, 3, 4, 5

number of objects N 10k, 20k, 30k, 40k, 50k

edge length h 0.05, 0.1, 0.15, 0.2, 0.25

number of instances m 400, 600, 800, 1k, 2k

K 5, 10, 15, 20, 30

ϕ 0.1, 0.3, 0.5, 0.7, 0.9

object location uniform, normal, anti-correlated

instance location uniform, normal

weight distribution uniform, normal

h distribution uniform, normal

Table 6.2: Parameter Values.

 0

 0.2

 0.4

200 400 600 800 1000

P
ro

ce
ss

in
g

T
im

e
(s

) Algorithm 3
Naive

(a) VaryingM

 0

 0.02

 0.04

 0.06

2 3 4 5

P
ro

ce
ss

in
g

T
im

e
(s

) Algorithm 3
Naive

(b) Varying d

Figure 6.8: Time for Computing dϕ

6.5.1 Computing ϕ-Quantile Distance

Figure 6.8 evaluates the efficiency of our technique, Algorithm 6.3, for computing

a ϕ-quantile distance, against the naive algorithm described in Section 6.3.1. In

our experiment, we randomly select 1000 pairs of objects from the datasets to test

these 2 algorithms and report the average time by seconds. Figure 6.8(a) shows

that our technique has more advantages when the number of instances increases.

Figure 6.8(b) shows that the advantage of using Algorithm 6.3 gets lower when

200 Chapter 6. Quantile-Based KNN Over Multi-Valued Objects

dimensionality increases. This is because that the pruning costs in Algorithm

6.3 are proportional to the dimensionality. When dimensionality increases, more

pruning overheads are involved. Nevertheless, Figure 6.8 indicates Algorithm 6.3

significantly outperforms the naive algorithm. Therefore, we always use Algorithm

6.3 in the remaining experiments. Note that we did not evaluate the techniques in

[YMT06] since they are not generally applicable to our problem.

6.5.2 Overall Performance

Figure 6.9 reports the results of the evaluation on processing time of Q-KNN, Naive

Q-KNN, G-KNN, Naive G-KNN over real and synthetic datasets. As shown, Q-

KNN and G-KNN are much more efficient than their naive versions (i.e. without

using pruning techniques in the refinement phase) - upto 2 orders of magnitude.

The improvement is less significant over NBA data. This is because in NBA dataset,

objects’ MBB sizes are very large relative to the whole data space; this gives very

high overlapping degree among objects’ MBBs. Thus less objects can be pruned

during query processing.

 0

 400

 800

 1200

Synthetic data

P
ro

ce
ss

in
g

T
im

e
(s

)

1.1

588.4

2.8

1132.0Q-KNN
Naive Q-KNN

G-KNN
Naive G-KNN

(a)

 0

 200

 400

 600

NBA data

P
ro

ce
ss

in
g

T
im

e
(s

)

32.7

320.6

203.6

566.8

Q-KNN
Naive Q-KNN

G-KNN
Naive G-KNN

(b)

Figure 6.9: Overall Performance

We further evaluate the pruning powers in the refinement phase by conducting

the following experiment. Regarding the ϕ-quantile KNN, we examine the running

Chapter 6. Quantile-Based KNN Over Multi-Valued Objects 201

time of Naive Q-KNN, Naive Q-KNN with the Pruning Rule 1 (P1), Naive Q-KNN

with the Pruning Rules 1 and 2 (P1-2), and the Naive Q-KNN with the Pruning

Rules 1, 2, and 3 (P1-3, that is, Q-KNN). Similarly, for ϕ-quantile group-base

KNN, Naive G-KNN, Naive G-KNN with the Pruning Rule 4 (P4), and Naive G-

KNN with the Pruning Rules 4 and 5 (P4-5, that is, G-KNN) are examined. The

evaluation results are depicted in Figure 6.10. It shows that all these pruning rules

are very effective and efficient. These 2 experiments indicate that Q-KNN and G-

KNN are much more efficient than Naive Q-KNN and Naive G-KNN, respectively.

Thus, in the rest of experiments we will no longer evaluate Naive Q-KNN and Naive

G-KNN.

100

101

102

103

Q-KNN G-KNN

P
ro

ce
ss

in
g

T
im

e
(s

)

29.9

3.6
1.1

1132.0

86.0

2.8P1

P1-2
P1-3

P4

P4-5

588.4

Figure 6.10: Pruning Powers

6.5.3 Accuracy

To evaluate the accuracy of G-KNN, we use two error measures. The first is the

average distance error ratio. For 1 ≤ i ≤ K, approx(i) denotes the group-based

distance of the top-ith object output by G-KNN, and exact(i) denotes the group-

based distance of the top-ith object in the exact solution.

err ratio =

∑K
i=1

|approx(i)−exact(i)|
exact(i)

K

202 Chapter 6. Quantile-Based KNN Over Multi-Valued Objects

The second measure records the “misplaced” ratio. For 1 ≤ i ≤ K, if the ith object

in the exact solution is not the same as the ith object in the solution output by

G-KNN, then mp(i) = 1.

mp ratio =

∑K
i=1 mp(i)

K

As the ϕ-quantile group-base KNN is NP-hard and no efficient algorithm exists,

we generate the exact solutions by a trivial exhaustive search - it is exponential

and very slow. We conduct a very small scale experiment as follows. Each object,

including query object, has 4 instances; there are total 100 objects. Others all use

the default settings in Table 6.2. Table 6.3 reports the evaluation results when

object distribution varies, while Table 6.4 reports the results when the distribution

of weights varies. Both demonstrate G-KNN is highly accurate and more accurate

than the theoretical guarantee in Theorem 6.6; that is, err ratio is much smaller

than 2.

err ratio mp ratio
anti 0.015 0.02
unif 0.013 0.02
norm 0.015 0.04

Table 6.3: Vary Objects Distribution

err ratio mp ratio
unif 0 0
norm 0.015 0.02

Table 6.4: Vary Weight Distribution

6.5.4 Evaluating Impacts by Different Settings

Distributions. We evaluate possible impacts on algorithm efficiency by distribu-

tions of centers of objects, locations of instance, edge lengths of object MBBs, and

weights. The results (time in seconds) for Q-KNN and G-KNN are reported in Table

6.5, respectively. They demonstrate that Q-KNN is not quite sensitive to various

distributions but G-KNN is quite sensitive towards different distributions. This is

because of the nature of ϕ-quantile group-base distance - group-base. Note that

Chapter 6. Quantile-Based KNN Over Multi-Valued Objects 203

it is only meaningful for object locations to have anti-distributions; consequently,

we do not evaluate other distributions using anti. Moreover, the experiment shows

anti always leads to more computation time; this is the reason why we use anti as

a default setting for locations.

Q-KNN G-KNN
unif norm anti unif norm anti

object loc 0.9(s) 0.8(s) 1.1(s) 2.3(s) 2.0(s) 2.8(s)
MBB length 1.1(s) 1.2(s) * 2.8(s) 2.9(s) *
instance loc 1.1(s) 1.0(s) * 2.8(s) 2.3(s) *
weights 1.1(s) 1.1(s) * 2.0(s) 2.8(s) *

Table 6.5: Various Distributions

Impacts by Other Settings. In the next set of experiments, we study the scal-

ability of our algorithms regarding different ϕ-values, number of objects, number

of instances (M), lengths of MBB edges (h), K, and the dimensionality d. In our

experiments, we record the average running time per query for each algorithm.

While Q-KNN and G-KNN are not quite sensitive to different ϕ-values due to the

nature of the techniques developed, they are quite sensitive to the other settings es-

pecially G-KNN. The techniques in G-KNN do not have pruning rules for trimming

object entries and the distance computation techniques of G-KNN do not have any

pruning rules either. Thus, G-KNN is very sensitive to the increment of number

of objects, number of instances, MBB lengths, and K. It is interesting to note

that G-KNN runs faster when the dimensionality d increases. This suggests that

G-KNN prunes more objects in the refinement phase when d increases. A possible

reason is that when we fix the MBB edge length, the average area of MBBs gets

smaller related to the whole data space; consequently, Pruning Rules 4 and 5 are

more effective as they are group-based (thus, area based).

204 Chapter 6. Quantile-Based KNN Over Multi-Valued Objects

 1

 2

 3

 4

0.1 0.3 0.5 0.7 0.9

P
ro

ce
ss

in
g

T
im

e
(s

) Q-KNN G-KNN

(a) Varying ϕ

 2

 4

 6

 8

 10

10k 20k 30k 40k 50k

P
ro

ce
ss

in
g

T
im

e
(s

) Q-KNN G-KNN

(b) Varying # Objects

 0

 10

 20

 30

200 400 600 800 1000

P
ro

ce
ss

in
g

T
im

e
(s

) Q-KNN G-KNN

(c) VaryingM

 0

 50

 100

0.05 0.10 0.15 0.20 0.25

P
ro

ce
ss

in
g

T
im

e
(s

) Q-KNN G-KNN

(d) Varying h

 2

 4

 6

 8

 10

5 10 20 30 40

P
ro

ce
ss

in
g

T
im

e
(s

) Q-KNN G-KNN

(e) Varying K

 5

 10

 15

2 3 4 5

P
ro

ce
ss

in
g

T
im

e
(s

) Q-KNN G-KNN

(f) Varying d

Figure 6.11: Other Settings

6.5.5 Summary

Our performance evaluation indicates that Q-KNN is very efficient and scalable.

Although ϕ-quantile group-base KNN is inherently more complex, our G-KNN

techniques still perform quite efficiently. Furthermore, G-KNN is highly accurate

and performs much more accurate than the theoretical bound.

Chapter 6. Quantile-Based KNN Over Multi-Valued Objects 205

6.6 Conclusion

In this chapter, we investigate the problem of KNN search over multi-valued ob-

jects. In particular, we use the quantile paradigm to retrieve KNN sensitive to the

relative distribution among multi-valued objects. Two quantile KNN models have

been proposed. One is based on a ϕ-quantile ranking score (e.g. median score)

and another is based on the overall ranking score of the ϕ-quantile best popula-

tion. We show that the second KNN problem is NP-hard. A set of efficient, novel

techniques have been developed to process the first quantile KNN problem. Due

to the NP-hardness of the second KNN problem, efficient approximate techniques

with approximate factor 2 are presented. We conduct extensive experiments to

illustrate the efficiency and effectiveness of our proposed techniques.

The current algorithms developed are based on main-memory computation.

Although they can be immediately extended to support I/O involved computation,

a possible future work may investigate I/O efficient techniques for these 2 KNN

problems.

Chapter 7

Effectively Indexing the Uncertain

Space 1

Range search over uncertain data is important in query processing and data mining

which have many applications. As an example, a server monitors a set of taxis

equipped with GPS and location information of each taxi is sent back to the server

every 5 minutes. Based on this periodically updated location information and other

factors like velocity constraint, at each time stamp the location of a taxi is within a

circle until next update arrives. The server may issue queries like “find taxis which

are currently within 10 kilometers from the city tower”. Since the location is not

exact, a taxi may satisfy this query partially, as shown in Figure 7.1. The grey

circles represent uncertain region of taxis while the transparent circle is the query

region. While A definitely satisfies the query, B and C probably satisfy it, which

means they are within the query region with a probability. This probability can be

intuitively computed based on the intersection between one uncertain region and

1The techniques presented in this chapter originally appear in the paper “Effectively Indexing

the Uncertain Space”, Ying Zhang, Xuemin Lin, Wenjie Zhang, Jianmin Wang and Qianlu Lin,

accepted by IEEE Transactions on Data Engineering (TKDE), 2009

206

Chapter 7. Effectively Indexing the Uncertain Space 207

City Tower

A

B
C

10 km

Figure 7.1: Taxis within 10 km from the City Tower

the query region, also the specific probability density function (PDF) information

inside each taxi’s uncertain region. Results with low probability values are often

of no interest to users and a probability threshold is sometimes given beforehand

to return results with probability no less than this threshold only.

Continuing with the example of monitoring taxis in Figure 7.1. In some cases

specific identification of taxis are not necessary and only aggregate information is

required, such as “how many taxis are currently inside city”. Taxis with uncertain

region partially inside city will also be considered probabilistically; Ranking based

on probability is another way to handle possible results besides the threshold based

fashion. To schedule the taxis, the server may retrieve 10 available taxis satisfying

“within distance at most 5km from Four Seasons Hotel” with highest probability.

Such a query is called a probabilistic top-k range query.

Range search is also a key component in the filtering phase of many queries in

mining uncertain data such as spatial similarity join and k nearest neighbour query.

Particularly, the spatial similarity join is essential to identify pairwise similar ob-

jects represented by uncertain multidimensional data. And k nearest neighbour

query plays an important role in the study of spatial clustering and machine learn-

208 Chapter 7. Effectively Indexing the Uncertain Space

ing.

There are two types of techniques for indexing uncertain data with arbitrary

PDF. The first type is R-Tree based index [CKP04, KHKH07, KKPR06, LBR+07,

SMP+07]. More specifically, the uncertain region of multidimensional uncertain

objects are grouped by R-Tree where each data unit is the minimum bounding

rectangle(MBR) of a PDF. The drawback of this approach is that the uncertain

region of an object is considered as an atomic unit, which leads to a poor per-

formance for the probabilistic threshold based queries when individual MBRs are

large. The second type of index is based on probabilistically constrained regions

(PCRs) [CC07, TCX+05]. The uncertain region of an object is partitioned with

respect to a set of probability values. Partitioning results are then organized into a

R-Tree style structure named U -Tree. U -Tree significantly outperforms uncertain

region based index by utilizing probability thresholds in range query processing.

While U -Tree supports the range queries with rectangular regions aligning the di-

mensional axes of data space well, it may not always provide a good support to

range queries with non-rectangular regions or rectangular regions not aligning to

axes. Details and analysis of existing indexes will be introduced in Section 7.1.

Motivated by these facts, in this chapter we study the problem of indexing

uncertain data to support queries that require efficient range query processing.

Contributions can be summarized as follows.

• A space-efficient index structure for organising multidimensional uncertain

objects, UI-Tree, is proposed. UI-Tree can support arbitrary PDF of uncer-

tain objects.

• We develop efficient solutions for various types of queries based on UI-Tree,

including range query, size estimation of range query, probabilistic top-k range

query and similarity join.

Chapter 7. Effectively Indexing the Uncertain Space 209

• We provide rigorous analysis to estimate the filtering capacity of UI-Tree.

• Extensive experiments over real and synthetic data sets are conducted to

demonstrate the efficiency and scalability of UI-Tree compared with other

state-of-the-art techniques.

The rest of the chapter is organized as follows. We formally define the problem

and provide background information in Section 7.1. Section 7.2 presents the UI-

Tree index structure. Section 7.3 applies UI-Tree to support different types of

queries. Results of comprehensive performance studies are discussed in Section 7.4.

In Section 7.5, we conclude the chapter.

7.1 Background

In Section 7.1.1, we first formally define the model of multidimensional uncertain

objects and queries studied in the chapter. These are followed by the problem

statement. Existing indexing approaches are reviewed in Section 7.1.2. Table 7.1

below summaries mathematical notations used throughout the chapter.

7.1.1 Problem Definition

Points referred in this chapter, by default, are in d-dimensional numerical spaceD =

{D1, . . . , Dd} where Di denotes the i-th dimension. A multidimensional uncertain

object U can be regarded as a point whose location might appear at some locations

with certain probabilities. Each possible appearance of the object is regarded as an

instance of the uncertain object. Whenever there is no ambiguity, for instance u,

we use u and u.p to represent the location(point) of the instance and its appearance

probability respectively. For presentation simplicity, we use “uncertain object” to

represent “multi-dimensional uncertain object”.

210 Chapter 7. Effectively Indexing the Uncertain Space

Notation Definition

U ,V uncertain objects
U ,V set of uncertain objects
n the number of uncertain objects in data set

Q (Qr) range query (query region)
θ probabilistic threshold

Papp(Q,U) the appearance probability of U w.r.t Q
l number of partitions for each uncertain object

w(wp, wlist) a word (probability value, posting list)
A(w)(A(Q)) the area of wmbr(Qr)
WA(w) the weighted area of a word
fi(fl) fan-out of non-leaf(leaf) node in UI-Tree
tw,U tuple from wlist with oid U

P (tw,U) probability of tuple tw,U

C Candidate set
m merge factor

Table 7.1: The Summary of Notations.

An uncertain object can be described either continuously or discretely. In the

continuous case, an uncertain object U is described by its PDF U.pdf and uncertain

region Ur. The appearance probability of an instance x ∈ Ur is U.pdf(x) and∫
x∈Ur

U.pdf(x)dx = 1 . In the discrete case, an uncertain object U consists of a set

of instances u1, . . . , um where ui appears with probability ui.p and
∑

u∈U u.p = 1.

For the presentation simplicity, we only discuss the continuous cases in the following

part of the chapter as discrete cases can be easily mapped to continuous cases.

Before defining range queries over uncertain data, we first define appearance

probability of an uncertain object with respect to the query region. Because of the

uncertainty of the location of an object, it may be no longer meaningful to simply

declare that it appears or does not appear in the query region. For a given query

Q with query region Qr and uncertain object U , we use Papp(U,Q) to represent the

probability that U falls in Qr. Papp(U,Q) is defined as follows.

Papp(U,Q) =

∫
x∈Ur∩Qr

U.pdf(x)dx.

Chapter 7. Effectively Indexing the Uncertain Space 211

Usually, query results with low probabilities are of no interest to users. Many

queries studied in the literature are accompanied with a user defined probabilistic

threshold θ which reflects the requirements or confidence level of the user. Following

is the definition of probabilistic threshold range query[CXP+04, TCX+05]. For

presentation simplicity, we use “range query” to denote “probabilistic threshold

range query” whenever there is no ambiguity.

Definition 7.1. Probabilistic Threshold Range Query

For a given set of uncertain objects U and a range query Q, the probabilistic thresh-

old range query retrieves all uncertain objects U ∈ U with Papp(U,Q) ≥ θ where θ

is the user specified probabilistic threshold and 0 < θ ≤ 1.

In some applications it suffices to get an approximate number of uncertain

objects instead of retrieving the uncertain objects qualifying the range query. We

call this size estimation of range query.

Definition 7.2. Size Estimation of Range Query

For a given set of uncertain objects U and a range query Q, estimate the num-

ber of uncertain objects U ∈ U with Papp(U,Q) ≥ θ where θ is the user specified

probabilistic threshold and 0 < θ ≤ 1.

To handle results with low appearance probability Papp(U,Q), ranking the ob-

jects based on Papp(U,Q) and returning top-k results only is another method besides

probabilistic threshold based approach. Following is the problem definition.

Definition 7.3. Top-k Range Query

For a given set of uncertain objects U and a range query Q, a top-k range query

retrieves k uncertain objects U ∈ U with highest Papp(U,Q).

Efficient processing of joins often relies on fast execution of range query in the

filtering phase. The problem of distance based spatial similarity join over uncertain

212 Chapter 7. Effectively Indexing the Uncertain Space

data is introduced in [KKPR06]. Following is a formal definition of this problem

in a probabilistic threshold fashion. It is referred as “similarity join” when there is

no ambiguity.

Definition 7.4. Probabilistic Threshold Similarity Join

For two given sets of uncertain objects U and V, retrieve all pairs of (U, V) where

U ∈ U and V ∈ V such that
∫
x∈Ur

∫
y∈Vr∧|x−y|≤γ

U.pdf(x) × V.pdf(y)dydx ≥ θ. γ

and θ are pre-defined distance and probabilistic threshold respectively.

Problem Statement

In this chapter, we aim to build an efficient index to support various queries which

rely on efficient processing of range query. The index supports uncertain objects

with arbitrary PDFs and is not sensitive to the size and shape of the query regions.

7.1.2 Preliminaries

In this subsection, we first briefly describe and analyse two types of indexing struc-

tures supporting uncertain objects with arbitrary PDFs, R-Tree based index and

PCR based index. Then we introduce the inverted index technique and its appli-

cation in indexing uncertain objects. In the end is a brief introduction of other

existing techniques.

R-Tree based Index

R-Tree family[Gut84] are tree data structures which are similar to B-Tree, but are

used for spatial access methods in which a set of points or rectangles are recursively

grouped. Each intermediate entry of R-Tree is represented as a MBR, which is the

minimal bounding rectangle of the entry which tightly bounds all the data in the

subtree. R-Tree can efficiently support the range query because it can prune or

validate a group of objects at intermediate entries. Moreover the construction of

Chapter 7. Effectively Indexing the Uncertain Space 213

R-Tree aims to maximise the chance of pruning/validating R-Tree entries for the

range query as well.

A simple way to index the uncertain objects is to organize their uncertain re-

gions with existing indexing approaches like R-Tree [KKPR06, KHKH07, SMP+07,

CKP04, LBR+07]. Figure 7.2(a) illustrates the basic idea of the uncertain region

based indexing where the uncertain regions of the uncertain objects are indexed

by R-Tree. It is simple and performs well if the uncertain regions of objects are

very small regarding the query region size. As the uncertain region is considered as

an atomic unit in the index, without further exploring the detailed information it

can not tell whether or not an uncertain object satisfies the query when uncertain

region overlaps range query. Such an index inherently limits the filtering capacity

of the index and is not suitable to the probabilistic threshold related queries. As

shown in Figure 7.2(b), for a given query Q and probabilistic threshold θ = 0.5, we

can not prune U1 although intuitively the Papp(U1, Q) should be small. Similarly,

U2 can not be validated either. Consequently, the performance of the index is poor

when the size of the uncertain region is not small.

uncertain regions

R-tree for uncertain regions

(a)

QU1

U2

(b)

Figure 7.2: Uncertain Region Based Index

PCR based Index

PCR (probabilistically constrained regions) based indexes make use of the detailed

214 Chapter 7. Effectively Indexing the Uncertain Space

information about PDF of uncertain objects to enhance the filtering capacity. It

is introduced by Tao et al [TCX+05] to support the range query on uncertain

objects in a multi-dimensional space where the PDF of the uncertain object might

be arbitrary functions. PCR is a general version of x-bounds which aims to index

one dimensional uncertain data [CXP+04].

In [TCX+05], an uncertain object U is modeled by its PDF U.pdf(x) and un-

certain region Ur. For a given probabilistic threshold θ, corresponding U.pcr(θ)

can be employed for pruning and validating purpose. U.pcr(θ) is constructed as

follows. As shown in Figure 7.3, in each dimension, two lines are calculated. In the

horizontal dimension, U has the probability θ to occur on the left side of line l1−,

also probability θ to occur on the right side of line l1+. Similarly, l2− and l2+ are

calculated in the vertical dimension.

Url1- l1+

l2-

l2+

2r
q

1r
q

Figure 7.3: A 2d PCR (θ)

The shadowed region in Figure 7.3 forms U.pcr(θ). A series of theorems are

proposed to take advantage of U.pcr(θ) to prune or validate U regarding θ. As

shown in Figure 7.3, suppose both range queries q1 and q2 have the same probability

threshold θ ≤ 0.5 and with query regions qr1 and qr2 respectively. U can be pruned

regarding q1 because qr1 does not intersect with U.pcr(θ). On the other hand, U

can be validated with respect to q2 since qr2 completely contains Ur below l2−. As it

Chapter 7. Effectively Indexing the Uncertain Space 215

is infeasible to keep all U.pcr(θ) for any θ ∈ (0, 1], a finite number of PCRs are pre-

computed to facilitate the range query process in [TCX+05]. Based on the PCRs

of the uncertain objects, U -Tree is built up in a similar way with R-Tree where

each entry in a leaf node corresponds to an uncertain object. The main difference

is the splitting process in which U -Tree focuses on optimizing the filtering capacity

of the PCRs in the intermediate node.

In order to prune or validate an uncertain object U -Tree needs to project the

query region to each dimension as shown in Figure 7.4. This loses the spatial

“clustering” information which in turn might severely impair the filtering capac-

ity of the PCR technique. As shown in Figure 7.4, if the query region Qr is a

rectangle which does not align the x and y axis, then there is no difference be-

tween Qr and M (shadowed rectangle) regarding the pruning ability to uncertain

object U1. It implies that we can not prune U1 for query Q regardless of the

probabilistic threshold value, even though they do not intersect with each other at

all. Query Q in Figure 7.4 is not uncommon in real applications. For instance, it

could be a buffer query [Sad05] based on a segment of roads or rivers, which is a

popular query in many Geographic Information System(GIS) applications [Sad05].

Another case is illustrated in Figure 7.5 where the range query is a circle. As

suggested in [TCX+05], two rectangles R1 and R2 are utilized for pruning and val-

idation respectively. This inherently weakens the filtering capacity of U -Tree. As

in Figure 7.5, U -Tree loses its pruning capacity in the striped areas. As we know,

the range query with a circle region is very popular in distance based queries.

Moreover, it is essential for the spatial similarity joins.

Inverted Index

In information technology, an inverted index maps from content, such as a word,

to its locations in a database file or a document to support full text search. Each

216 Chapter 7. Effectively Indexing the Uncertain Space

x

y

Q

M

xmin xmax

ymin

ymax

U1

Figure 7.4: Irregular Query

Ur R1

R2

rQ

Q

Figure 7.5: Circle query

words is allocated with a set of posting entries (docID, offset/frequency) which

are sorted by the offset or frequency. Inverted index techniques are employed

in [AY08, MKM08, SMP+07] for indexing uncertain objects in specific applications

with assumption or constraints on objects’ PDFs or types. The R-Tree and inverted

index techniques are employed in the problem of keyword searching on spatial

database [HHLM07, FHR08] as well in which the keyword occurrence and the

document location are considered. The problem they studied is inherently different

with ours.

There are also some studies on indexing uncertain objects which focus on spe-

cial cases of objects’ PDF or particular data types. For instances, in [BGK+07,

BPS06b], Böhm et al study range queries with the constraint that PDF of un-

certain objects is Gaussian distribution. Managing uncertain trajectories [Din08],

existentially uncertain data [DYM+05], uncertain categorical data [SMP+07], vague

spatial objects [ZBG07] have been separately studied. Aggarwal et al [AY08] study

the problem of indexing high dimensional uncertain data with the assumption that

the PDF of the uncertain object on each dimension is independent with others.

Chapter 7. Effectively Indexing the Uncertain Space 217

An index structure called UniGrid is proposed to efficiently support the similarity

and range query on a selected subset of dimensions. In [MKM08], Ma et al propose

solutions for efficient retrieval of uncertain spatial point data where the location

information is derived from the free text by spatial expressions. With an assump-

tion that the space is partitioned by a virtual grid with limited number of cells and

a region (region of an uncertain object and region of the query) either occupies a

whole cell or does not intersect with it at all, a grid index named U-grid is built

for efficient spatial query processing.

Motivated by the above analysis of existing indexing techniques, we aim to

develop a partition based index structure such that the spatial “clustering” infor-

mation can be kept and the filtering capacity is less sensitive to the shape of query

region. Moreover the structure should be space efficient and support arbitrary

PDF.

7.2 UI-Tree Index

Based on the analysis of existing index structures for multidimensional uncertain

objects, we develop an R-Tree based inverted index technique which is based on

the partitions of uncertain objects. Section 7.2.1 introduces the motivation of our

index structure and some important index building criterions. Then we describe

the details of the index structure and its maintenance algorithms in Section 7.2.2

and Section 7.2.3 respectively.

7.2.1 Index Building Criterions

As discussed in Section 7.1, since R-Tree based techniques do not capture any

details of the PDF of uncertain objects, the performance is poor when the size of the

218 Chapter 7. Effectively Indexing the Uncertain Space

U

Q

Figure 7.6: Motivation

Length of wmbr

Length of g.mbr

m

wmbr

groups

Figure 7.7: Size of wmbr

uncertain region is not very small. Although the PCR based technique makes use of

the PDF information by pre-computing the probabilistically constrained regions, the

spatial “clustering” information of the instances is lost because the computation

is based on projection on each dimension. So it is sensitive to the shape of the

queries. Based on these observations, instead of building index structure against

the uncertain region or PCR, we construct the index based on the partitions of

the uncertain objects such that the spatial “clustering” information of instances of

an uncertain object is well preserved. Following is the motivation of our UI-Tree

technique. Note that our analysis focuses on the range query as it is fundamental

to other queries studied in the chapter.

Suppose we partition each uncertain object into l disjointed groups {gi} such

that for any instance x ∈ Ur, x is contained by one and only one group. And each

group gi consists of the object identity, probability and minimal bounding rectangle

(MBR) of the group which are denoted by g.oid, g.p and g.mbr. Note that the

probability of the group is the accumulation of the probability of all instances within

that group. The advantage of the partition is immediate. As shown in Figure 7.6,

suppose the uncertain object U is partitioned into 16 groups {g1, g2, . . . , g16} and

Chapter 7. Effectively Indexing the Uncertain Space 219

L1 L2 L3
L4

I2
3.5 2.5

I2 I3

I3

L1
2 1.5

L2 L3
1 1.5

L4

(c)

(U5,0.2) (U6,0.5),(U5,0.3) (U6,0.5)(U4,0.5),(U5,0.2) (U5,0.3)(U3,0.4) (U3,0.6),(U4,0.5)(U1,0.5),(U2,0.4) (U1,0.5),(U2,0.3) (U2,0.3)

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

U1

U2

U3

U4

U6

U5

0.5 0.5

0.3

0.30.4 0.6 0.4

0.5
0.5

0.2

0.3

0.3

0.2

0.50.5

(a) (b)

W1

W3

W2

W9

W8 W7

W6

W5 W4

W10

L1

I3

I2

L2

L3L4

Figure 7.8: R-Tree Based Inverted Index

each group has probability 1
16
. Let LPapp(U,Q) and UPapp(U,Q) denote the lower

and upper bound of the appearance probability of uncertain object U regarding

query Q, then we have LPapp(U,Q) = 2
16

and UPapp(U,Q) = 6
16
.

Clearly, the larger the number of partitions, the better filtering capacity since

the gap between LPapp(U,Q) and UPapp(U,Q) comes from the accumulated prob-

abilities of the groups overlapping with query region Qr. However, in order to

construct an index with decent filtering capacity we need to partition each uncer-

tain objects into a certain number of groups. This number might be large and

hence prevent the use of this approach in the applications with a large number of

uncertain objects. So we consider to merge some groups of uncertain objects such

that the index size can be reduced. Following is the first criteria for our index

structure:

Index Building Criteria 1. In order to control the size of the index, we need to

develop algorithm to merge the groups of partitions from uncertain objects.

As shown in Figure 7.8(a), suppose six uncertain objects U1, U2, . . ., U6 are

220 Chapter 7. Effectively Indexing the Uncertain Space

partitioned into groups by the dashed lines. Figure 7.8(b) illustrates the merge

result of these groups, denoted by w1, w2, . . . , w10. We call wi a “word” in the

spatial space. Suppose w is the word constructed from a set of groups {gi}, then

wmbr is the minimal bounding rectangle of all gi.mbrs. Clearly, we prefer a wmbr

with small size. Figure 7.8(b) illustrates the wmbr created by merging MBRs of m

groups. Assume dimensionality of the space is d and the domain of each dimension

is normalized to [0, 1] and let gj and wj denote the average length of g.mbr and

wmbr at j-th dimension where 1 ≤ j ≤ d. According to the analysis in [TS96], if

there are totally l×n groups whose locations are independent with each other and

every m of them whose MBRs are close to each other are merged to form k words

where k = l×n
m

, we have wj = gj +
a

wherei
=

m
1
d − 1

(n× l)
1
d

(7.1)

For the given m and l, Formula 7.1 implies the average length of wmbr on each

dimension decreases with the number of uncertain objects which is confirmed in

our experiment.

In order to distinguish groups from different uncertain objects and their proba-

bility values during the query processing, we have the second index building criteria:

Index Building Criteria 2. The object identity and probability values for each

group should be kept after it is merged.

The inverted index technique is employed to meet this criteria. For each word

w, a posting list denoted by wlist is maintained to keep the object identity and

probability of groups merged to w. wlist consists of set of tuples t(oid, p) where oid

and p are the object identity of the group and its probability. The tuples in wlist

are sorted decreasingly by the probability values. And wp is the total probability

of the tuples in wlist.

We use tw,U to denote a tuple which belongs to the posting list of word w with

Chapter 7. Effectively Indexing the Uncertain Space 221

object identity U . P (tw,U) denotes the probability of tw,U . Note that probability

values of groups from the same uncertain object will be accumulated in the list.

Suppose we construct an index structure based on a set of words {wi} such that

each group of the uncertain objects belongs to one and only one word . For uncertain

object U , W(U) represents the set of words such that for any w ∈ W(U), there

is a posting tuple tw,U in wlist. For presentation simplicity, we say W(U) is the

words contained by U . And if U does not contain w, we have P (tw,U) = 0. Let

W and |W| denote all words in the space and its size. A small |W| implies that

more groups are merged and therefore a small index size. On the other hand, the

size of the posting list for each word increases with the number of partitions for

each uncertain object. Therefore, we can control the size of the index by |W| and

number of partitions for each uncertain object.

Theorem 7.1 indicates that we can compute the appearance probability bounds

based on the inverted index of W .

Theorem 7.1. For a given query Q and an uncertain object U , let Wcon (Wover)

denote the words in W(U) whose MBRs are contained (overlapped) by Qr (Wcon ∩

Wover = ∅). We have

LPapp(U,Q) =
∑

P (tw,U), where w ∈ Wcon

UPapp(U,Q) =
∑

P (tw,U), where w ∈ Wover ∪Wcon

Proof. For any instance x ∈ Ur but x ̸∈ Qr ∩ Ur, suppose x is allocated to group

g in the partition of uncertain object U . Let w denote the word g belonging to, it

is immediate that w ̸∈ Wcon which implies that there is no instance x ̸∈ Qr ∩ Ur

contributes to the lower bound computation. Similarly, for any instance x ∈ Qr∩Ur,

222 Chapter 7. Effectively Indexing the Uncertain Space

it will contribute to the upper bound computation. So the correctness of the lemma

follows.

Theorem 7.1 implies that the tightness of the bounds is affected by the words

which overlap with query regionQr. The probability of a word overlaps query region

depends on the area of the MBR of w, denoted by A(w), and the contribution to

uncertainty is related to wp which is accumulated probabilities of all tuples in its

posting list. So we need to consider not only the area of MBRs of each word but

also its probability value. For each word w, we use WA(w) to represent A(w)×wp,

called “weighted area” of the word . The third index building criteria is as follows:

Index Building Criteria 3. For the effectiveness of the index, given the number

of words k, we want to create k words for the partitioned groups of uncertain

objects such that
∑

1≤i≤k WA(wi) is minimized.

Take the probabilistic threshold range query as an example, we further explain

the intuition of this criteria based on following Lemma.

Lemma 7.1. Suppose W is constructed for uncertain object set U . Then for a

range query Q, we assume the probabilistic threshold θ is randomly chosen from

(0, 1] and the probability of each word overlapping with Qr is independent with each

other, which is denoted by Pover(w). Then the expected size of candidate set C is

as follows if Theorem 7.1 is applied for appearance probability computation.

|C| =
∑
w∈W

Pover(w)× wp

Proof. Let Wover(U,Q) denote the set {w} such that wmbr overlaps Qr and

tw,U ∈ wlist. Given Q and Wover(U,Q), according to Theorem 7.1 UPapp(U) =

LPapp(U)+
∑

P (tw,U) where w ∈ Wover(U,Q). Then U will be validated or pruned if

Chapter 7. Effectively Indexing the Uncertain Space 223

LPapp(U) ≥ θ or UPapp(U) < θ. As θ is randomly chosen from (0, 1], LPapp(U) ≥ 0

and UPapp(U) ≤ 1, this implies that U will be kept in C with probability
∑

P (tw,U).

So we have

|C| =
∑

w∈W(U)

∑
U∈U

P (tw,U)× Pover(w)

=
∑
w∈W

Pover(w)× wp

Recall that P (tw,U) = 0 if U does not contain word w.

As Pover(w) depends on A(w) and smaller A(w) implies smaller chance to over-

lap with Qr, we assume Pover(w) = A(w) × c where c is a constant derived from

Qr. Then it is immediate that we need to minimize
∑

1≤i≤k WA(wi) for a small |C|

which is the measurement of filtering capacity of the index. Although the assump-

tion of the independence of Pover(w) among words and the existence of constant c

is not practical in real world, this example does provide some insights for the index

building criteria 3.

As a special case of the optimization problem in criteria 3 where all wi.p = 1

and k = 2 is equivalent to the bipartition problem with measurement of area [HS89]

which is NP-hard , we have to find some heuristics to solve this problem. Started

with n × l words each of which corresponds to a group of the uncertain objects

where n is the number of uncertain objects and l is the number of partitions for

each uncertain object, we can create the index with a greedy heuristic such that

the total “weighted area” is minimized at each step in which one word is merged.

Nevertheless, this approach is infeasible to our problem as the computational com-

plexity of the algorithms is cubic to n× l and multi-scan of the groups is required

which leads to large number of IO operations.

In order to incrementally maintain the index structure in an efficient way, we

employ R-Tree technique for the index construction because of its good support for

224 Chapter 7. Effectively Indexing the Uncertain Space

spatial clustering [HK01]. Another important reason to apply R-Tree technique is

because it can efficiently support a wide range of spatial queries. And this meets

the fourth index building criteria.

Index Building Criteria 4. To efficiently support spatial queries which essen-

tially depend on range query, the words should be well organized such that for the

given query region Qr, the words from Wcon(Q) and Wover(Q) can be retrieved

in an efficient way, where Wcon(Q) (Wover(Q)) denotes the w ∈ W which is con-

tained(overlapped) by query region Qr.

To address four index building criterions proposed, in the following part we

introduce the R-Tree based inverted index technique for uncertain objects, named

UI-Tree.

7.2.2 UI-Tree Structure

UI-Tree index is a depth-balanced tree structure similar to R-Tree [Gut84] as

illustrated in Figure 7.8(c) and each node corresponds to a disk page. In the

chapter, we use I , L and w to represent the non-leaf node, leaf node and word

respectively. Each entry of the leaf node is a word with its posting list, represented

by (wmbr,wlist). Note that, for space efficiency the wp will be computed on the fly

based on posting entries in wlist. A set of entries are organized by a leaf node and

the minimal bounding rectangle of the leaf node tightly contains the MBRs of the

words. Note that for the index maintenance efficiency, if a word w occupies more

than one page due to the large size of wlist, we simply create a new word w′ to

take half of the posting entries. As we have to keep a certain number of words

for a decent filtering capacity, usually the size of w is not large. Because we aim

to minimize the sum of WA(w), the total probability of words in child entries is

kept for each node to facilitate the tree structure maintenance. The non-leaf node

Chapter 7. Effectively Indexing the Uncertain Space 225

of the UI-Tree is exactly the same as that of R-Tree except the probability value

is kept in its entry at parent node. Note that we do not keep any object identity

information on the non-leaf node.

Suppose the average size of each word is sw and then the average node

capacity(fan-out) of the leaf node is ⌊PageSize
sw

⌋, denoted by fl. The node capacity

of non-leaf node is denoted by fi. And the height h of an UI-Tree with k words is

as follows :

h = 2 + ⌈logfi
k

fi × fl
⌉ (7.2)

If we regard the leaf node as a data entry, the UI-Tree corresponds to a R-Tree

with k
fl

data entries and an extra level for leaf nodes. Then the Formula 7.2 is

immediate[FSR87].

7.2.3 Index Maintenance

In this section, we first introduce the UI-Tree structure maintenance algorithms

including uncertain object partition, insertion and deletion.

Uncertain Object Partition

Before inserting an uncertain object into UI-Tree, we need to partition the uncer-

tain object into l groups such that any instance x ∈ Ur belongs to one and only

one group. Ideally, we want to find l groups such that the sum of A(g.mbr)× g.p is

minimized. As the partition is conducted on every uncertain objects, the partition

algorithm must be very efficient in terms of CPU time and number of IO. If each

uncertain object is already organized by some hierarchical tree structures such as

R-Tree [Gut84] and Quad-Tree [FB], we can directly choose the intermediate node

as the group since the instances of the uncertain object are naturally clustered.

226 Chapter 7. Effectively Indexing the Uncertain Space

Otherwise, we employ a partition approach similar with kd-Tree[Ben75]. Starting

with one group which is the uncertain region of the uncertain object, we recur-

sively partition the groups into two parts with the same probability value along

a particular dimension chosen in a round robin order. Suppose the depth of the

partition is dp, then it comes up with l = 2dp groups. For the discrete case, the

partition procedure has time complexity of O(dp × ni) where ni is the number of

instances in the uncertain object. Recall that an instance of the uncertain object

in discrete case corresponds to a possible occurrence of the uncertain object. This

is because in each iteration we can first find the median value of a set of n elements

on the selected dimension with time complexity O(n) [CLRS01] and then separate

the groups into two parts with one scan. As to the continuous case, we can find

the median value based on the cumulative density functions(CDF) of the uncertain

object and the partition cost is depended on CDF.

Insertion

The insert operation of UI-Tree is similar with R-Tree except that the probability

value of the node is considered and we need to merge words to reduce the space. We

can regard the node in the UI-Tree as a virtual word with empty posting list. Then

we redefine the area of the node as its “weighted area”, and all of the operations

in R-Tree which are related with area computation is updated such as choose Leaf

and node splitting in UI-Tree.

In order to incrementally maintain the UI-Tree with limited space, we need

to merge words . Let w = merge (w1, w2) be the merged word from w1 and w2.

Note that wmbr is the minimal bounding rectangle of w1mbr
and w2mbr

, while wlist

consists posting tuples of w1 and w2 in which tuples with the same object identity

are merged. To measure the loss of information caused by merging two words, we

Chapter 7. Effectively Indexing the Uncertain Space 227

define the similarity of two words w1 and w2 based on w:

sim(w1, w2) =
1

WA(w)−WA(w1)−WA(w2)
(7.3)

Note that we have sim(w1, w2) =∞ when w1 = w2.

Clearly, we prefer to merge words with high similarity according to our index

construction criteria. For a given k which is the maximal number of word the

UI-Tree will maintain, we first randomly choose k
l
uncertain objects and partition

them into k groups to build up the UI-Tree. The merge operation is not considered

at this stage so the procedure is the same as that of R-Tree except the “weighted

area” is considered. After this, we start to control the number of words by merging

similar words . Note that a group g from the partition of U can be regarded as a

word with one posting entry. Algorithm 7.1 illustrates the details of the insertion

algorithm. The flag startmerge is set false before the UI-Tree construction.

After choosing leaf node, the insertion procedure is simple if the merge stage

does not start. Otherwise, we need to merge the most similar pair of words among

words in L and g. Suppose the most similar pair of current words and their sim-

ilarity is kept in each leaf node denoted by Lw1 , Lw2 and simL respectively. We

will merge g with the most similar word in the leaf node if their similarity value is

greater than simL. Otherwise, Lw1 and Lw2 are merged, and g is inserted as a new

word . Note that the split might be invoked as well after merging two words since

a new posting entry is created although the number of words remains the same.

After insertion, we need to update the related information(e.g. MBR, probability)

on leaf nodes and its parents nodes. Following the index example in Figure 7.8(c),

Figure 7.9(a) demonstrates how the leaf node L4 is updated after inserting a new

uncertain object U7.

For presentation simplicity, we use m = l×n
k

to measure the words compression

ration of UI-Tree, named merge factor. Since the splitting procedure is quite

228 Chapter 7. Effectively Indexing the Uncertain Space

complicate, we omit this part. Then the cost for an uncertain object insertion is

O(l× (h× fi× d+ f 2
l × d)) in the worse case. As the leaf node choosing takes time

O(fi×d) to find most similar subnodes at each level and the worst time complexity

between Line 5 and Line 14 is O(f2
l × d). And it takes time O(fi× d) to adjust the

nodes at each level.

Algorithm 7.1 Insertion(UI, U)

Input: UI : the UI-Tree,

U : uncertain object to be inserted

1: startmerge := false;

2: G := l groups from partition of U ;

3: for each g ∈ G do

4: choose Leaf node L for g;

5: if startmerge = false then

6: startmerge := true;

7: else

8: w := the word most similar with g in L;

9: if sim(w, g) > simL then w := merge(w, g);

10: else

11: Lw1 := merge(Lw1 , Lw2);

12: Insert g to L as a new word ;

13: Update simL, Lw1 , Lw2 ;

14: Adjust the UI-Tree by propagating changes;

15: end for each

Remark 7. Recall that if there is only one word in the leaf node and its size exceeds

the page size due to the large wlist. As discussed in7.2.2, we simply create a new

word w′ by duplicating the wmbr and putting half of posting entries from wlist to

Chapter 7. Effectively Indexing the Uncertain Space 229

w′
list. This rarely happens in our experiment as m is not large under our problem

setting.

Discussion 7.1. Instead of specifying the k value, we can control the index size

by a threshold p for the similarity between words in a similar manner with BIRCH

[ZRL96]. Started with large p value, only pairs of words with similarity larger than

p can be merged. Once the index size exceeds a given space budget, the index is

rebuilt based on a new threshold with smaller value. We do not use this strategy

because it is not clear how to choose the threshold and the cost of rebuilding might

be expensive.

Deletion

For uncertain object U to be deleted, we first descendantly find all words {w} which

include posting tuples tw,U . Then all tuples are removed from their corresponding

posting list. The words with empty posting list are removed from the UI-Tree

which is same as R-Tree. Based on index example in Figure 7.8(c), Figure 7.9(b)

show how the leaf node L4 of the index is updated after deleting the uncertain

object U6. The delete operation is simple and efficient. However it suffers from

its inability to perform adjustment of MBR of the word if some posting tuples are

removed. Because the cost of “shrinking” the MBR of a word w is expensive as we

have to reload the uncertain objects which contribute to the wlist. Consequently,

the filtering capacity of the UI-Tree might degrade if there are frequent deletions.

Nevertheless, the UI-Tree is efficient in many of the real applications in which there

are no frequent updates.

230 Chapter 7. Effectively Indexing the Uncertain Space

L4

W8 W9

(U5,0.2) (U5,0.3)

L4

W8 W9 W10

(U5,0.2) (U6,0.5),(U5,0.3) (U6,0.5),(U7,0.5)

(a)

(b)

Figure 7.9: Update

qx

Sx

uncertain object
+ Sx

qy + Sy

Sy

Q

qy
qx

Figure 7.10: Example

7.3 Query Processing

In this section, we introduce how to efficiently process various queries based on the

UI-Tree proposed in Section 7.2. Section 7.3.1 presents our range query algorithm

and related analysis. Then we study the size estimation of range query in Sec-

tion 7.3.2. Followed by top-k range query and similarity join in Section 7.3.3 and

Section 7.3.4.

7.3.1 Range Query

In this subsection, we present a detailed searching algorithm for the probabilistic

threshold range query based on the UI-Tree. For the given query Q, we descend

the tree from the root in a manner similar to the R-Tree. All data entries(words)

which are contained or overlapped by Qr are retrieved, denoted byWcon andWover

respectively. For each uncertain object U appeared in the posting lists of the

words, we use the Ulow and Uupper to represent the lower and upper bounds for

the Papp(U,Q) which can be computed based on Wcon and Wover according to

Theorem 7.1. Then all uncertain objects which can not be filtered are kept in

a candidate list C for verification. Algorithm 7.2 describes the range searching

procedure. Input of the algorithm are UI : the UI-Tree over U , Q : query with

Chapter 7. Effectively Indexing the Uncertain Space 231

region Qr, θ : Probabilistic threshold. Output of the algorithm are objects with

Papp(U,Q) ≥ θ.

W1

W2

oid p oid p oid p

oid p oid p oid p

Wi

Wj

oid p oid p oid p

oid p oid p oid p

rw

rw

rw

rw

WWWWcon

WWWWover

1

2

i

j

Figure 7.11: Query Example

The posting tuples of the list are visited in sequential order as shown in Fig-

ure 7.11. A pointer, denoted by rw, is employed to record currently visited tuple

in the posting list wlist. We refer a tuple as current tuple in the posting list if it

is recorded by the pointer. Let Pmax denote the total sum of probability values

of all current tuples from Wcon and Wover. As the posting tuples are sorted de-

creasingly by their probability values, we can safely prune unseen uncertain objects

once Pmax < θ. A maximal heap H is employed to maintain the pointers of the

posting lists sorted by their probability values such that the Pmax can be reduced

in a greedy way.

The total cost of the range query is CR+Ccand+Cver. Specifically, CR is the cost

for retrieving leaf nodes containing words in Wcon and Wover which is the same as

the R-Tree range search. Let tn denote the total number of posting tuples in Wcon

andWover. The candidate set computation cost, denoted by Ccand, is O(tn× logwn)

in the worst case as the heap maintenance cost is log(wn) for each iteration, where

232 Chapter 7. Effectively Indexing the Uncertain Space

wn is the number of words in Wcon and Wover. Cver is the cost for verification

including exact appearance probability computation and some extra IO cost for

loading uncertain objects. Note that we do not discuss details of verification as the

focus of the chapter is to develop efficient index technique to reduce the number of

candidates of the queries.

Algorithm 7.2 Range Query(UI, Q, θ)
1: L := all leaf nodes in UI contained or overlapped by Qr;

2: Wcon := words with wmbr contained by Qr from L;

3: C := ∅; R := ∅; H := ∅; Pmax := 0;

4: for each first posting tuple t ∈ Wcon ∪Wover do

5: rw := t; Pmax := Pmax + tp; put rw into H;

6: while H ̸= ∅ and Pmax ≥ θ do

7: Remove top pointer rw from H; t := the posting tuple rw referred;

8: U := the uncertain object with identity t.oid;

9: if U is not pruned or validatedthen

10: if t is from Wcon then Ulow := Ulow + tp; Uupper := Uupper + tp;

11: else Uupper := Uupper + tp;

12: if Uupper + Pmax < θ then U is pruned;

13: else if Ulow > θ then R := R ∪ U ;

14: if t is not the last tuple then Let rw point to next tuple; put rw into H;

15: update Pmax;

16: Refine the C by visiting remainding tuples;

17: for each U ∈ C do

18: if Papp(U,Q) ≥ θ then R := R ∪ U ;

19: Return R;

Estimate the Filtering capacity

In the following part, with some uniformity assumptions we analyze the perfor-

Chapter 7. Effectively Indexing the Uncertain Space 233

mance of the range query by estimating the number of candidates since it reflects

the filtering capacity of the index. For presentation simplicity, we assume the do-

main sizes of all dimensions are between [0, 1] and dimensionality is 2. Suppose the

uncertain regions of the uncertain objects are regular rectangles whose instances

follow the uniform distribution and the probabilistic thresholds are randomly cho-

sen from (0, 1]. As shown in Figure 7.10, we assume the query region is larger than

the uncertain region of uncertain object on each dimension. Let sx and sy denote

the average lengths of the rectangle on x and y dimensions respectively. A query

Q has a regular rectangle region with length qx and qy, which is issued with a

randomly selected centre.

Firstly, we assume there is no merge operation during the index construction

(m = 0). Let the probability pcx + pcy + pn represents the probability that Qr

overlaps Ur. Specifically, pcx = 2× (qx − sx)× sy is the probability of Qr covering

Ur at x dimension and pcy = 2 × (qy − sy) × sx represents the probability of Qr

covering Ur at y dimension. While pn = 4 × sx × sy denotes the probability that

Qr overlaps Ur but does not cover Ur in any dimension. As shown in Figure 7.10,

when the left-bottom corner of the query Q falls in the light grey rectangles with

total area size 4×sx×sy = pn, Qr overlaps Ur but does not cover x or y dimension

of Ur. Similarly, pcx and pcy correspond to the total area of dark grey rectangles

and rectangles with strike lines.

Theorem 7.2 evaluates the expected candidate size for Q for m = 0.

Theorem 7.2. Let C denote the set of uncertain objects in the candidate set in

Algorithm 7.2 2 and suppose the uncertain region of each uncertain object is parti-

tioned into nx × ny cells with same size, the average size of C can be estimated by

n× (pcx
ny

+ pcy
nx

+ pn × (nx+ny)

2×nx×ny
) where n is the number of uncertain objects.

2For proof simplicity, we assume Pmax is not considered in Algorithm 7.2

234 Chapter 7. Effectively Indexing the Uncertain Space

Proof 7.1. According to the description of the Algorithm 7.2, an uncertain object

U contributes to C if and only if Ur overlaps Qr and Ulow < θ ≤ Uupper. Let Or

denote the region such that Qr overlaps Ur when the centre of Q, denoted by qc, falls

in Or. Since probabilistic threshold θ is randomly chosen from (0, 1], the probability

of U ∈ C is

PU∈C =

∫
x∈Or

pdf(x)

∫ 1

0

f(θ, x)dθdx

=

∫
x∈Or

pdf(x)D(x)dx

where pdf(x) is the probabilistic density function of x. We have f(θ, x) = 0 if

θ > Uupper (being pruned) or θ ≤ Ulow(being validated), otherwise f(θ, x) = 1. We

use D(x) to represent the difference between Uupper and Ulow when qc locates at

position x. According to Theorem 7.1, we have D(x) =
∑

w∈Wover(U) P (tw,U). For

instance, D(x) corresponds to the accumulated probability values of the shaded cells

in Figure 7.12(a) and Figure 7.12(b).

As we assume the rectangle region of the query is larger than that of uncertain

object in every dimension, following are three possible cases in which Qr overlaps

Ur:

E1: Qr covers Ur in y dimension but not in x dimension.

E2: Qr covers Ur in x dimension but not in y dimension.

E3: Qr does not cover Ur in any dimension.

Case E1 is illustrated in Figure 7.12(a). According to the uniformity assump-

tions and Equation 7.4, we have

PE1 = pcy ×
1

nx

where PE1 is probability of occurring of E1 and U ∈ C, pcy is the occurrence

probability of E1 and pcy = 2× (qy − sy)× sx. Similarly, we have PE2 = pcx × 1
ny

Chapter 7. Effectively Indexing the Uncertain Space 235

U
Q

U

Q
x

x

x

n

s
∆+

yyy sq ∆+−

y
y

y

n

s
∆+

x
x

x

n

s ∆+
qx Partitions

yx nn ×

qy

sx

sy

(a) (b) (c) (d)

jic , 3=i

3=j

jic ,

3=i

3=j

Figure 7.12: Filtering Capacity Evaluation

and pcx = 2× (qx− sx)× sy. For case E3, Figure 7.12(b) illustrates one of its four

sub-cases in which upper-right corner of the Qr falls in Ur. Based on Equation 7.4

and uniformity assumptions, we have

PE3 = 4×
nx∑
i=1

ny∑
j=1

pn
4× nx × ny

× (i+ j − 1)× 1

nx × ny

= pn ×
(nx + ny)

2× nx × ny

where pn denotes the occurring probability of E3 which is 4×sx×sy. Since PU∈C =

PE1 +PE2 +PE3, according to the uniformity assumptions the expected size of C is

E(C) = n× PU∈C + 0× PU ̸∈C = n× PU∈C

where n is the number of uncertain objects.

Once the merge procedure is involved, let ∆x and ∆y denote the average in-

crement of the MBRs of the partitions on x and y dimensions respectively. The

following theorem evaluates the estimated candidate size for Q. Clearly, the more

partitions of the uncertain objects are merged, the larger ∆ values; And hence less

filtering power.

Theorem 7.3. Suppose a UI-Tree is constructed based on the partitions of the

uncertain objects and the uncertain region of each uncertain object is partitioned

236 Chapter 7. Effectively Indexing the Uncertain Space

into nx × ny cells with same size, then the expected size of C can be estimated

by n × (pcx
ny

+ pcy
nx

+ pn × (nx+ny)

2×nx×ny
) where n is the number of uncertain objects,

pcx = 2× (qx− sx+∆x)× (sy
ny

+∆y)×ny, pcy = 2× (qy− sy +∆y)× (sx
nx

+∆x)×nx

and pn = 4 × (sx
nx

+ ∆x) × (sy
ny

+ ∆y) × nx × ny. ∆x and ∆y denote the average

increment of MBRs of the partitions after merge procedure on x and y dimensions

respectively.

Proof 7.2. As the MBRs of the partitions for the uncertain objects are merged

during the index construction, the probability that Qr overlaps those partitions

increases. For instance, as shown in Figure 7.12(c), the probability that the

left boundary of Qr overlaps the i-th column in case E1 of Theorem 7.2 be-

comes (qy − sy + ∆y) × (sx + ∆x). Similarly, Figure 7.12(d) illustrates that

the upper-right corner of the query region falls in each partition with probability

(sx
nx

+∆x)× (sy
ny

+∆y). Following the same rational of Theorem 7.2, the correctness

of the Theorem is immediate.

7.3.2 Size Estimation of Range Query

Instead of retrieving the uncertain objects qualifying the range query, it suffices to

get the approximated number of uncertain objects in some applications. One of

the important observations in the field of multi-dimensional selectivity estimation

is that although the whole data set is unlikely to follow the uniform distribution

in real applications, it might be true within a local area. This motivates us to

estimate the selectivity of the range query based on the uniformity assumption of

the instances in the MBRs of their corresponding words. Then instead of keeping

lower and upper bounds, the appearance probability of the uncertain object U

Chapter 7. Effectively Indexing the Uncertain Space 237

regarding query Q can be estimated with following Formula:

Papp(U,Q) =
∑

w∈Wover

P (tw,U)×
A(Qr ∩ wmbr)

A(wmbr)

+
∑

w∈Wcon

P (tw,U)

This implies that we can estimate the size of range query based on the UI-Tree

only. Our experiments demonstrate the effectiveness of the estimation.

7.3.3 Top-k Range Query

For a given query Q, once we retrieve Wcon and Wover, the remaining part of the

query processing is similar with the traditional top-k computation on distributive

inverted indexes[FLN01]. The main difference is that the posting tuples fromWover

only contribute to the appearance probability upper bound of uncertain object. In

our implementation, we modify Algorithm 7.2 such that we can safely claim all of

the unseen uncertain objects can not be top-k answers once Pmax ≤ plk where plk is

the k-th largest Ulow. After the refinement, all uncertain objects with Uupper < plk

can be pruned and the ones with Ulow ≥ puk are validated where puk is the k-th

largest Uupper. Then we need to compute the exact Papp(U,Q) for the uncertain

objects in the candidate set to decide the top-k result.

7.3.4 Similarity Join

As the algorithm for probabilistic threshold similarity join is lengthy, we only intro-

duce the outline of the algorithm. Let U and V denote two sets of uncertain objects.

The distance and probabilistic threshold is represented by γ and θ respectively.

Firstly, we retrieve all pairs of words ws, wr based on the traditional spatial join

algorithm [BKS93] such that |wsmbr
−wrmbr

|min ≤ γ where |wsmbr
−wrmbr

|min denote

the minimal Euclidean distance between wsmbr
and wrmbr

. These pairs are classified

238 Chapter 7. Effectively Indexing the Uncertain Space

into two sets: W∗
in and W∗

part. For any (ws, wr) ∈ W∗
in, |wsmbr

− wrmbr
|max ≤ γ

which implies the distance between any pair of instances of uncertain objects in ws

and wr is smaller or equal to γ. Other pairs belong to W∗
part. Let LP (U ◃▹γ V)

and UP (U ◃▹γ V) denote the lower and upper bounds for the similarity between

uncertain objects U and V . Clearly, pairs fromW∗
in contribute to the computation

of LP (U ◃▹γ V) and UP (U ◃▹γ V), while the ones from W∗
part only contribute to

UP (U ◃▹γ V). Similar to Theorem 7.1, we have following Formulas for verification

and pruning respectively:

LP (U ◃▹γ V) =
∑

(ws,wr)∈W∗
in

P (tws,U)× P (twr,V)

UP (U ◃▹γ V) =
∑

(ws,wr)∈W∗
in∪W ∗

part

P (tws,U)× P (twr,V)

The correctness of the Formulas is immediate based on the same rationale of The-

orem 7.1. To compute the candidate efficiently, a pointer is employed for each

posting list in a similar manner with Algorithm 7.2. All of the pairs are organized

by a maximal heap sorted by the probability values of their corresponding posting

entries. Let PS and PR denote the pointers in U and V respectively. Let PSmax

and PRmax keep the maximal possible probability for unseen uncertain objects

from U and V respectively. Clearly, once PSmax×PRmax < θ, the pair (U, V) does

not belong to the candidate set if U and V are unvisited.

7.4 Performance Evaluation

We present results of a comprehensive performance study to evaluate the efficiency

and scalability of proposed techniques in the chapter. Following algorithms are

evaluated.

UI-Tree The R-Tree based inverted index technique proposed in Section 7.2

Chapter 7. Effectively Indexing the Uncertain Space 239

and four query algorithms presented in Section 7.3.

U-Tree The U -Tree technique presented in [TCX+05]. The implementation is

public available.

R-Tree The uncertain region based R-Tree technique. The implementation of

similarity join is based on the join strategy proposed in [KKPR06]. As there

is no existing work on the size estimation of range query and top-k range

query on uncertain objects with arbitrary PDF, the R-Tree technique is also

employed as baseline algorithm because it can be regarded as a special case

of UI-Tree in which every uncertain objects is a word .

In our experiment, the uncertain region of the uncertain object is a circle or

sphere with radius ru varying from 50 to 500 with default value 100. Suppose the

PDF of an uncertain object is described by 400 instances (discrete case) which

follow two popular distributions Normal and Uniform. The Normal serves as

default distribution with standard deviation ru
2
. Specifically, we use the constrained

normal distribution such that the possible location of the instances are restricted

in the uncertain region. Instances might be loaded into memory once an uncertain

objects is required for verification. For verification efficiency, same as [BSI08],

the instances of an uncertain object are organized by an aggregate R-Tree where

aggregate value of a R-Tree node is the accumulation of the probabilities of its

child instances. Note that each instance corresponds to one bin in [BSI08] since we

consider the discrete case in the experiment.

Two real spatial datasets, CA and US , are employed to represent the centre of

the uncertain regions. They contain 62K and 200K 2-dimensional points represent-

ing locations in Los Angeles and the United States respectively3. We also generate

3Available at http://www.census.gov/geo/www/tiger/

240 Chapter 7. Effectively Indexing the Uncertain Space

synthetic dataset 3D with dimensionality 3 and size 200K, in which the centres

and instances of uncertain objects are uniformly distributed. All dimensions are

normalised to domain [0, 10000] and CA with constrained normal distribution is

employed as the default data set. To study the similarity join between two sets

of uncertain objects, two synthetic data sets, named 2d 10K and 2d 1K, are cre-

ated in which the centres of uncertain objects follow Uniform distribution and the

instances follow constrained normal distribution.

A workload for range query and its size estimation query consists of 200 queries

in our experiment. Same as [TCX+05], the region of a range query Q is a circle

or sphere with radius rq. rq varies from 500 to 1500 with default value 1000. The

centres of the queries are randomly chosen from the centres of the target uncertain

objects. Note that the query regions in a workload share the same rq. In order to

avoid favouring particular θ value, we randomly choose the probabilistic threshold

θ ∈ (0, 1] for each query. Instead of specifying the probabilistic threshold θ, the

value k varying from 50 to 250 is used for the top-k query.

As all of the algorithms investigated in the chapter follow the filtering and ver-

ification frame work, the cost of the query is largely dependent on the candidate

size as the verification is expensive in terms of IO and CPU time. So the aver-

age candidate size of the queries is employed as the most important performance

measurement in our experiments. In addition, the average number of IO and false

positives are recorded as well as the average query response time.

All algorithms proposed in this chapter are implemented in standard C++ with

STL library support and compiled with GNU GCC. Experiments are run on a PC

with Intel Xeon 2.40GHz dual CPU and 4G memory running Debian Linux. The

disk page size is fixed to 4096 bytes. In order to achieve a good filtering capacity,

the catalog size of U -Tree is set to 9 for CA and US , and 10 for 3D as suggested

Chapter 7. Effectively Indexing the Uncertain Space 241

in[TCX+05].

Table 7.2 below lists parameters which may potentially have an impact on our

performance study. In our experiments, all parameters use default values unless

otherwise specified.

Notation Definition (Default Values)
rq the radius of query (1000)
ru the radius of uncertain object region(100)
n number of uncertain object
θ probabilistic threshold (∈ (0, 1])
k k value in top-k query
m merge factor (12)
l number of partitions(32)

Table 7.2: System Parameters

7.4.1 Index Construction Evaluation

In this section, we evaluate the performance of UI-Tree construction algorithm.

The size of UI-Tree depends on the number of uncertain objects n, merge factor

m and the number of partitions per uncertain object l. Clearly, smaller m and

larger l will lead to better filtering capacity but more index space. For comparison

convenience, we fix l to 32 and vary m to tune the index size such that it is similar

with that of U -Tree. Under the default setting, Figure 7.13(a) shows the filtering

capacity of the UI-Tree slowly decreases with m. Note that m = 0 implies there

is no merge operation. Meanwhile the index size also drops from 62M to 15M .

Figure 7.13(b) reports the average IO cost for range query with default setting

where m varies from 0 to 16. Although the number of candidate is small for small

m, it might invoke more IO cost because of the large index size. By default, we set

m to 12 for CA and US , and 6 for 3D respectively. So UI-Tree has similar index

size with U -Tree.

242 Chapter 7. Effectively Indexing the Uncertain Space

Table 7.3 shows the index sizes of UI-Tree and U -Tree for CA, US and 3D

respectively, which correspond to around 5%, 5% and 6% of the data sets.

CA US 3D
UI-Tree 15 (M) 49 (M) 80 (M)
U -Tree 15 (M) 49 (M) 86 (M)

Table 7.3: Index Size Comparison

 0

 200

 400

 600

 800

 1000

0 2 4 6 8 12 16

C
an

di
da

te
 S

iz
e

UI-Tree

(a) Candidate Size vs m

 0

 1

 2

 3

 4

0 2 4 6 8 12 16

IO

 (
K

)
UI-Tree

(b) IO vs m

Figure 7.13: Index Evaluation against Diff. m

Note that since the U -Tree code from [TCX+05] does not employ the memory

buffer during the U -Tree construction, the index construction is very slow. So

we do not evaluate its construction time for fairness of comparison. Our index

construction algorithm is very efficient, and the average insertion time per object

for CA, US and 3D is around 1ms, 4ms and 4ms respectively. More specifically, for

CA, it totally takes 118s for partition, and 17s(164s) for insertion without(with)

merge operation.

7.4.2 Query Performance Evaluation

In this section, we first evaluate the performance of range query. It is followed by

size estimation, top-k range query and similarity join. As U -Tree is the state of the

art technique for range query on multidimensional uncertain objects with arbitrary

Chapter 7. Effectively Indexing the Uncertain Space 243

PDF, it is employed as baseline algorithm to evaluate our UI-Tree based range

query algorithm.

In order to confirm the observation of Figure 7.2(a) in Section 7.1.2, we construct

a set of queries whose query regions are rectangles with length 2 × rq and width

300. The centre of the query is randomly chosen from CA data and we rotate

the rectangle around its centre to a random angle between 0 and 2π. Figure 7.14

demonstrates that the filtering capacity of U -Tree degrades significantly with the

growth of rq from 500 to 1500, while the performance of UI-Tree technique is much

more efficient and less sensitive to rq.

To confirm the effectiveness of filtering capacity estimation, we also conduct

filtering capacity evaluation on 2-dimensional synthetic data. There are 100K un-

certain objects evenly distributed and the uncertain region of the uncertain objects

are squares with width 200. The instances follow the Uniform distribution and

query regions are regular rectangle queries with qx = qy = 1600. We build UI-Tree

indices with m various from 0 to 16. Note that the candidate size estimation for

m = 0 is based on Theorem 7.2 while others are based on Theorem 7.3 since the

merge procedure is involved for m > 0. Figure 7.15 shows that estimated values

are close to the real candidate size.

 2

 4

 6

 8

500 800 1000 1200 1500

C
an

di
da

te
 S

iz
e

(K
)

U-Tree
UI-Tree

Figure 7.14: Diff. rq

 0

 200

 400

 600

 800

 1000

0 4 8 12 16

C
an

di
da

te
 S

iz
e

UI-Tree
Estimate

Figure 7.15: Diff. m

In the third set of experiments, we evaluate the performance of UI-Tree and

244 Chapter 7. Effectively Indexing the Uncertain Space

U -Tree against different dataset (CA, US and 3D) while other system parameters

are set to default values. The candidate size, number of false positive, number

of IO and response time of two techniques are reported in Figure 7.16. Due to

poor filtering capacity, the candidate size of U -Tree is much larger than that of

UI-Tree especially on US as shown in Figure 7.16(a). A similar observation is

found in Figure 7.16(b) which reports the number of false positives. According

to Figure 7.16(c) and Figure 7.16(d), U -Tree and UI-Tree have similar filtering

cost in terms of index IO and filtering time. However, due to the large number of

candidates as shown in Figure 7.16(a), the total cost of the U -Tree for range query

is much more expensive than that of UI-Tree in terms of IO and query response

time.

 0

 2

 4

 6

 8

 10

 12

CA USA 3D

C
an

di
da

te
 s

iz
e(

K
)

UI-Tree U-Tree

(a) Candidate Size

 0

 2

 4

 6

 8

 10

 12

CA USA 3D

F

al
se

 P
os

iti
ve

 (
K

)

UI-Tree U-Tree

(b) False Positive

Index IO (UI) Index IO (U) data IO Filtering (UI) Filtering(U) Verification

 0

 2

 4

 6

 8

 10

 12

CA USA 3D

IO

 (
K

)

(c) IO

 0

 20

 40

 60

 80

 100

CA USA 3D

R
es

po
ns

e
T

im
e(

s)

(d) Response Time

Figure 7.16: Performance vs Diff. Data Set

Chapter 7. Effectively Indexing the Uncertain Space 245

 0

 2

 4

 6

 8

 10

 12

Normal Uniform Arbitrary

IO

(K
)

UI-Tree
U-Tree

Figure 7.17: Diff. distribution

 0

 2

 4

 6

 8

 10

 12

 14

500 800 1000 1200 1500

IO

(K
)

UI-Tree
R-Tree

Figure 7.18: Diff. rq

To evaluate the impact of the instance distribution of uncertain objects, we

report the number of IO against different instance distributions. For the “arbi-

trary” distribution, the instances of the uncertain object are created by mapping

400 closest points for given random point in real data set US into the uncertain

region of the uncertain object. Figure 7.17 shows the performance of the algorithm

is not sensitive to these distributions.

The R-Tree based index technique in [BSI08] can be used to support range query

where the uncertain regions of the uncertain objects are indexed by a global R-Tree

and the PDF of each uncertain object is represented by a set of bins(histograms)

organized by an aggregate R-Tree. In our experiment, each instance corresponds

to a bin as we consider the discrete case. Figure 7.18 demonstrates that UI-Tree

significantly outperforms the R-Tree based index technique.

We evaluate the impact of rq against the candidate size and the number of

IO. Figure 7.19 shows that as rq increases from 500 to 1500, the performance of

U -Tree drops significantly while UI-Tree is more efficient and stable against rq. In

Figure 7.19(a), the candidate size of U -tree reaches 6K when rq = 1500 which is 6

times larger than that of UI-Tree. And the same trend goes to the number of IO

as depicted in Figure 7.19(b).

We study the scalability of U -Tree and UI-Tree by varying ru and n. The results

246 Chapter 7. Effectively Indexing the Uncertain Space

 2

 4

 6

 8

500 800 1000 1200 1500

C
an

di
da

te
 S

iz
e(

K
)

UI-Tree
U-Tree

(a) Candidate Size vs rq

 2

 4

 6

 8

500 800 1000 1200 1500

IO

(K
)

UI-Tree
U-Tree

(b) IO vs rq

Figure 7.19: Performance vs Diff. rq Size

are reported in Figure 7.20 and Figure 7.21 respectively. As expected, the number

of candidates of both techniques increases with ru as the larger uncertain region

implies more uncertain objects overlapping with query region. In Figure 7.21,

a uniform sample of 50K, 100K and 150K uncertain objects from US and US

(200K) are employed to evaluate the impact of n. It is not surprising that the

number of candidates goes up when the number of uncertain objects increases.

Nevertheless, the growth of UI-Tree is much slower than that of U -Tree. This is

because the filtering capacity of the PCRs of an uncertain object is independent

with n. So the number of candidates goes linearly with n. According to the

analysis in Section 7.2.1, for the fixed merge factor m, a larger n implies a smaller

wmbr. Consequently, the number of candidates grows very slowly with n because

the filtering capacity of individual word improves due to a smaller wmbr.

Figure 7.22 demonstrates that the probabilistic threshold does not have much

impact on the candidate size of U -Tree and UI-Tree. And the performance of U -

Tree slightly improves when θ is large but is still less competitive compared with

that of UI-Tree.

In the last set of experiments, we evaluate the performance of UI-Tree based

query algorithms for size estimation of range query, top-k range query and similarity

Chapter 7. Effectively Indexing the Uncertain Space 247

 1

 2

 3

 4

 5

50 100 200 300 400 500

C
an

di
da

te
 S

iz
e

(K
)

U-Tree
UI-Tree

Figure 7.20: Diff. ru

 0

 2

 4

 6

 8

 10

 12

50K 100K 150K 200K

C
an

di
da

te
 S

iz
e

(K
)

U-Tree
UI-Tree

Figure 7.21: Diff. n

 1

 2

 3

 4

 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
an

di
da

te
 S

iz
e

(K
)

U-Tree
UI-Tree

Figure 7.22: Diff. θ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

300 500 800 1200 1500

R
el

at
iv

e
E

rr
or

UI-Tree
R-Tree

Figure 7.23: Size Est. vs rq

join. The R-Tree based techniques are employed as baseline Algorithms. Let S and

S̄ denote the exact and estimated number of uncertain objects returned by range

query respectively, we measure the effectiveness of the size estimation query by

relative error |S−S̄
S
|. The average relative error of the queries under default setting

is reported in Figure 7.23. As expected, the accuracy of UI-Tree technique is much

better than that of R-Tree technique. It is 0.02 when rq equals 1500.

We evaluate the number of candidates in top-k queries with k varying from 50

to 250. rq is set to 300 and Figure 7.24 shows only a small number of candidates is

required for further verification based on UI-Tree technique. There is no surprise

to see the number of candidates is large and remains unchanged with k for R-

Tree technique as it does not capture any details of the PDF of uncertain objects.

Similar observation is reported in Figure 7.25 in which data set 2d 10K and 2d 1K

248 Chapter 7. Effectively Indexing the Uncertain Space

are joined with different probabilistic threshold values varying from 0.1 to 0.9. The

distance is set to 600.

 0

 400

 800

 1200

 1600

 2000

50 100 150 200 250

C
an

di
da

te
 S

iz
e

R-Tree
UI-Tree

Figure 7.24: Top-k(Diff. k)

 0

 50

 100

 150

 200

 250

 300

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C

an
di

da
te

 P
ai

rs
 (

K
)

R-Tree
UI-Tree

Figure 7.25: Similarity Join(Diff. θ)

7.5 Conclusion

In this chapter, we investigate the problem of effectively indexing multidimen-

sional uncertain objects with arbitrary PDFs and propose a novel index structure

UI-Tree-tree. Combining R-tree and inverted index techniques, UI-Tree-tree is

space-effective and well supports different shapes of query regions. The dynamic

maintenance of UI-Tree-tree is comprehensively studied. UI-Tree-tree serves as

a general index where efficient processing of range queries is desirable. We pro-

pose solutions for various types of queries based on UI-Tree-tree, including range

query, size estimation of range query, probabilistic top-k range query and similar-

ity join. Our extensive experiments demonstrate that UI-Tree-tree significantly

outperforms other state-of-the-art techniques.

Chapter 8

Conclusions and Future Work

In this chapter, we first conclude the thesis in Section 8.1. Then, Section 8.2

presents several directions of future work on developing advanced querying and

indexing techniques on uncertain data.

8.1 Conclusions

It has been recognized that efficiently analyzing uncertain data is important for

many applications including social networks, data cleaning, sensor data analysis,

moving objects tracking, information retrieval, crime control, economic decision

making, market surveillance, etc. Uncertainty is inherent in these applications due

to various factors such as errors and imprecision in data, data randomness and in-

completeness, limitation of measuring equipment, delay or lose of data updates and

privacy preservation. Due to its importance, uncertain data analysis has recently

attracted a great deal of attention from researchers. Numerous query types have

been re-investigated under the uncertain semantics and many database manage-

ment systems have been developed especially for uncertain data, as we summarized

in Chapter 2.

249

250 Chapter 8. Conclusions and Future Work

In this thesis, we aim to bridge the gap of advanced query processing and

indexing techniques on uncertain data. Particularly, we focus on the following four

query types: 1) probabilistic top-k skyline query; 2) probabilistic skyline operator

over sliding windows; 3) probabilistic threshold based top-k dominating query and

4) KNN search over multi-valued objects. Besides, we design an index structure

UI-tree for uncertain data which overcomes the shortcomings of existing state-of-

the-art techniques. Our main contributions are stated as follows.

Probabilistic Top-k Skyline Query We are the first to combine the feature of

top-k objects with that of skyline to model the problem of top-k skyline

objects against uncertain data. Efficient algorithms are proposed for both

continuous and discrete cases.

Probabilistic Skyline Operator over Sliding Windows We are the first to

study probabilistic skyline queries in the streaming environment. A candidate

set with minimum size is characterized and efficient techniques are developed

to answer the skyline queries continuously.

Probabilistic Threshold based Top-k Dominating Query We study the

problem of efficiently computing top-k dominating queries on uncertain data.

After formally defining the problem, we propose both exact and random

algorithms to tackle the problem.

KNN Search over Multi-Valued Objects We propose to use quantiles to

summarize relative-distribution-sensitive K nearest neighbors over multi-

valued objects. Two different problem definitions are introduced and cor-

responding techniques are developed.

Effective Indexing Structure Noticing that existing index structures are sen-

sitive to the size or shape of uncertain region and the queries, we introduce

Chapter 8. Conclusions and Future Work 251

a novel R-Tree based inverted index structure, named UI-Tree, to efficiently

support various queries, including range queries, similarity joins and their

size estimation, as well as top-k range query, over multidimensional uncer-

tain objects against continuous or discrete cases.

8.2 Future Work

8.2.1 Manipulating Complex Correlations

Currently, most existing query approaches are based on the assumption of simple

correlations among uncertain data such as independence or mutual exclusiveness.

Such assumptions usually fail to capture the uncertain semantics in real applica-

tions. A possible direction of future work is to manipulate complex correlations

in probabilistic data. There are some key challenges. Firstly, correlations need to

be derived and modeled from real applications. The correlations can sometimes be

very complex to model and simplified models are necessary. Secondly, efficient and

effective techniques need to be developed to process various queries on probabilistic

data given the presence of complex correlations.

8.2.2 Building Prototype System

We plan to implement a prototype system to demonstrate the queries studied in this

thesis. The dataset used will be the same as in the above three tasks. User friendly

interface will be implemented, including dataset selection, query type selection and

parameter setting.

Bibliography

[ABS+06] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth,

Shubha Nabar, Tomoe Sugihara, and Jennifer Widom. Trio: A sys-

tem for data, uncertainty, and lineage. In Proceedings of the Inter-

national Conference on Very Large Data Bases (VLDB), pages 1151–

1154, 2006.

[AFS93] Rakesh Agrawal, Christos Faloutsos, and Arun N. Swami. Efficient

similarity search in sequence databases. In Proceedings of the Con-

ference of Foundations of Data Organization and Algorithms, pages

69–84, 1993.

[Agg08] Charu Aggarwal. On unifying privacy and uncertain data models. In

Proceedings of the Twenty-fourth International Conference on Data

Engineering (ICDE), pages 386–395, 2008.

[AK08] Lyublena Antova and Christoph Koch. On APIs for probabilistic

databases. In Proceedings of the Management of Uncertain Data

(MUD) Workshop, pages 41–56, 2008.

[AKG87] Serge Abiteboul, Paris Kanellakis, and Gosta Grahne. On the repre-

sentation and querying of sets of possible worlds. In SIGMOD 1987,

pages 34–48, 1987.

252

BIBLIOGRAPHY 253

[AKO07] Lyublena Antova, Christoph Koch, and Dan Olteanu. 1010
6
worlds

and beyond: Efficient representation and processing of incomplete in-

formation. In Proceedings of International Conference on Data Engi-

neering (ICDE), pages 606–615, 2007.

[AS06] Serge Abiteboul and Pierre Senellart. Querying and updating proba-

bilistic information in XML. In Proceedings of the International Con-

ference on Extending Database Technology (EDBT), pages 1059–1068,

2006.

[AW07] Parag Agrawal and Jennifer Widom. Confidence-aware joins in large

uncertain databases. In Stanford University Technical Report, 2007.

[AY08] Charu Aggarwal and Philip Yu. On high dimensional indexing of un-

certain data. In Proceedings of the Twenty-fourth International Con-

ference on Data Engineering (ICDE), pages 1460–1461, 2008.

[BAN08] Francesco Bonchi, Osman Abul, and Mirco Nanni. Never walk alone:

Uncertainty for anonymity in moving object databases. In Proceedings

of the Twenty-fourth International Conference on Data Engineering

(ICDE), pages 376–385, 2008.

[BDM+05] Jihad Boulos, Nilesh Dalvi, Bhushan Mandhani, Shobhit Mathur,

Chris Re, and Dan Suciu. MYSTIQ: A system for finding more an-

swers by using probabilities. In Proceedings of the SIGMOD/PODS

Conference, pages 891–893, 2005.

[BDRV05] Douglas Burdick, AnHai Doan, Raghu Ramakrishnan, and Shivaku-

mar Vaithyanathan. OLAP over uncertain and imprecise data. In

VLDB 2005, pages 39–50, 2005.

254 BIBLIOGRAPHY

[Ben75] Jon Louis Bentley. Multidimensional binary search trees used for as-

sociative searching. Commun. ACM, 18(9):509–517, 1975.

[BGK+07] Christian Böhm, Michael Gruber, Peter Kunath, Alexey Pryakhin,

and Matthias Schubert. ProVeR: Probabilistic video retrieval using

the Gauss-tree. In Proceedings of the International Conference on

Data Engineering (ICDE), pages 1521–1522, 2007.

[BGMP92] Daniel Barbará, Hector Garcia-Molina, and Daryl Porter. The man-

agement of probabilistic data. IEEE Transactions on Knowledge and

Data Engineering (TKDE), 4(5):487–502, 1992.

[BKS93] Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Efficient

processing of spatial joins using r-trees. In Proceedings of the ACM

SIGMOD/PODS Conference, pages 237–246, 1993.

[BKS01] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The sky-

line operator. In Proceedings of the Twenty-fourth International Con-

ference on Data Engineering (ICDE), pages 421–430, 2001.

[BPS06a] Christian Böhm, Alexey Pryakhin, and Matthias Schubert. The

Gauss-tree: Efficient object identification in databases of probabilis-

tic feature vectors. In Proceedings of the International Conference on

Data Engineering (ICDE), page 9, 2006.

[BPS06b] Christian Böhm, Alexey Pryakhin, and Matthias Schubert. Proba-

bilistic ranking queries on Gaussians. In Proceedings of Statistical and

Scientific DataBase Management (SSDBM), pages 169–178, 2006.

[BSHW06a] Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, and Jennifer

Widom. ULDBs: Databases with uncertainty and lineage. In Proceed-

BIBLIOGRAPHY 255

ings of International Conference on Very Large Data Base (VLDB),

pages 953–964, 2006.

[BSHW06b] Omar Benjelloun, Anish Das Sarma, Chris Hayworth, and Jennifer

Widom. An introduction to ULDBs and the Trio system. IEEE Data

Engineering Bulletin, 29(1):5–16, 2006.

[BSI08] George Bekales, Mohamed A. Soliman, and Ihab F. Ilyas. Efficient

search for the top-k probable nearest neighbors in uncertain databases.

In Proceedings of the International Conference on Very Large Data

Base (VLDB), pages 326–339, 2008.

[CC07] Jinchuan Chen and Reynold Cheng. Efficient evaluation of impre-

cise location-dependent queries. In Proceedings of the International

Conference on Data Engineering (ICDE), pages 586–595, 2007.

[CCCX09] Reynold Cheng, Lei Chen, Jinchuan Chen, and Xike Xie. Evaluating

probability threshold k-nearest-neighbor queries over uncertain data.

In Proceedings of the International Conference on Extending Database

Technology (EDBT), pages 672–683, 2009.

[CCKN06] Michael Chau, Reynold Cheng, Ben Kao, and Jackey Ng. Uncertain

data mining: An example in clustering location data. In Proceedings of

the Pacific-Asia Conference on Knowledge Discovery and Data Mining

(PAKDD), pages 199–204, 2006.

[CCMC08] Reynold Cheng, Jinchuan Chen, Mohamed Mokbel, and Chi-Yin

Chow. Probabilistic verifiers: Evaluating constrained nearest-neighbor

queries over uncertain data. In Proceedings of the International Con-

ference on Data Engineering (ICDE), pages 973–982, 2008.

256 BIBLIOGRAPHY

[CCT96] Arbee L. P. Chen, Jui-Shang Chiu, and Frank S. C. Tseng. Evaluat-

ing aggregate operations over imprecise data. IEEE Transactions on

Knowledge and Data Engineering (TKDE), 08(2):273–284, 1996.

[CG07] Graham Cormode and Minos Garofalakis. Sketching probabilistic data

streams. In Proceedings of ACM SIGMOD/PODS Conference, pages

281–292, 2007.

[CGGL03] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. Sky-

line with presorting. In Proceedings of the International Conference

on Data Engineering (ICDE), pages 717–719, 2003.

[CJT+06] Chee Yong Chan, H. V. Jagadish, Kian-Lee Tan, Anthony K. H. Tung,

and Zhenjie Zhang. Finding k-dominant skylines in high dimensional

space. In Proceedings of the ACM SIGMOD/PODS Conference, pages

503–514, 2006.

[CKP03] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar. Eval-

uating probabilistic queries over imprecise data. In Proceedings of the

ACM SIGMOD/PODS Conference, pages 551–562, 2003.

[CKP04] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar. Query-

ing imprecise data in moving object environments. IEEE Transactions

on Data Engineering (TKDE), 16(9):1112–1127, 2004.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction

to algorithms 2nd Edition. The MIT Press, 2001.

[CLY09] Graham Cormode, Feifei Li, and Ke Yi. Semantics of ranking queries

for probabilistic data and expected ranks. In Proceedings of the In-

BIBLIOGRAPHY 257

ternational Conference on Data Engineering (ICDE), pages 305–316,

2009.

[CP03] Reynold Cheng and Sunil Prabhakar. Managing uncertainty in sensor

databases. SIGMOD Record, 32(4):41–46, 2003.

[CR07] Dan Suciu Christopher Re, Nilesh N. Dalvi. Efficient top-k query

evaluation on probabilistic data. In Proceedings of International Con-

ference on Data Engineering (ICDE), pages 886–895, 2007.

[CSP06] Reynold Cheng, Sarvjeet Singh, and Sunil Prabhakar. Efficient join

processing over uncertain data. In Proceedings of the ACM Conference

on Information and Knowledge Management (CIKM), pages 738–747,

2006.

[CXP+04] Reynold Cheng, Yuni Xia, Sunil Prabhakar, Rahul Shah, and Jef-

frey Scott Vitter. Effcient indexing methods for probabilistic thresh-

old queries over uncertain data. In Proceedings of the International

Conference on Very Large Data Base (VLDB), pages 876–887, 2004.

[Din08] Zhiming Ding. UTR-tree: An index structure for the full uncertain

trajectories of network-constrained moving objects. In Proceedings of

the International Conference on Mobile Data Management (MDM),

pages 33–40, 2008.

[DM06] Amol Deshpande and Samuel Madden. Mauvedb: Supporting mod-

elbased user views in database systems. In Proceedings of the ACM

SIGMOD/PODS Conference, pages 73–84, 2006.

[DP98] Devdatt Dubhashi and Alessandro Panconesi. Concentration

258 BIBLIOGRAPHY

of measure for the analysis of randomised algorithms, page 12.

http://citeseer.ist.psu.edu/old/ dubhashi98concentration.html, 1998.

[DS96] Debabrata Dey and Sumit Sarkar. A probabilistic relational model and

algebra. ACM Transactions on Database Systems (TODS), 21(2):339–

369, 1996.

[DS04] Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on proba-

bilistic databases. In Proceedings of International Conference on Very

Large Data Base (VLDB), pages 864–875, 2004.

[DS05] Nilesh N. Dalvi and D. Suciu. Answering queries from statistics and

probabilisitc views. In Proceedings of International Conference on

Very Large Data Base (VLDB), pages 805–816, 2005.

[DS07a] Nilesh Dalvi and Dan Suciu. The dichotomy of conjunctive queries

on probabilistic structures. In Proceedings of ACM SIGMOD/PODS

Conference, pages 293–302, 2007.

[DS07b] Nilesh Dalvi and Dan Suciu. Management of probabilistic data: Foun-

dations and challenges. In Proceedings of ACM SIGMOD/PODS Con-

ference, pages 1–12, 2007.

[DYM+05] Xiangyuan Dai, Man Lung Yiu, Nikos Mamoulis, Yufei Tao, and

Michail Vaitis. Probabilistic spatial queries on existentially uncer-

tain data. In Proceedings of the Symposium on Spatial and Temporal

Databases (SSTD), pages 400–417, 2005.

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu.

A density-based algorithm for discovering clusters in large spatial

BIBLIOGRAPHY 259

databases with noise. In Proceedings of Knowledge Discovery and

Data Mining Conference (KDD), pages 226–231, 1996.

[FB] Raphael A. Finkel and Jon Louis Bentley. Quad trees: A data struc-

ture for retrieval on composite keys. Acta Inf., 4(1).

[FHR08] Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. Keyword search

on spatial databases. In Proceedings of the International Conference

on Data Engineering (ICDE), pages 656–665, 2008.

[FLN01] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation

algorithms for middleware. pages 102–113, 2001.

[FLN03] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms

for middleware. JCSS, 66:614–656, 2003.

[FR07] Norbert Fuhr and Thomas Rolleke. A probabilistic NF2 relational

algebra for imprecision in databases. In Unpublished Manuscript, 2007.

[FSR87] Christos Faloutsos, Timos K. Sellis, and Nick Roussopoulos. Analysis

of object oriented spatial access methods. ACM SIGMOD Record,

16(3):426–439, 1987.

[Fuh90] Norbert Fuhr. A probabilistic framework for vague queries and im-

precise information in databases. In Proceedings of the International

Conference on Very Large Data Base (VLDB), pages 696–707, 1990.

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractabil-

ity; A Guide to the Theory of NP-Completeness. New York, NY, USA,

1990.

260 BIBLIOGRAPHY

[GJ00] Michael M. Guntzer and D. Jungnickel. Approximate minimization al-

gorithms for the 0/1 knapsack and subset-sum problem. In Operations

Research Letters, 2000.

[Gol] Oded Goldreich. Randomized methods in computation.

http://www.wisdom.weizmann.ac.il/~oded/rnd.html.

[Gol01] Oded Goldreich. Randomized Methods in Computation, Lecture 2.

http://www.wisdom.weizmann.ac.il/˜oded/rnd.html, 2001.

[GUP05] Jose Galindo, Angelica Urrutia, and Mario Piattini. Fuzzy databases:

Modeling, design, and implementation., 2005.

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial

searching. In Proceedings of ACM SIGMOD Conference, pages 47–57,

1984.

[GZM09] Tingjian Ge, Stan Zdonik, and Samuel Madden. Top-k queries on un-

certain data: On score distribution and typical answers. In Proceedings

of the ACM SIGMOD/PODS Conference, pages 375–388, 2009.

[HGS03a] Edward Hung, Lise Getoor, and V. S. Subrahmanian. Probabilis-

tic interval XML. In Proceedings of the International Conference on

Database Theory (ICDT), pages 358–374, 2003.

[HGS03b] Edward Hung, Lise Getoor, and V. S. Subrahmanian. PXML: A prob-

abilistic semistructured data model and algebra. In Proceedings of

the International Conference on Data Engineering (ICDE), page 467,

2003.

BIBLIOGRAPHY 261

[HHLM07] Ramaswamy Hariharan, Bijit Hore, Chen Li, and Sharad Mehro-

tra. Processing spatial-keyword (sk) queries in geographic informa-

tion retrieval (gir) systems. In Proceedings of Statistical and Scientific

DataBase Management (SSDBM), page 16, 2007.

[HJLO06] Zhiyong Huang, Christian S. Jensen, Hua Li, and Beng Chin Ooi.

Skyline queries against mobile lightweight devices in MANETs. In

Proceedings of the Twenty-fourth International Conference on Data

Engineering (ICDE), page 66, 2006.

[HJR97] Yun-Wu Huang, Ning Jing, and Elke A. Rundensteiner. Spatial joins

using r-trees: Breadth-first traversal with global optimizations. In

Proceedings of the International Conference on Very Large Data Base

(VLDB), pages 396–405, 1997.

[HK01] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Tech-

niques. 2001.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded ran-

dom variables. The Journal of the Acoustical Society of America-

Online (JASA), 1963.

[HPZL08a] Ming Hua, Jian Pei, Wenjie Zhang, and Xuemin Lin. Efficiently an-

swering probabilistic threshold top-k queries on uncertain data. In

Proceedings of the Twenty-fourth International Conference on Data

Engineering, pages 1403–1405, 2008.

[HPZL08b] Ming Hua, Jian Pei, Wenjie Zhang, and Xuemin Lin. Ranking queries

on uncertain data: A probabilistic threshold approach. In Proceedings

of the SIGMOD/PODS Conference, pages 673–686, 2008.

262 BIBLIOGRAPHY

[HS89] John Hershberger and Subhash Suri. Finding tailored partitions. In

Proceedings of the Symposium on Computational Geometry, pages

255–265, 1989.

[HS95] Gı́sli R. Hjaltason and Hanan Samet. Ranking in spatial databases.

In SSD, pages 83–95, 1995.

[HS99] G. Hjaltason and H. Samet. Distance browsing in spatial databases.

ACM Transactions on Database Systems (TODS), (2):265–318, 1999.

[IJ84] Tomasz Imielinski and Witold Lipski Jr. Incomplete information in

relational databases. Journal of ACM, 31(4):761–791, 1984.

[JKV07] T. S. Jayram, Satyen Kale, and Erik Vee. Efficient aggregation al-

gorithms for probabilistic data. In Proceedings of the ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 346–355, 2007.

[JYC+08] Cheqing Jin, Ke Yi, Lei Chen, Jeffrey Xu Yu, and Xuemin Lin. Sliding-

window top-k queries on uncertain streams. In Proceedings of the

International Conference on Very Large Data Base (VLDB), pages

301–312, 2008.

[KHKH07] Dong-Oh Kim, Dong-Suk Hong, Hong-Koo Kang, and Ki-Joon Han.

Ur-tree: An efficient index for uncertain data in ubiquitous sensor

networks. In Advances in Grid and Pervasive Computing, pages 603–

613, 2007.

[KKPR06] Hans-Peter Kriegel, Peter Kunath, Martin Pfeifle, and Matthias Renz.

Probabilistic similarity join on uncertain data. In Proceedings of

Database Systems for Advanced Applications (DASFAA), pages 295–

309, 2006.

BIBLIOGRAPHY 263

[KKR07] Hans-Peter Kriegel, Peter Kunath, and Matthias Renz. Probabilis-

tic nearest-neighbor query on uncertain objects. In Proceedings of

Database Systems for Advanced Applications (DASFAA), pages 337–

348, 2007.

[KP05] Hans-Peter Kriegel and Martin Pfeifle. Density-based clustering of un-

certain data. In Proceedings of Knowledge Discovery and Data Mining

Conference (KDD), pages 672–677, 2005.

[KS95] Ron Kohavi and Dan Sommerfield. Feature subset selection using

the wrapper model: Overfitting and dynamic search space topology.

In Proceedings of Knowledge Discovery and Data Mining Conference

(KDD), pages 192–197, 1995.

[KS07] Benny Kimelfeld and Yehoshua Sagiv. Matching twigs in probabilistic

XML. In Proceedings of the International Conference on Very Large

Data Base (VLDB), pages 27–38, 2007.

[KW86] Marlvin H. Kalos and Paula A. Whitlock. Monte Carlo Methods.

Wiley Interscience, 1986.

[LBR+07] Rui Li, Bir Bhanu, Chinya Ravishankar, Michael Kurth, and Jinfeng

Ni. Uncertain spatial data handling: Modeling, indexing and query.

Computational Geoscience, 33(1):42–61, 2007.

[LC08] Xiang Lian and Lei Chen. Monochromatic and bichromatic reverse

skyline search over uncertain databases. In The Proceedings of ACM

SIGMOD/PODS Conference, pages 213–226, 2008.

[LCLC04] Kam-Yiu Lam, Reynold Cheng, Biyu Liang, and Jo Chau. Sensor node

selection for execution of continuous probabilistic queries in wireless

264 BIBLIOGRAPHY

sensor networks. In Proceedings of the ACM International Workshop

on Video Surveillance and Sensor Networks, pages 63–71, 2004.

[Lee92] Suk Kyoon Lee. Imprecise and uncertain information in databases:

an evidential approach. In Proceedings of the Eighth Intertional Con-

ference on Data Engineering (ICDE), pages 614–621, 1992.

[LLRS97] Laks V. S. Lakshmanan, Nicola Leone, Robert Ross, and Siva Sub-

rahmanian. ProbView: a flexible probabilistic database system. ACM

Transactions on Database Systems (TODS), 22(3):419–469, 1997.

[LSD09] Jian Li, Barna Saha, and Amol Deshpande. A unified approach to

ranking in probabilistic databases. pages 502–513, 2009.

[LSS96] Ee-Peng Lim, Jaideep Srivastava, and Shashi Shekhar. An evidential

reasoning approach to attribute value conflict resolution in database

integration. IEEE Transactions on Knowledge and Data Engineering,

8(5):707–723, 1996.

[LYWL05] Xuemin Lin, Yidong Yuan, Wei Wang, and Hongjun Lu. Stabbing

the sky: Efficient skyline computation over sliding windows. In Pro-

ceedings of the Twenty-fourth International Conference on Data En-

gineering (ICDE), pages 502–513, 2005.

[MKM08] Yiming Ma, Dmitri V. Kalashnikov, and Sharad Mehrotra. Toward

managing uncertain spatial information for situational awareness ap-

plications. IEEE Transactions on Knowledge and Data Engineering,

20(10):1408–1423, 2008.

[Mot88] Amihai Motro. Vague: a user interface to relational databases that

BIBLIOGRAPHY 265

permits vague queries. ACM Transactions on Information Systems,

6(3):187–214, 1988.

[MSCP03] Chris Mayfield, Sarvjeet Singh, Reynold Cheng, and Sunil Prabhakar.

ORION: A database system for managing uncertain data., 2003.

[MSS01] Sally McClean, Bryan Scotney, and Mary Shapcott. Aggregation of

imprecise and uncertain information in databases. IEEE Transactions

on Knowledge and Data Engineering (TKDE), 13(6):902–912, 2001.

[MTdK+07] Michi Mutsuzaki, Martin Theobald, Ander de Keijzer, Jennifer

Widom, Parag Agrawal, Omar Benjelloun, Anish Das Sarma,

Raghotham Murthy, and Tomoe Sugihara. TrioOne: Layering un-

certainty and lineage on a conventional dbms. In Proceedings of Con-

ference on Innovative Database Systems Research (CIDR), pages 269–

274, 2007.

[MW07] Raghotham Murthy and Jennifer Widom. Making aggregation work in

uncertain and probabilistic databases. In Workshop on Management

of Uncertain Data 2007, 2007.

[NJ02] Andrew Nierman and H. V. Jagadish. ProTDB: Probabilistic data in

XML. In Proceedings of the International Conference on Very Large

Data Base (VLDB), pages 646–657, 2002.

[NKC+06] Wang Kay Ngai, Ben Kao, Chun Kit Chui, Reynold Cheng, Michael

Chau, and Kevin Y. Yip. Efficient clustering of uncertain data. In

Proceedings of the International Conference on Data Mining (ICDM),

pages 436–445, 2006.

266 BIBLIOGRAPHY

[Pea88] J. Pearl. Probabilistic reasoning in intelligent systems. In Morgan

Kaufmann Publishers, 1988.

[PHTL] Jian Pei, Ming Hua, Yufei Tao, and Xuemin Lin. Query answering

technique on uncertain and probabilistic data. In The Proceedings of

SIGMOD/PODS Conference.

[PJET05] Jian Pei, Wen Jin, Martin Ester, and Yufei Tao. Catching the best

views of skyline: A semantic approach based on decisive subspaces.

In Proceedings of International Conference on Very Large Data Base

(VLDB), pages 253–264, 2005.

[PJLY07] Jian Pei, Bin Jiang, Xuemin Lin, and Yidong Yuan. Probabilistic

skyline on uncertain data. In Proceedings of the Thirty-third Very

Large Data Base (VLDB) Conference, pages 15–26, 2007.

[PKZT01] Dimitris Papadias, Panos Kalnis, Jun Zhang, and Yufei Tao. Efficient

olap operations in spatial data warehouses. In Proceedings of the Sym-

posium on Spatial and Temporal Databases (SSTD), pages 443–459,

2001.

[PMT99] Dimitris Papadias, Nikos Mamoulis, and Yannis Theodoridis. Pro-

cessing and optimization of multiway spatial joins using R-trees. In

Proceedings of the ACM SIGMOD/PODS Conference, pages 44–55,

1999.

[PTFS03] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. An

optimal and progressive algorithm for skyline queries. In Proceedings

of the ACM SIGMOD/PODS Conference, pages 467–478, 2003.

BIBLIOGRAPHY 267

[PTGS03] D. Papadias, Y. Tao, F. Greg, and B. Seeger. Progressive skyline

computation in database systems. ACM Transactions on Database

Systems (TODS), 30(1):41–82, 2003.

[RB92] Elke A. Rundensteiner and Lubomir Bic. Evaluating aggregates in

possibilistic relational databases. Data and Knowledge Engineering

(DKE), 7(3):239–267, 1992.

[RKF95] Nick Roussopoulos, Stephen Kelley, and Frederick. Nearest neighbor

queries. In Proceedings of the ACM SIGMOD Conference, pages 71–

79, 1995.

[RSG05] Robert B. Ross, V. S. Subrahmanian, and John Grant. Aggregate

operators in probabilistic databases. Journal of ACM, 52(1):54–101,

2005.

[SA07] Pierre Senellart and Serge Abiteboul. On the complexity of managing

probabilistic XML data. In Proceedings of the ACM SIGMOD/PODS

Conference, pages 283–292, 2007.

[Sad05] Yukio Sadahiro. Buffer operations on spatial data with limited accu-

racy. Transactions in GIS, 9(3):323–344, 2005.

[SBHW06] Anish Das Sarma, Omar Benjelloun, Alon Y. Halevy, and Jennifer

Widom. Working models for uncertain data. In Proceedings of the

Twenty-second International Conference on Data Engineering, page 7,

2006.

[SD07] Prithviraj Sen and Amol Deshpande. Representing and querying cor-

related tuples in probabilistic databases. In Proceedings of Interna-

tional Conference on Data Engineering (ICDE), pages 596–605, 2007.

268 BIBLIOGRAPHY

[SFC07] Mohamed A. Soliman, Ihab F.Ilyas, and Kevin Chen-Chuan Chang.

URank: Formulation and efficient evaluation of top-k queries in uncer-

tain databases. In Proceedings of ACM SIGMOD/PODS Conference,

pages 1082–1084, 2007.

[SIC07] Mohamed A. Soliman, Ihab F. Ilyas, and Kevin Chen-Chuan Chang.

Top-k query processing in uncertain databases. In Proceedings of In-

ternational Conference on Data Engineering, pages 896–905, 2007.

[SM03] Bryan W. Scotney and Sally I. McClean. Database aggregation of

imprecise and uncertain evidence. Inf. Sci., 155(3):245–263, 2003.

[SMM+08] Sarvjeet Singh, Chris Mayfield, Sagar Mittal, Sunil Prabhakar, Su-

sanne Hambrusch, and Rahul Shah. Orion 2.0: Native support for

uncertain data. In Proceedings of ACM SIGMOD/PODS Conference,

pages 1239–1242, 2008.

[SMP+07] Sarvjeet Singh, Chris Mayfield, Sunil Prabhakar, Rahul Shah, and

Susanne E. Hambrusch. Indexing uncertain categorical data. In Pro-

ceedings of the International Conference on Data Engineering (ICDE),

pages 616–625, 2007.

[SS06] Mehdi Sharifzadeh and Cyrus Shahabi. The spatial skyline queries.

In Proceedings of International Conference on Very Large Data Base

(VLDB), pages 751–762, 2006.

[STW08] Anish Das Sarma, Martin Theobald, and Jennifer Widom. Exploit-

ing lineage for confidence computation in uncertain and probabilistic

databases. In Proceedings of the International Conference on Data

Engineering (ICDE), pages 1023–1032, 2008.

BIBLIOGRAPHY 269

[SUW08] Anish Das Sarma, Jeffrey Ullman, and Jennifer Widom. Functional

dependencies for uncertain relations. In ICDE 2008, 2008.

[TCX+05] Yufei Tao, Reynold Cheng, Xiaokui Xiao, Wang Kay Ngai, Ben Kao,

and Sunil Prabhakar. Indexing multi-dimensional uncertain data with

arbitrary probability density functions. pages 922–933, 2005.

[TEO01] Kian-Lee Tan, P. Eng, and Beng Chin Ooi. Efficient progressive sky-

line computation. In Proceedings of the International Conference on

Very Large Data Base (VLDB), pages 301–310, 2001.

[TP06] Yufei Tao and Dimitris Papadias. Maintaining sliding window sky-

lines on data streams. In IEEE Transactions on Knowledge and Data

Engineering, volume 18, pages 377–391, 2006.

[TS96] Yannis Theodoridis and Timos K. Sellis. A model for the prediction

of r-tree performance. In Proceedings of the ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems (PODS),

pages 161–171, 1996.

[TXC07] Yufei Tao, Xiaokui Xiao, and Reynold Cheng. Range search on multi-

dimensional uncertain data. ACM Transactions on Database Systems,

32(3):15, 2007.

[TXP06] Yufei Tao, Xiaokui Xiao, and Jian Pei. SUBSKY: Efficient compu-

tation of skylines in subspaces. In Proceedings of the Twenty-fourth

International Conference on Data Engineering (ICDE), page 65, 2006.

[Wid05] Jennifer Widom. Trio: A system for integrated management of data,

accuracy, and lineage. In Proceedings of Conference on Innovative

Database Systems Research (CIDR), pages 262–276, 2005.

270 BIBLIOGRAPHY

[YLKS08] Ke Yi, Feifei Li, George Kollios, and Divesh Srivastava. Efficient

processing of top-k queries in uncertain databases with x-relations.

IEEE Transactions on Knowledge and Data Engineering (TKDE),

20(12):1669–1682, 2008.

[YLL+05] Yidong Yuan, Xuemin Lin, Qing Liu, Wei Wang, Jeffrey Xu Yu, and

Qing Zhang. Efficient computation of the skyline cube. In Proceedings

of the International Conference on Very Large Data Base (VLDB),

pages 241–252, 2005.

[YM07] Man Lung Yiu and Nikos Mamoulis. Efficient processing of top-k

dominating queries on multi-dimensional data. In Proceedings of the

International Conference on Very Large Data Base (VLDB), pages

483–494, 2007.

[YMT06] Man Lung Yiu, Nikos Mamoulis, and Yufei Tao. Efficient quantile

retrieval on multi-dimensional data. In Proceedings of the Interna-

tional Conference on Extending Database Technology (EDBT), pages

167–185, 2006.

[ZBG07] Daniel Zinn, Jim Bosch, and Michael Gertz. Modeling and querying

vague spatial objects using shapelets. In Proceedings of the Interna-

tional Conference on Very Large Data Base (VLDB), pages 567–578,

2007.

[ZLZ+09] Wenjie Zhang, Xuemin Lin, Ying Zhang, Jian Pei, and Wei Wang.

Threshold-based probabilistic top-k dominating queries. In to appear

in VLDB Journal, 2009.

[ZRL96] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: An ef-

BIBLIOGRAPHY 271

ficient data clustering method for very large databases. In Proceedings

of the ACM SIGMOD Conference, pages 103–114, 1996.

Appendix A

Related Publications and Works

1. Ying Zhang, Wenjie Zhang, Xuemin Lin, Jian Pei and Bin Jiang, “Rank-

ing Uncertain Sky: the Probabilistic Top-k Skyline Operator”, to appear in

Information Systems Journal. (Accepted 2010)

2. Ying Zhang, Xuemin Lin, Wenjie Zhang, Jianmin Wang and Qianlu Lin,

“Effectively Indexing the Uncertain Space”, to appear in IEEE Transactions

on Knowledge and Data Engineering (TKDE). (Accepted 2009).

3. Wenjie Zhang, Xuemin Lin, Muhammad Aamir Cheema, Ying Zhang, Wei

Wang, “Quantile-Based KNN Over Multi-Valued Objects”, in the Proceed-

ings of International Conference on Data Engineering (ICDE), 16-27, 2010.

4. Wenjie Zhang, Xuemin Lin, Ying Zhang, Jian Pei and Wei Wang, “Threshold-

based Probabilistic Top-k Dominating Queries”, VLDB Journal 19(2), 283-

305, 2010.

5. Wenjie Zhang, Xuemin Lin, Ying Zhang, Wei Wang, Jeffrey Xu Yu, “Proba-

bilistic Skyline Operator over Sliding Windows”, in the Proceedings of Inter-

national Conference on Data Engineering (ICDE), 1060-1071, 2009.

272

Appendix A Related Publications 273

6. Wenjie Zhang, Xuemin Lin, Jian Pei, Ying Zhang, “Managing Uncertain

Data: Probabilistic Approaches”, in the Proceedings of the International

Conference on Web-Age Information Management (WAIM), 405-412, 2008.

(invited paper)

Appendix B

Academic Achievements

Journal Articles

1. Muhammad Aamir Cheema, Ljiljana Brankovic, Xuemin Lin, Wenjie Zhang

and Wei Wang, “Continuous Monitoring of Distance Based Range Queries”,

submitted to IEEE Transactions on Data Engineering (TKDE). (Accepted

2010)

2. Ying Zhang, Wenjie Zhang, Xuemin Lin, Jian Pei and Bin Jiang, “Rank-

ing Uncertain Sky: the Probabilistic Top-k Skyline Operator”, to appear in

Information Systems Journal. (Accepted 2010)

3. Ying Zhang, Xuemin Lin, Wenjie Zhang, Jianmin Wang and Qianlu Lin,

“Effectively Indexing the Uncertain Space”, to appear in IEEE Transactions

on Knowledge and Data Engineering (TKDE). (Accepted 2009)

4. Wenjie Zhang, Xuemin Lin, Ying Zhang, Jian Pei and Wei Wang, “Threshold-

based Probabilistic Top-k Dominating Queries”, VLDB Journal 19(2), 283-

305, 2010.

5. Muhammad Aamir Cheema, Xuemin Lin, Wei Wang, Wenjie Zhang, Jian Pei,

“Probabilistic Reverse Nearest Neighbor Queries on Uncertain Data”, IEEE

274

Appendix A Related Publications 275

Transactions on Knowledge and Data Engineering (TKDE) 22(4), 550-564,

2010.

Conference Articles

1. Gaoping Zhu, Xuemin Lin, Wenjie Zhang, Wei Wang, Haichuan Shang, “Pre-

fIndex: An Efficient Supergraph Containment Search Technique”, in the

Proceedings of Scientific and Statistical Database Management Conference

(SSDBM), 360-378, 2010.

2. Wenjie Zhang, Ying Zhang, Muhammad Aamir Cheema, Xuemin Lin,

“Counting Distinct Objects over Sliding Windows”, in the Proceedings of

Australasian Database Conference (ADC) 2010. (Best Paper Award)

3. Wenjie Zhang, Xuemin Lin, Muhammad Aamir Cheema, Ying Zhang, Wei

Wang, “Quantile-Based KNN Over Multi-Valued Objects”, in the Proceed-

ings of International Conference on Data Engineering (ICDE), 16-27, 2010.

4. Ying Zhang, Xuemin Lin, Gaoping Zhu, Wenjie Zhang, Qianlu Lin, “Efficient

Rank Based KNN Processing over Uncertain Data”, in the Proceedings of

International Conference on Data Engineering (ICDE), 28-39, 2010.

5. Muhammad Aamir Cheema, Ljiljana Brankovic, Xuemin Lin, Wenjie Zhang,

Wei Wang, “Multi-Guarded Safe Zone: An Efficient Technique to Monitor

Moving Circular Range Queries”, in the Proceedings of International Confer-

ence on Data Engineering (ICDE), 189-200, 2010.

6. Muhammad Aamir Cheema, Xuemin Lin, Ying Zhang, Wei Wang, Wenjie

Zhang, “Lazy Updates: An Efficient Technique to Continuously Monitoring

Reverse kNN”, in the Proceedings of International Conference on Very Large

Data Bases (VLDB), PVLDB 2(1), 1138-1149, 2009.

276 BIBLIOGRAPHY

7. Shuxiang Yang, Wenjie Zhang, Ying Zhang, Xuemin Lin, “Probabilistic

Threshold Range Aggregate Query Processing over Uncertain Data”, in the

Proceedings of the Joint International Conferences on Asia-Pacific Web Con-

ference (APWeb) and Web-Age Information Management (WAIM) APWeb-

WAIM, 51-62, 2009. (Best Paper Award)

8. Wenjie Zhang, Xuemin Lin, Ying Zhang, Wei Wang, Jeffrey Xu Yu, “Proba-

bilistic Skyline Operator over Sliding Windows”, in the Proceedings of Inter-

national Conference on Data Engineering (ICDE), 1060-1071, 2009.

9. Ying Zhang, Xuemin Lin, Yufei Tao, Wenjie Zhang, “Uncertain Location

based Range Aggregates in a Multi-Dimensional Space”, in the Proceedings

of International Conference on Data Engineering (ICDE), 1247-1250, 2009.

(short paper)

10. Wenjie Zhang, Xuemin Lin, Jian Pei, Ying Zhang, “Managing Uncertain

Data: Probabilistic Approaches”, in the Proceedings of the International

Conference on Web-Age Information Management (WAIM), 405-412, 2008.

(invited paper)

11. Ming Hua, Jian Pei, Wenjie Zhang, Xuemin Lin, “Ranking Queries on Un-

certain Data: A Probabilistic Threshold Approach”, in the Proceedings of

ACM SIGMOD Conference, 673-686, 2008.

12. Ming Hua, Jian Pei, Wenjie Zhang, Xuemin Lin, “Efficiently Answering Prob-

abilistic Threshold Top-k Queries on Uncertain Data”, in the Proceedings

of International Conference on Data Engineering (ICDE), 1403-1405, 2008.

(short paper)

