Quick-Sort

7 4 9 6 2 → 2 4 6 7 9

4 2 → 2 4

7 9 → 7 9

2 → 2

9 → 9
Quick-Sort (§ 10.2)

Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:

- **Divide**: pick a random element \(x \) (called pivot) and partition \(S \) into
 - \(L \) elements less than \(x \)
 - \(E \) elements equal \(x \)
 - \(G \) elements greater than \(x \)
- **Recur**: sort \(L \) and \(G \)
- **Conquer**: join \(L \), \(E \) and \(G \)
Partition

- We partition an input sequence as follows:
 - We remove, in turn, each element y from S and
 - We insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes $O(1)$ time
- Thus, the partition step of quick-sort takes $O(n)$ time

Algorithm $\text{partition}(S, p)$

- **Input** sequence S, position p of pivot
- **Output** subsequences L, E, G of the elements of S less than, equal to, or greater than the pivot, resp.

L, E, $G \leftarrow$ empty sequences

$x \leftarrow S.remove(p)$

while $\neg S.isEmpty()$

 $y \leftarrow S.remove(S.first())$

 if $y < x$
 $L.insertLast(y)$
 else if $y = x$
 $E.insertLast(y)$
 else
 $G.insertLast(y)$

return L, E, G
Quick-Sort Tree

- An execution of quick-sort is depicted by a binary tree
 - Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
 - The root is the initial call
 - The leaves are calls on subsequences of size 0 or 1

```
7 4 9 6 2 → 2 4 6 7 9
```

```
2 → 2
```

```
7 9 → 7 9
```

```
2 → 2
```

```
9 → 9
```
Execution Example (cont.)

Recursive call, pivot selection

7 2 9 4 3 7 6 1

2 4 3 1 → 1 2 3 4

1 → 1

4 3 → 3 4

4 → 4

7 9 7
Execution Example (cont.)

Join, join

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 7 9

2 4 3 1 → 1 2 3 4

1 → 1

4 3 → 3 4

4 → 4

7 9 7 → 7 7 9

9 → 9
Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element.
- One of L and G has size $n - 1$ and the other has size 0.
- The running time is proportional to the sum $n + (n - 1) + \ldots + 2 + 1$.
- Thus, the worst-case running time of quick-sort is $O(n^2)$.

<table>
<thead>
<tr>
<th>depth</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>$n - 1$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$n - 1$</td>
<td>1</td>
</tr>
</tbody>
</table>
Expected Running Time

Consider a recursive call of quick-sort on a sequence of size s:

- **Good call**: the sizes of L and G are each less than $3s/4$
- **Bad call**: one of L and G has size greater than $3s/4$

A call is **good** with probability $1/2$

- $1/2$ of the possible pivots cause good calls:
Expected Running Time, Part 2

- **Probabilistic Fact:** The expected number of coin tosses required in order to get k heads is $2k$
- For a node of depth i, we expect
 - $i/2$ ancestors are good calls
 - The size of the input sequence for the current call is at most $(3/4)^{i/2}n$
- Therefore, we have
 - For a node of depth $2\log_{4/3}n$, the expected input size is one
 - The expected height of the quick-sort tree is $O(\log n)$
- The amount of work done at the nodes of the same depth is $O(n)$
- Thus, the expected running time of quick-sort is $O(n \log n)$
In-Place Quick-Sort

- Quick-sort can be implemented to run in-place
- In the partition step, we use replace operations to rearrange the elements of the input sequence such that
 - the elements less than the pivot have rank less than h
 - the elements equal to the pivot have rank between h and k
 - the elements greater than the pivot have rank greater than k
- The recursive calls consider
 - elements with rank less than h
 - elements with rank greater than k

Algorithm `inPlaceQuickSort(S, l, r)`

Input sequence S, ranks l and r

Output sequence S with the elements of rank between l and r rearranged in increasing order

if $l \geq r$

return

$i \leftarrow$ a random integer between l and r

$x \leftarrow S \cdot elemAtRank(i)$

$(h, k) \leftarrow inPlacePartition(x)$

`inPlaceQuickSort(S, l, h - 1)`

`inPlaceQuickSort(S, k + 1, r)`
In-Place Partitioning

- Perform the partition using two indices to split S into L and E U G (a similar method can split E U G into E and G).

 \[
 \begin{array}{ccccccccccccc}
 3 & 2 & 5 & 1 & 0 & 7 & 3 & 5 & 9 & 2 & 7 & 4 & 8 & 9 & 7 & \text{pivot = 6} & 9
 \end{array}
 \]

- Repeat until j and k cross:
 - Scan j to the right until finding an element > x.
 - Scan k to the left until finding an element < x.
 - Swap elements at indices j and k

 \[
 \begin{array}{ccccccccccccc}
 3 & 2 & 5 & 1 & 0 & 7 & 3 & 5 & 9 & 2 & 7 & 4 & 8 & 9 & 7 & \text{pivot = 6} & 9
 \end{array}
 \]
public static void quickSort (Object[] S, Comparator c) {
 if (S.length < 2) return; // the array is already sorted in this case
 quickSortStep(S, c, 0, S.length-1); // recursive sort method
}

private static void quickSortStep (Object[] S, Comparator c, int leftBound, int rightBound) {
 if (leftBound >= rightBound) return; // the indices have crossed
 Object temp; // temp object used for swapping
 Object pivot = S[rightBound];
 int leftIndex = leftBound; // will scan rightward
 int rightIndex = rightBound-1; // will scan leftward
 while (leftIndex <= rightIndex) { // scan right until larger than the pivot
 while ((leftIndex <= rightIndex) && (c.compare(S[leftIndex], pivot)<=0))
 leftIndex++;
 // scan leftward to find an element smaller than the pivot
 while ((rightIndex >= leftIndex) && (c.compare(S[rightIndex], pivot)>0))
 rightIndex--;
 if (leftIndex < rightIndex) { // both elements were found
 temp = S[rightIndex];
 S[rightIndex] = S[leftIndex]; // swap these elements
 S[leftIndex] = temp;
 }
 } // the loop continues until the indices cross
 temp = S[rightBound]; // swap pivot with the element at leftIndex
 S[rightBound] = S[leftIndex];
 S[leftIndex] = temp; // the pivot is now at leftIndex, so recurse
 quickSortStep(S, c, leftBound, leftIndex-1);
 quickSortStep(S, c, leftIndex+1, rightBound);
}