Breadth-First Search
Outline and Reading

- **Breadth-first search (§6.3.3)**
 - Algorithm
 - Example
 - Properties
 - Analysis
 - Applications

- **DFS vs. BFS (§6.3.3)**
 - Comparison of applications
 - Comparison of edge labels
Breadth-First Search

- Breadth-first search (BFS) is a general technique for traversing a graph.
- A BFS traversal of a graph G:
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G
- BFS on a graph with n vertices and m edges takes $O(n + m)$ time.
- BFS can be further extended to solve other graph problems:
 - Find and report a path with the minimum number of edges between two given vertices.
 - Find a simple cycle, if there is one.
BFS Algorithm

The algorithm uses a mechanism for setting and getting “labels” of vertices and edges.

Algorithm $BFS(G)$

Input graph G

Output labeling of the edges and partition of the vertices of G

for all $u \in G.\text{vertices}()$
 setLabel(u, UNEXPLORED)
for all $e \in G.\text{edges}()$
 setLabel(e, UNEXPLORED)
for all $v \in G.\text{vertices}()$
 if getLabel(v) = UNEXPLORED
 $i \leftarrow i + 1$
 $BFS(G, v)$

Algorithm $BFS(G, s)$

$L_0 \leftarrow$ new empty sequence
$L_0.\text{insertLast}(s)$
setLabel(s, VISITED)
$i \leftarrow 0$
while not $L_i.\text{isEmpty}()$
 $L_{i+1} \leftarrow$ new empty sequence
 for all $v \in L_i.\text{elements}()$
 for all $e \in G.\text{incidentEdges}(v)$
 if getLabel(e) = UNEXPLORED
 $w \leftarrow \text{opposite}(v,e)$
 if getLabel(w) = UNEXPLORED
 setLabel(e, DISCOVERY)
 setLabel(w, VISITED)
 $L_{i+1}.\text{insertLast}(w)$
 else
 setLabel(e, CROSS)
 $i \leftarrow i + 1$
Example

- **unexplored vertex**
- **visited vertex**
- **unexplored edge**
- **discovery edge**
- **cross edge**
Example (cont.)

Breadth-First Search
Example (cont.)

3/19/2002 10:28 PM Breadth-First Search
Properties

Notation

- \(G_s \): connected component of \(s \)

Property 1

- \(\text{BFS}(G, s) \) visits all the vertices and edges of \(G_s \)

Property 2

- The discovery edges labeled by \(\text{BFS}(G, s) \) form a spanning tree \(T_s \) of \(G_s \)

Property 3

- For each vertex \(v \) in \(L_i \)
 - The path of \(T_s \) from \(s \) to \(v \) has \(i \) edges
 - Every path from \(s \) to \(v \) in \(G_s \) has at least \(i \) edges
Analysis

- Setting/getting a vertex/edge label takes $O(1)$ time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex
- BFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$
Applications

Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in $O(n + m)$ time:

- Compute the connected components of G
- Compute a spanning forest of G
- Find a simple cycle in G, or report that G is a forest
- Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists
DFS vs. BFS

<table>
<thead>
<tr>
<th>Applications</th>
<th>DFS</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning forest, connected components, paths, cycles</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Shortest paths</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Biconnected components</td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:
- **DFS**
 - A → B → C → D
 - E → F
- **BFS**
 - A → B → C → D
 - E → F

Levels:
- DFS: L₀ → L₁ → L₂
- BFS: L₀ → L₁ → L₂
DFS vs. BFS (cont.)

Back edge \((v,w)\)
- \(w\) is an ancestor of \(v\) in the tree of discovery edges

Cross edge \((v,w)\)
- \(w\) is in the same level as \(v\) or in the next level in the tree of discovery edges

DFS

BFS