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Abstract With the emergence of location-aware mobile device technologies, com-
munication technologies and GPS systems, the location based queries have attracted
great attentions in the database literature. In many user recommendation web
services, the spatial preference query is used to suggest the objects based on their
spatial proximity with the facilities. In this paper, we study the problem of general
spatial skyline (GSSKY) which can provide the minimal candidate set of the optimal
solutions for any monotonic distance based spatial preference query. Efficient pro-
gressive algorithm called P-GSSKY is proposed to significantly reduce the number
of non-promising objects in the computation. Moreover, we also propose spatial join
based algorithm, called J-GSSKY, which can compute GSSKY efficiently in terms of
I/O cost. The paper conducts a comprehensive performance study of the proposed
techniques based on both real and synthetic data.
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1 Introduction

With the development of mobile device technologies, communication technologies
and GPS systems in recent years, there has been an increasing number of location
based service systems specialized in providing interesting results through location-
based queries which retrieve the desirable candidate objects for users based on the
spatial proximity of the objects and facilities. For instance, as shown in Figure 1a,
there are a set of apartments, bus stations and supermarkets in the map, and a user
wants to rent an apartment which is close to both bus station and supermarket. In
Figure 1b, each apartment is mapped to a point in a 2-dimensional space where
the distances to the nearest bus station and supermarket are coordinate values of
an apartment. As shown in Figure 1 the apartment a4 derives the distance values
by its closest bus station (b 1) and supermarket(s1). Clearly, the smaller value is
preferred. As there is no apartment with both shortest supermarket-distance and
bus station-distance in the example, the user needs to make a trade-off. Suppose
user has a preference function against the distances of an apartment regarding its
closest bus station and supermarket, the system can return the apartment with best
score regarding the preference function. If the preference function is in the form
of f (o) = 4 × o.d1 + o.d2 where o.d1 and o.d2 represent the closest distances of o
to the supermarket and bus station respectively, then a4 is the best choice. The
answer becomes a3 if we have f (o) = o.d1 + 4 × o.d2. This is the distance based
spatial preference query,1 and the problem is studied in [13, 17, 23]. However, in
many applications users cannot find a proper preference function. Therefore, it is
desirable to provide a candidate set with small size for users such that they can make
personal trade-off without missing any potential optimal solution.

Motivated by the above example application, in the paper we propose the general
spatial skyline (GSSKY) operator. Given a set O of objects and a set F of facilities
with m types, an object o can be mapped to a point õ in m-dimensional space, named
distance space, where the coordinate value on i-th dimension is the distance of o
to its nearest facility with type i. We say an object o1 spatially dominates another
object o2 if õ1 dominates õ2 in the mapped distance space. Note that the dominance
relationship in distance space is the same as the traditional skyline problem [1]; that
is, we say õ1 dominates õ1 if õ2 is not larger than õ2 on any dimension i, where
1 ≤ i ≤ m, and õ1 is smaller than õ2 on at least one dimension. Then the objects which
are not spatially dominated by any other object are general spatial skyline objects.
As shown in Section 2.2, the general spatial skyline objects can provide the minimal
candidate of optimal solution for any monotonic distance based spatial preference
query. Moreover, we show theoretically and experimentally that the number of
GSSKY objects is usually much smaller than that of the objects.

Note that, there are some existing works [19, 20] which study the problem of
spatial skyline, in which they only consider one single facility for each facility type.
Please refer to Section 7 for detailed problem definition. The spatial skyline is useful
when there is only one facility (e.g., the airport in a city) or only one single facility is
chosen (e.g., the conference hotel) for each facility type. But their skyline model
cannot provide the minimal candidate for the distance based spatial preference

1See Section 2.2 for the formal definition.
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Figure 1 Motivating example.

queries discussed in the paper. For instance, we must choose one particular bus
station and one particular supermarket in Figure 1 to define the spatial skyline
objects under their skyline model. Consequently, such result is meaningless for
the spatial preference queries which may consider multiple facilities for each type
of facility. Moreover, the techniques developed in [19, 20] cannot be applied to
the problem of general spatial skyline computation because multiple facilities are
considered for each facility type in the paper.

Challenges A straightforward solution for the GSSKY query is to compute the
distance values of all objects and then apply the traditional skyline algorithm. This is
not efficient because the distance computation, i.e., calculating the distance of each
object to its closest facility regarding a particular type, is expensive and we have to
compute distance values for all objects. In the paper, we propose a novel GSSKY
computation algorithm which aims to reduce the amount of distance computations
by pruning non-promising objects. Our contributions can be summarized as follows.2

– It is the first work to introduce the general spatial skyline operator, which
can provide a minimal candidate set for any monotonic distance based spatial
preference query.

– Two efficient algorithms are proposed to compute the general spatial skyline.
– Comprehensive experiments demonstrate the efficiency of our techniques.

The remainder of the paper is organized as follows. We formally define the prob-
lem and related techniques in Section 2. Section 3 presents the all nearest neighbor
based algorithm. Sections 4 and 5 propose the progressive GSSKY algorithm and
spatial join based GSSKY algorithm respectively. Results of the comprehensive
performance studies are presented in Section 6. Section 7 presents the related work.
Finally, Section 8 concludes the paper.

2The article is the extension of the conference version [14].
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Table 1 The summary of notations.

Notation Definition

o (O) Object (a set of objects)
f (F) Facility (a set of facilities)
Fi All facilities in F with type i
o.di The nearest neighbor distance of object o regarding Fi

o �F o is fully hit by F
ri The maximal hit distance seen so far regarding facilities

with type i
o1 ≺F o2 o1 spatially dominates o2 regarding F
GSSKY(O,F) The general spatial skyline of O regarding the facilities F
nndmin(e, ef ) (nndmax(e, ef )) The minimal (maximal) nearest neighbor distance

between the object entry e and the facility entry ef

MDBR The minimal nearest neighbor distance bounding rectangle
T The nearest neighbor distance (NND) tuple
T.e The object R-tree entry associated with the NND tuple T
T.Fi The facility R-tree entries with type i associated with the

NND tuple T
T.mdbr The minimal nearest neighbor distance bounding rectangle (MDBR)

of the NND tuple T

2 Preliminary

In this section, we first formally define the problem of general spatial skyline
computation in Section 2.1. In Section 2.2, we show that the general spatial skyline
can provide a minimal candidate set for monotonic spatial preference functions. We
introduce the incremental nearest neighbor algorithm in Section 2.4. Table 1 below
summarizes mathematical notations frequently used.

2.1 Problem definition

A point x referred in the paper, by default, is in d-dimensional numerical space. Let
δ(x, y) denote the Euclidian distance between two points x and y.3 In the paper, F
represents a set of facilities and Fi denotes all facilities in F with type i. And a facility
f is a point in the space with a particular facility type.

An object o is a point in d-dimensional numerical space. The distance of o
regarding Fi, denoted by o.di, is the nearest neighbor distance between o and Fi, i.e.,
o.di = min (δ(o, f ) for any f ∈ Fi). As shown in Figure 1, given a set F of facilities
with m types (categories), an object o can be mapped to a point in m dimensional
space. Then we define the spatial dominance relationship as follows.

Definition 1 (Spatial dominance) Given two objects o1, o2 and a set F of facilities,
We say object o1 spatially dominates another object o2 regarding F , denoted by
o1 ≺F o2, if and only if o1.d j ≤ o2.d j for any type j, and there is a facility type i such
that o1.di < o2.di.

3We focus on Euclidian distance in the paper. Nevertheless, our techniques can be easily extended
to other Lp norm distances.
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Example 1 In Figure 1, we have a2 ≺F a1, a3 ≺F a5, and a4 �≺F a5.

Based on the spatial dominance relation, we come up with the definition of general
spatial skyline as follows.

Definition 2 (General spatial skyline) Given a set O of objects and a set F of
facilities, the general spatial skyline of O regarding F , denoted by GSSky(O,F),
are objects which are not spatially dominated by any other objects regarding F .

Example 2 In Figure 1, we have GSSky(O,F) = {a2, a3, a4}.

Problem statement In this paper we investigate the problem of efficiently computing
general spatial skyline against a set of objects and facilities with multiple number of
types.

2.2 Minimal candidate property

Given a set O of objects and a set F of facilities with m types, a distance based spatial
preference function p is defined as follows, where the score of an object regarding
F , denoted by os, is derived based on the distance values to its closest facilities.

os = p( o.d1, . . . , o.dm) (1)

Recall that o.di denotes the distance between o and its closest facility with type
i. For presentation simplicity, we use “spatial preference function” to abbreviate
“distance based spatial preference function” in the paper whenever there is no
ambiguity. The following theorem indicates that the GSSKY provides the minimal
candidate set for all increasing spatial preference functions.

Theorem 1 Let P denote the family of all increasing spatial preference functions
regarding F , for any p ∈ P the object with the best score is in GSSky(O,F). For
any object o in GSSky(o,F), there exists a spatial preference function p ∈ P such that
o has the best score regarding p.

Proof For any object o2 �∈ GSSky(O,F), there is an object o1 such that o1 ∈
GSSky(O,F) and o1 ≺F o2 according to definition of GSSKY. We have o1.d j ≤
o2.dj for any j ∈ [1, m] and there exists i ∈ [1, m] such that o1.di < o2.di. According to
the monotonic property of the functions, we have p(o1) < p(o2) for any increasing
spatial preference function p. With similar rationale, there is an increasing spatial
preference function p for each object o ∈ GSSky(O,F) such that p(o) has lowest
score among all objects. Therefore, the theorem holds. ��

2.3 GSSKY size estimation

Based on [6], we have the following theorem which estimates the size of GSSKY
objects with independent assumption.
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Theorem 2 Suppose the locations of the facilities and objects are independent to each
other, then the expected number of GSSKY object is O( (ln(n))d−1

(d−1)! ) where n is the number
of objects in O.

2.4 Incremental nearest neighbor technique

As our general spatial skyline algorithm proposed in Section 4 is based on the
incremental nearest neighbors(INN) computation, we introduce INN technique [8]
in this subsection. Unlike the k nearest neighbor query where k is known beforehand,
the INN algorithm will incrementally output the next closest neighbor, i.e., the
(l + 1)-th nearest neighbor where l is the number of neighbors seen so far, on user’s
demand.

Suppose the objects are organized by an R-tree, a priority queue Q is used to
maintain a set of R-tree entries (intermediate entries and data entries) where a key of
an entry is its minimal distance to the query point. The root of the R-tree is pushed to
Q at the beginning of the algorithm. For each incremental nearest neighbor request,
the algorithm outputs the data entry in Q with smallest key value. Note that we say
an object is in Q if its corresponding data entry or any of its parent entry is in Q.
Specifically, if the entry with smallest key value is a data entry which is associated
with an object o, o is output and popped from Q. Otherwise, the intermediate
entry (i.e., index or leaf node) is popped and expanded, and all its child entries
will be pushed into Q. The procedure will be repeated until the entry on top of Q
is a data entry. In this way, the system can incrementally output the next closest
neighbor and [8] theoretically and experimentally shows the efficiency of their INN
algorithm.

ANN based GSSKY ,

3 All Neareast Neighbor (ANN) based GSSKY algorithm

Since the GSSKY problem is exactly same as the traditional skyline problem if all
objects are mapped to the distance space D, a straitforward solution for the GSSKY
computation is to first compute the distances for all objects regarding F , and then
apply the existing skyline algorithm. As the computation of the distance values of
the objects regarding facilities with type i can be achieved by all nearest neighbor
(ANN) queries against O and Fi, in this subsection, we apply the state-of-the-art
ANN technique [3] to compute the GSSKY GSSKY. The Algorithm 1 outlines the
ANN based general spatial skyline computation. Note that all existing non-index
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skyline techniques can be applied in Line 3 once the distance values of all objects are
available. As shown in our initial empirical study, the dominant cost of Algorithm 1
is the distance computation.

4 Efficient progressive GSSKY algorithm

In this section, we first introduce the motivation of the progressive GSSKY algorithm
in Section 4.1, then Section 4.2 presents the details of the algorithm.

4.1 Motivation

As shown in the empirical study, the dominant cost of the GSSKY computation
comes from the distance computation of the objects. Consequently, even if we apply
the state-of-the-art technique to compute distances for all objects, the ANN based
GSSKY algorithm is inefficient in terms of both I/O and CPU costs. Motivated by
this, in this section we aim to reduce the number of distance computations during the
GSSKY query processing.

Generally, we may compute the nearest neighbor distance values of the objects in
two ways:

Object oriented search For each object o, we compute the o.di by applying the
nearest neighbor(NN) algorithm [18] where o is the query point. For instance,
as shown in Figure 1 o4.d1 and o4.d2 can be derived by issuing two NN queries
against F1 = {s1, s2, s3} and F2 = {b 1, b 2} respectively, where o4 is the query point.
Particularly, the all nearest neighbor (ANN) algorithm [3] can also be considered
as an object oriented method in which the object distances are computed in a batch
fashion.

The advantage of the object oriented search is that, for a given object or a set of
objects, we can directly derive the distances of the objects. However, as there is no
priori knowledge about the distance values of the unvisited objects, like Algorithm 1
in Section 3, we have to compute distance values for all objects to ensure the
correctness of GSSKY computation.

Facility oriented search Instead of computing distance values for each individual
object, we can derive them by applying incremental nearest neighbor(INN) algo-
rithm against facilities simultaneously where the query point is a facility. As shown
in Figure 2, for each facility f ∈ F , we maintain a radius fr and we say an object o has
been hit by f if δ( f, o) ≤ fr. The distance between o and f is called the hit distance
of o regarding f . Similarly, we say an object o is fully hit by F , denoted by o � F , if
o has been hit by all types of facilities; that is, for any Fi, there exists a facility f ∈ Fi

such that o is hit by f . For each facility type i, we maintain a global radius ri which is
the maximal hit distance seen so far regarding facilities with type i.

At each iteration, for each type i we find a facility f in Fi to invoke a new hit by
expanding fr such that the increase of ri is minimized. Clearly, the global radius ri is
non-decreasing in the search. Due to the monotonic property of ri, we can safely set
o.di to the hit distance when it is hit first time by a facility with type i. Recall that an
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Figure 2 Running example.
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object may be hit multiple times by the facilities with the same type. Therefore, we
say a hit is a redundant hit if the object has been hit by another facility with the same
type.

Example 3 Figure 2 illustrates a snapshot of facility oriented search in which we
use a circle to record each hit of the objects. Specifically, circles with thin(bold)
line represent the hits from bus stations (supermarkets) and the number of a circle
indicates the accessing order. Moreover, the circle with solid (dashed) line represents
a non-redundant hit (redundant hit). In Figure 2, a3.d1 and a4.d2 are derived in the
first iteration. In the third iteration, the hit of a7 regarding s3 is a redundant hit
because a7 has been hit by s2 in the second iteration.

Without loss of generality, we assume the hit distance is distinct for each facility
type in the paper. Note that the duplication can be easily handled by visiting all
objects with the same hit distance. Because of the monotonic property of the hit
distance (i.e., ri), the following lemma is immediate, which enables us to obtain the
lower bound of the distance values for the unvisited objects.

Lemma 1 In the facility oriented search, we have o.di > ri if an object o has not been
hit by any facility with type i so far.

Based on Lemma 1, the following theorem implies that we can safely prune some
objects from the GSSKY(O,F) without distance computation.

Theorem 3 In the facility oriented search, suppose there exists an object o1 which has
been hit by all types of facilities, an object o2 can be pruned from GSSKY(O,F) if
o2 has not been hit by any facility.

Proof We have o1.di ≤ ri since o1 has been hit by all types of facilities. On the other
hand, we have o2.di > ri for any object o2 which has not been hit by any facility.
It is immediate that o1 ≺F o2 and hence o2 can be pruned from GSSKY(O,F).
Therefore, the theorem holds. ��
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Example 4 In Figure 2, objects {a1, a5, a6} can be pruned from GSSKY(O,F)

without any distance computation because none of them has been hit by any facility
when a3 is fully hit.

Another advantage of facility oriented search is that, as shown in [8], the amor-
tized cost for each hit distance computation in INN query is cheaper than that of
a NN query because the INN algorithm can share the computation by continuously
maintain the priority queue. This implies that if the proportion of redundant hit is not
significant, the facility oriented method is more efficient. Intuitively, the proportion
of the redundant hit will increase against the global radius ri regarding Fi because
the larger the radius, the higher chance an object is hit by multiple facilities in Fi.
Another disadvantage of the the facility oriented search is that we need to maintain
a priority queue for each facility and it is not space efficient when the number of
facilities is very large.

Motivated by the advantages and disadvantages of the object oriented search
and facility oriented search, we propose an efficient progressive GSSKY algorithm
which combines both methods in an effective way. The algorithm consists of three
phases. In the first phase, we apply the facility oriented search to compute object
distances and prune objects (i.e., removing non-skyline objects) based on Lemma 1
and Theorem 3. This is feasible because the number of facilities is usually much
smaller than that of objects in real applications. When we find that the computation
of facility oriented search becomes less efficient due to large amount of redundant
hits, the algorithm goes to phase two, in which we compute the distances of the
remaining objects based on the object oriented search (i.e., NN query). Finally,
in phase three we apply the existing skyline algorithm to finalize the GSSKY
computation.

4.2 Progressive GSSKY algorithm

In the paper, we assume a set O of objects are organized by R-Tree, denoted by
RO, and all facilities with type i are also organized by R-Tree RFi . The Algorithm 2
illustrates the details of the efficient GSSKY algorithm.

In Lines 2–9, we apply the facility oriented search to compute the distances of
the objects until there exits an object which has been fully hit. Particularly, a local
priority queue is employed by each facility f for INN query, i.e., retrieving the next
closest neighbor of f . For each facility type i ∈ [1, m], we use a global priority queue
Qi to maintain the current closest neighbors (i.e., objects) of the facilities in Fi where
the distances are keys. In Line 4, the object o on the top of Qi is popped and an INN
query is issued by its associated facility to retrieve the next closest neighbors o2. Then
o2 is pushed into Qi. Line 6 sets o.di to the current hit distance (recorded by ri) if it is
a non-redundant hit. When the loop is terminated (Line 9), o is a GSSKY object and
kept in S , and objects which have been hit at least once are kept in the candidate set
C. According to Theorem 3, all remaining objects can be pruned. For I/O efficiency,
we keep the page ids of the nodes (i.e., intermediate entries) of the RO visited so far.
In the following facility oriented search (Lines 10–21), we do not access a node of
RO if its page id is recorded (i.e., all of its descendant data entries correspond to the
pruned objects) and hence the I/O cost can be saved.
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Efficient Progressive GSSKY Algorithm ( ,

In Lines 10–21, we continue the facility oriented search and try to identify the
GSSKY objects and prune the non-promising ones. Particularly, if the object o
output in Line 12 is a candidate object (i.e., o ∈ C) and the hit is a non-redundant hit,
Line 15 checks if there exits an object s ∈ S (i.e., GSSKY objects seen so far) such
that s ≺F o. Note that if o has not been hit by any facility with type i, odi is temporarily
set to ri in the test. We say an object o passes the skyline test (SkylineTest) if it is not
spatially dominated by any object in S . In the case o passes the test (Lines 16–17), it
is a GSSKY object if o has been fully hit. Otherwise, we cannot claim o is a GSSKY
object at this moment because the lower bound of the distance is employed in the
skyline test. Line 19 eliminates the object from C if o fails the test. As discussed
in Section 4.1, we should stop the facility oriented search when ri becomes large
because most of the hit might be redundant hit. However, it is unlikely to find the
optimal stop time since the distributions of the following redundant hits and non-
redundant hits are unknown. In the paper, we employ a simple but effective criteria.
The number of non-redundant hits and redundant hits are counted in the algorithm,
and Line 21 terminates the facility oriented search if there are more redundant
hits.
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Lines 22–23 calculate the missing distances for the objects in the candidate set,
where the object oriented search is employed. Recall that the missing of odi value
implies that the object o has not been hit by any facility with type i so far. The
remaining part of the algorithm is similar to the SFS Algorithm [4]. Particularly,
we sort all the candidate objects based on the sum of their distance values (i.e.,∑m

i=1 odi ) in non-decreasing order (Line 22), and Line 25 checks if an object is
spatially dominated by the GSSKY objects (S) seen so far. The objects passed the
test are GSSKY objects (Line 26).

Correctness For the correctness of the Algorithm 2, we need the following proper-
ties: (i) any object pruned at Lines 15 and 25 are not GSSKY object, (ii) all objects
unaccessed in Algorithm 2 are not GSSKY objects, and (iii) the object in S cannot
be dominated by any other object in O. Below is a formal proof.

Proof The correctness of the property (i) is immediate based on the definition of
GSSKY if o has been fully hit at Lines 15 and 25. If odi is replaced by ri at Line 15
(i.e., o has not been hit by any facility with type i) and o is dominated by an object
s ∈ S , we can claim that s spatially dominates o regarding F due to the monotonic
property of ri (Lemma 1).

The correctness of property (ii) is immediate base on Theorem 3.
We prove the correctness of property (iii) by the contradiction. Suppose the object

s is in S but s is spatially dominated by another object o. We can assume o is a GSSKY
object because of the dominance transitivity property of spatial dominance, i.e., o1 ≺F
o2 and o2 ≺F o3 implies o1 ≺F o3. If s is put in S at Line 8 or Line 17, o should be
included in S before s. This is because o ≺F s implies s is fully hit after o due to the
monotonic property in the facility oriented search. This is against the facts that s is
not spatially dominated by any objects in S or s is the first object being fully hit. We
can come up with similar contradiction if s is put in S at Line 26 because we access
objects based the sum of their distance values. ��

Performance analysis Upon each hit in Algorithm 2 (Lines 2–21), an INN query
is issued to retrieve the next closest neighbor of a facility f ∈ Fi where i ∈ [1, m]
and the global priority queue Qi is updated. The cost is Cinn + O(log(nf )) where
Cinn and nf denote the average cost of an INN query and the average number
of facilities for each type respectively. If it is a non-redundant hit , the skyline
test is invoked which costs |S| in the worst case where |S| is the size of S . In
Lines 22–23, the cost is (m − 1) × |C| × Cnn in the worst case where Cnn is the average
cost for NN query and |C| dentoes the candidate set size. Recall that a candidate
object will be hit at least once. The sorting cost in Line 24 is O(|C| × log(|C|))
and the cost of skyline computation in Lines 24–26 is |S|2 in the worse case. In
summary, let nr and nt denote the number of redundant hits and non-redundant
hits, the time complexity of Algorithm 2 is O((nr + ns) × (Cinn + log(nf )) +ns × |S|+
(m − 1) × |C| × Cnn+ |C| × log(|C|) + |S|2). Note that, in practice |S| and |C| are
much smaller than the total number of objects, and hence the algorithm is quite
efficient.

Following theorem estimates the number of objects accessed, i.e., objects have
been hit at least once, in Algorithm 2 based on the uniform and independence
assumption.
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Theorem 4 Suppose that (i) objects and facilities are uniformly distributed in the space
[0, 1]2, (ii) there are nf facilities for each type, and (iii) the locations are independent
regarding dif ferent types of facilities. The expected number of objects accessed in
Algorithm 2 is n(1 − (1 − π X̄2)m) where n and nf are the number of objects and
facilities for each type. Particularly, we have X̄ equals

∫ c
r=0(1 − F(r))′r d(r) where

c = 1√
2nf

, and F(r) = (1 − (nf πr2)m)n.

Proof According to the uniform assumption and there are same number of facilities
for each type, ri is same in each iteration where 1 ≤ i ≤ m, which is denoted by
r. The probability that none of the objects is fully hit for given r, denoted by
F(r), is (1 − (nf πr2)m)n due to the uniform and independence assumption. Let X
denote the distance r when the first object is fully hit, then its expected value X̄
equals

∫ c
r=0(1 − F(r))′ × r d(r) where c = 1√

2nf
. Consequently, the expected number

of objects accessed is n(1 − (1 − π X̄2)m). ��

5 Efficient spatial join based GSSKY algorithm

In this section, we present the spatial join based algorithm which focuses on improv-
ing the I/O efficiency of the GSSKY computation. Particularly, the motivation and
details of the algorithm are introduced in Sections 5.1 and 5.2 respectively.

5.1 Motivation

Although the progressive GSSKY Algorithm introduced in Section 4 is efficient
in terms of CPU cost in our empirical study, it has two drawbacks which may
inherently limit its overall performance in some scenarios. Firstly, in the facility
oriented searching phase of Algorithm 2 we need conduct the incremental search on
each individual facility, which implies that the Algorithm does not scale well towards
the number of facilities. Secondly, to guarantee the monotonic property during the
nearest neighbor distance computations, the facilities and objects are accessed based
on their corresponding nearest neighbor distances. This causes the problem of I/O
inefficiency because an object may be accessed multiple times. This is confirmed
in the empirical study, which reports that the I/O performance of the progressive
GSSKY Algorithm is poor when the buffer size is small.

Motivated by this, in this section we propose a new algorithm following the
synchronized R-tree traversal paradigm used in [2, 10, 11, 16] to address the above
two issues. More specifically, instead of applying the incremental search on individual
facility or object, the proposed algorithm will process the objects and facilities
in a level by level fashion such that the nearest neighbor distance computations
and skyline dominance check can be conducted on a group of objects or facilities.
Moreover, to avoid computing nearest neighbor distances for all objects, we naturally
integrate the skyline dominance check into the nearest neighbor distance computa-
tion so that some non-promising objects in the same groups can be pruned without
calculating individual nearest neighbor distance. Following is a motivating example
to illustrate the underline principles of the spatial join based GSSKY computation
algorithm.



World Wide Web (2013) 16:247–270 259

In Figure 3, a set of apartments (i.e., objects) {a1, a2, . . . , a7} are organized by an
R-tree RA. Particularly, a1, a2 and a3 are allocated to R-tree node A1, the R-tree
nodes A2 and A3 keep {a4, a5} and {a6, a7} respectively. The root of the RA is A0,
and the organization of RA is shown on the right side of Figure 3. Similarly, Figure 3
shows that bus stations (1st type of facilities) and supermarkets (2nd type of facilities)
are organized by RB and RS respectively.

For an entry e (intermediate entry or data entry) in the object R-tree RA, we use a
tuple T, namely nearest neighbor distance(NND) tuple, to keep the information used
for nearest neighbor distance computation of e, which consists of three elements:
T.e, {T.Fi} with 1 ≤ i ≤ m, and T.mdbr where m is the number of facility types
in the query. Particularly, T.e refers to the object R-tree entry e; T.Fi denotes a
set of i-th type (1 ≤ i ≤ m) facility R-tree entries which contribute to the nearest
neighbor distance computation of T.e; T.mdbr is the minimal nearest neighbor
distance bounding rectangle (MDBR) of the entry T.e, and the i-th value of its
lower (upper) corner, denoted by T.mdbr_low[i] (T.mdbr_high[i]), is the minimal
(maximal) nearest neighbor distance which is derived from facility entries in T.Fi.
Note that the T.mbdr is a rectangle in the distance space.

Suppose we have T.e referring to A1 in Figure 3, T.F1 = {M1, M2} and T.F2 =
{B1, B2}. By applying the nearest neighbor distance computation technique in [3, 22],
we can derive the minimal(maximal) nearest neighbor distance regarding two R-tree
entries (e.g., A1 and B1); That is, given an object R-tree entry A1 and a facility
R-tree entry B1, we can come up with the minimal (maximal) nearest neighbor
distances nndmin(A1, B1) (nndmax(A1, B1)) such that for any objects in A1, its nearest
neighbor distance regarding facilities in B1, denoted by NND(o, B1), is bounded by
nndmin(A1, B1) and nndmax(A1, B1). Then we can derive T.mdbr based on minimal
(maximal) nearest neighbor distance between A1 and facility entries in {T.Fi}, which
is formally defined as follows.

T.mdbr_low[i] = min{nndmin(T.e, ef )|ef ∈ T.Fi} (2)

and

T.mdbr_high[i] = min{nndmax(T.e, ef )|ef ∈ T.Fi} (3)
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Figure 3 R-trees for objects and facilities.
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In Figure 4, the shaded rectangles (T1.mdbr, T2.mdbr and T3.mdbr) in the
distance space correspond to the MDBRs of the R-tree nodes A1, A2 and A3 in
Figure 3, which are obtained based on (2) and (3) above. Particularly, the point
p1 (p2) in Figure 4 is the lower (upper) corner of T1.mdbr, i.e., T1.mdbr_low

(T1.mdbr_high).
Based on the T.mdbr, we can prune the entries in facility R-trees and object R-

tree from further computation. Clearly, we do not need to explore the facilities in a
facility R-tree node e′ in T.Fi for the nearest neighbor distance computation of the
objects with in T.e if nndmin(T.e, e′) > T.mdbr_high[i] for 1 ≤ i ≤ m. Recall that m
is the number of facility types which equals 2 in the example. In Figure 3, we have
nndmax(A1, M2) < nndmin(A1, M1) then M1 can be removed from T.F2 since none of
the facilities in M1 contributes to the nearest neighbor distance computation of A1.
This is called distance based pruning.

Besides the facility R-tree entries, we can also conduct the dominance based
pruning on object R-tree entries. As shown in Figure 4, the upper corner of T1.mdbr
(p1) dominates the lower corner of T2.mdbr (p3) in the distance space. This implies
that none of the objects in A2 (a4 and a5) can be GSSKY object because all objects
in A2 are dominated by any object in A1 (a1, a2 or a3) according to the definition of
MDBR. Consequently, we can exclude A2 (i.e., all objects in A2) from the GSSKY
computation.

Based on above observations, in Section 5.2 we will show how to effectively apply
the distance based and dominance based pruning techniques in a level by
level fashion.

5.2 Spatial join based GSSKY algorithm

We first introduce how to update the MBDR of an NND tuple based on a facility
entry ef with type i in Algorithm 3. For a given facility entry ef , Line 2 calculates
the minimal and maximal nearest neighbor distances between the object entry T.e
and the facility entry ef based on techniques in [3, 22]. Then Line 3 updates the
MDBR of T (T.mdbr) according to (2) and (3). Moreover, a facility entry can be
pruned (distance based pruning) in Line 6 if it cannot contribute to the nearest
neighbor distance computation of T.e.

Figure 4 Example for minimal
nearest neighbor distance
bounding rectangle (MDBR).
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Spatial Join based Algorithm ,

Algorithm 4 illustrates the details of the spatial join based GSSKY algorithm. A
min heap H is used to maintain NND tuples in the Algorithm, and the key of a tuple
is the sum of the coordinate values of the lower corner of its MDBR, i.e.,

∑m
i=1

T.mdbr_low[i]. H is set empty in Line 1. An NND tuple is generated in Lines 4–6
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based on the roots of objectR-tree (RO) and facility R-trees ({RFi}) and pushed into
H in Line 7. For each NND tuple on the top of H, if the object entry and facility
entries are data entries (Line 11), i.e., the nearest neighbor distances of the object
are calculated (Line 13), Line 14 checks if the object (i.e., the object associated with
T.e) is spatially dominated by the GSSKY objects seen so far, which are kept in S .
Line 15 puts the object in S if the object survives the skyline dominance test. On the
other hand, if the object entry or one of the facility entries is an intermediate entry,
Line 18 generates an NND tuple t for each child entry e′ of e.4 Then we update the
MDBR of the tuple t by applying Algorithm 3 against each child entry of the facility
entries in {T.Fi} with 1 ≤ i ≤ m. Thereafter, an NND tuple can be safely pruned
from GSSKY computation if it is spatially dominated by any object in S . Otherwise,
Line 23 pushes tuple t into H for further computation. To enable pruning object
entries based on the intermediate entries, Line 25 inserts S a dummy object when an
intermediate entry survives the skyline test, which corresponds to the upper corner of
the entry. The algorithm terminates when H is empty and all GSSKY objects are kept
in S .

Correctness Similar to Algorithm 2, for the correctness of the Algorithm 4, we need
the following properties: (i) if an object R-tree entry is pruned, none of the objects
in the entry is GSSKY object, and (ii) the object in S cannot be dominated by any
other object in O. Below is a formal proof.

Proof Property (i): If an object R-tree entry is pruned in Algorithm 4, this implies
that the lower corner of the MDBR of the entry is spatially dominated by another
object or the upper corner of the MDBR of an object R-tree entry. It is immediate
that all objects in the entry cannot be GSSKY object.

Property (ii): since the object R-tree entries are accessed in non-decreasing order
of the sum of the distance values of the lower corner of their MDBRs, an object
can only be dominated by another entry with less key values. Therefore, it is safe to
claim an object is GSSKY object in the algorithm if it is not spatially dominated by
any object seen so far. ��

Performance analysis In the worst case, all facilities are involved in the min-
imal and maximal nearest neighbor distance computation for each object R-
tree entry. Therefore the time cost is O(n × m × nf ) in the worst case where
n is the number of objects, m represents the number of facility types and
nf denotes the average number of facilities for each type of facility. Never-
theless, the empirical study shows that the two pruning rules (i.e., distance
based and dominance based pruning rules) are quite effective. Moreover,
since the R-tree entries for object R-tree and facility R-trees are accessed in
a level by level fashion and an object R-tree entry will be accessed at most
once in Algorithm 4, the empirical study shows that the I/O performance of
Algorithm 4 significantly outperforms the competitors when the buffer size is
small.

4In the case that T.e is data entry but T.Fi contains an intermediate facility entry, we simply set e′ = e
at Line 17. Similar strategy goes to facility entries in Line 20.
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6 Performance evaluation

We present results of a comprehensive performance study to evaluate the efficiency
and scalability of the proposed techniques in the paper. Following algorithms are
evaluated.

ANN The all nearest neighbor based technique presented in Section 3. The
SFS algorithm [4] is used in Algorithm 1 for skyline computation.

P-GSSKY The progressive GSSKY algorithm proposed in Section 4.
J-GSSKY The join based GSSKY algorithm proposed in Section 5.

All algorithms in this paper are implemented in standard C++ with STL library
support and compiled with GNU GCC. Experiments are run on a PC with Intel Xeon
2.40 GHz dual CPU and 4 G memory running Debian Linux. The disk page size is
fixed to 4096 bytes. We used an LRU memory buffer whose size varies from 1 % to
100 % of the R-tree size of the objects.

Real datasets Two real spatial datasets, CA and US , are employed in the experi-
ment.5 CA consists of 104,217 locations of 44 different categories (e.g., church, lake
and school). Each category corresponds to a facility type. The objects in CA are
constructed as follows. We first normalize the space to [0, 1]2 and then for each
facility we randomly create 5 objects within distance 0.005. Consequently the number
of objects in CA dataset is 521,085. Similarly, US dataset is obtained from the U.S.
Geological Survey (USGS) and consists of 406,709 locations with 40 types, and the
number of objects in US is 2,033,545. The CA data is the default object dataset and
facility dataset in the experiments.

Synthetic datasets To study the scalability of the algorithms, we also create synthetic
dataset, denoted by SYN, in the experiment. The objects and facilities are randomly
generated in 2-dimensional space [0, 1]2, i.e., both are uniformly distributed in the
space. Specifically, the number of objects varies from 500K to 5M with default value
1M. There are 40 types of facilities and the number of facilities for each type varies
from 500 to 10,000 with default value 2,000.

Work load The work load of each experiment consists of 200 GSSKY queries and
m facility types are randomly chosen in each query where m varies from 2 to 5 with
default value 3.

In the paper, the average CPU time as well as the average response time, which
includes the CPU time and I/O latency, are used to measure the efficiency of the
algorithms. We also record the average GSSKY size and the average number of R-
tree nodes accessed in the algorithms.

Table 2 lists parameters which may have an impact on our performance study. In
our experiments, all parameters use default values unless otherwise specified.

5CA and US are public available from websites http://www.cs.fsu.edu/∼lifeifei/SpatialDataset.htm
and http://www.geonames.usgs.gov/ respectively.

http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm
http://www.geonames.usgs.gov/
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Table 2 System parameters. Notation Definition (default values)

m The number of facility types (3)
n The number of objects (1M)
nf The number of facilities for each type (2000)

6.1 GSSKY size

In this subsection, we investigate the size of the GSSKY. Figure 5 illustrates the
GSSKY size on SYN, CA and US datasets where m varies from 2 to 5 and facilities
are chosen from the SYN, CA and US respectively. For given m, three datasets
have the similar number of GSSKY objects. As expected, the number of GSSKY
objects increases quickly towards the number of types (m). Particularly, for m = 2
the GSSKY size is 13, 15 and 15 for SYN, CA and US respectively. When m goes to
5, it becomes 2,666, 5,508 and 5,911 respectively. For m = 5, the number of GSSKY
objects occupies only around 5 %, 3 % and 6 % of the objects for CA, US and
SYN datasets respectively. In practice, the number of facility types is usually small.
Therefore, we do not further investigate the settings with m > 5.

Figures 6 and 7 investigate the impact of the object size (n) and facility size (nf )
respectively where the objects and facilities are from SYN. Since locations of the
facilities with different types are independent, the Theorem 2 can be applied to
estimate the GSSKY size, and its accuracy is verified in both Figures. Moreover, as
expected, the GSSKY size increases slowly on the number of objects (See Figure 6)
and is independent to the number of facilities (See Figure 7).

6.2 Efficiency evaluation

In this section, we evaluate the efficiency of the algorithms proposed in the paper
against various factor which may potentially affect the performance of the algo-
rithms. More specifically, we will investigate the impact of the buffer size, data
distribution, the number of facility types(m), the number of objects (n), the average
number of facilities for each type of facilities (nf ).

Impact of buf fer size We first evaluate the effect of the buffer on the performance
of the ANN, P-GSSKY and J-GSSKY algorithms where CA dataset is employed.
In the experiments, we record the number of pages accessed by the algorithms as
well as the query response time. Figure 8 shows the response time and the number
of I/O accesses as a function of buffer size (%). As expected, the performance of

Figure 5 Different datasets
and m.
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Figure 6 Different n.

Figure 7 Different nf .

(a) Response Time vs Diff. Buffer Size (b) #IO vs Diff. Buffer Size

Figure 8 Impact of the buffer size.

(a) CPU Time (b) #IO with buffer size 100% (c) #IO with buffer size 5%

Figure 9 Impact of data distribution.
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(a) CPU Time (b) #IO with buffer size 100% (c) #IO with buffer size 5%

Figure 10 Impact of the number of facility types (m).

J-GSSKY scale well on the buffer size since the J-GSSKY carefully consider the
I/O efficiency while the performance of P-GSSKY degrades sinigificantly when the
buffer size is small. Moreover, as shown in Figure 8a, P-GSSKY and J-GSSKY
algorithms significantly outperform the ANN algorithm especially when the buffer
size becomes small.

Impact of data distribution In the second set of experiments, we evaluate the
performance of the algorithms on SYN, CA and US datasets respectively. Figure 9a
shows that P-GSSKY has the best performance in terms of CPU cost, and J-
GSSKY is slightly slower than P-GSSKY but still significantly outperforms the ANN
algorithm. Figure 9b and c show the number of I/O accesses of the algorithms when
the buffer size equals 100 % and 5 % respectively. Observe that the I/O efficiency
of the P-GSSKY is quit sensitive to the buffer size while the J-GSSKY scale well to
the buffer size. For instance, in CA dataset, P-GSSKY invokes 6044 and 2727 disk
accesses when buffer size equals 5 % and 100 % respectively, while the number of
I/Os accessed by J-GSSKY remains the same (3654).

Impact of the number of facility types (m) Figure 10 investigates the performance
of ANN, P-GSSKY and J-GSSKY algorithms as a function of the number of facility
types (m). It is shown that performance of all algorithms degrades against m due to
larger size of GSSKY objects and more distance computations.

As discussed in Section 5.1, the cost of P-GSSKY is more sensitive to the number
of facilities since we need to conduct incremental nearest neighbor search for each
facility. It is observed that the performance of P-GSSKY does not scale well towards

(a) CPU Time (b) #IO with buffer size 100% (c) #IO with buffer size 5%

Figure 11 Impact of the number of facility types (nf ).
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(a) CPU Time (b) #IO with buffer size 100% (c) #IO with buffer size 5%

Figure 12 Impact of the number objects (n).

the number of facility types, even when the buffer size is large. On the other hand, the
performance of J-GSSKY degrades much slower than that of ANN and P-GSSKY.

Impact of the number of facilities for each type (nf ) Figure 11 evaluates the perfor-
mance of ANN, P-GSSKY and J-GSSKY algorithms against the number of facilities
for each type (nf ) where the facilities are from SYN dataset whose size ranges from
200 to 10000. Similar trends in Figure 10 are observed in Figure 11 where P-GSSKY
does not scale well towards nf , i.e., the total number of facilities. Moreover, it is
noticed in Figure 11c that the I/O efficiency of P-GSSKY is poor when the buffer
size is small.

Impact of the number of objects (n) Figure 12 evaluates the performance of ANN,
P-GSSKY and J-GSSKY algorithms as a function of the number of objects in the
SYN dataset where n ranges from 500K to 5M. It is shown that both P-GSSKY and
J-GSSKY algorithms are scalable to the number of objects, while the CPU and I/O
costs of ANN grow significantly.

We evaluate the number of objects accessed in ANN, P-GSSKY and J-GSSKY
algorithms where both objects and facilities are from SYN dataset, and the number
of facility types m grows from 2 to 5. Moreover, we depict the estimated number
of objects accessed by P-GSSKY, denoted by EST, based on Theorem 4. Figure 13
reports that all objects contribute to the distance calculation in ANN algorithm, while
a large number of objects are pruned in P-GSSKY and J-GSSKY algorithms and
hence the computational costs can be significantly reduced. It also demonstrates the
accuracy of the Theorem 4.

In the last set of experiments, Figure 14 reports the maximal heap size of three
algorithms during the GSSKY computation to evaluate the memory usage of three
algorithms. As expected, P-GSSKY takes much more memory space than ANN and
J-GSSKY because a heap is maintained for each facility during the computation.

Figure 13 Objects accessed
vs m.
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Figure 14 Heap size vs m.

6.3 Summary

As a short summary, our comprehensive performance study clearly demonstrates the
effectiveness of GSSKY since we only need to maintain a small fraction of objects
(GSSKY objects) to guarantee that all optimal solutions for arbitrary monotonic
distance based spatial preference functions are kept. Moreover, the extensive per-
formance evaluation shows that two proposed algorithms, P-GSSKY and J-GSSKY,
are both effective and efficient. Particularly, when the number of facilities is not
large and there is sufficient main memory available, which is not uncommon in
many applications, the P-GSSKY algorithms has the best performance among three
algorithms. Although the performance of J-GSSKY is slightly less efficient than
GSSKY regarding the settings favoring the GSSKY, our extensive experiments
shows that J-GSSKY is the most I/O efficient algorithm and scale well against the
number of facilities.

7 Related work

Studies on skyline computation have a long history. Börzsönyi et al. [1] first inves-
tigate the skyline computation problem in the context of databases and propose
an SQL syntax for the skyline query. They also develop the skyline computation
techniques based on block-nested-loop and divide-conquer paradigms, respectively.
Chomicki et al. [4] propose another block-nested-loop based computation technique,
SFS (sort-f ilter-skyline), to take the advantages of a pre-sorting. Papadias et al. [15]
propose a branch and bound search technique (BBS) to progressively output skyline
points on datasets indexed by R-tree.

The problem of spatial skyline is first proposed in [19]. Given a set O of objects and
a set Q of query points, each object has |Q| derived spatial attributes each of which is
the distance of the object to a query point in Q, and hence can be mapped to a point
in |Q|-dimensional space where |Q| is the number of query points in Q. Then the
spatial skyline regarding O and Q is the traditional skyline on |Q|-dimensional space.
Efficient algorithms are developed in [19] to compute spatial skylines by utilizing the
R-Tree, convex hull, and voronoi diagram techniques. Son et al. further improve
the spatial skyline computation techniques in [20]. Moreover, in [21] they investigate
the problem based on the manhattan distance. In [5], Ke et al. investigate the
problem in the road network. Besides the spatial skyline, there are also some related
work in which skyline is computed based on the derived spatial attributes. In [9],
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Huang et al. studies the problem of in-route skyline to find locations which are
not dominated by other candidate locations regarding the network distance to a
query location q and the corresponding detour distance. In [7, 12] spatial distance
regarding a query point q is considered during the skyline computation, in which
other dimensions of an objects are non-spatial attributes.

In many applications, the query points may come from the same categories (e.g.,
bus stations, supermarkets). For an object o and a particular category (i.e., facility
type like bus station), users are only interested in the distance between o and its
closest query point (i.e., facility) in that category. Consequently, the spatial skyline
does not make sense in these applications because it does not considers the distances
of o regarding a set of facilities (i.e., more than one facility) in the same category, and
hence cannot provide minimal candidate set for distance based spatial preference
queries studied in [13, 17, 23]. Moreover, the techniques in [19, 21] cannot be applied
to the GSSKY computation because their pruning techniques assume there is only
one facility for each type of facilities.

8 Conclusion and future work

In this paper, we introduce the general spatial skyline which can provide minimal
candidate set of the optimal solution regarding any monotonic distance based spatial
preference query. Efficient algorithms are proposed in the paper and comprehensive
experiments are conducted to demonstrate the effectiveness and efficiency of the
algorithms. As a possible future work, we will investigate the problem on the road
network in which the network distance is considered.
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