Overview

- Buses
- Memory mapped I/O and Separate I/O
- I/O Synchronization

Bus Oriented Architecture

Computer Buses

- CPU is connected to memory and I/O devices via data, address and control buses.
- Data bus is bi-directional and transfers information (memory data and instruction, I/O data) to and from CPU.
- Address bus may be bi-directional (with more than one source of information) but is most often unidirectional because CPU is the only source of the addresses.
- Control bus carries all other signals required to control the operation of the system.
Levels of Buses

- Component level bus is defined by the signals on the microprocessor chip, such as READ/WRITE.
 - Component level signals are different for different manufacturers and used when designing single board computers or dedicated application systems.
- System level bus is defined by more generic signals such as MEMRD and IORD.
 - Often designed for use as a backplane into which printed circuit boards are plugged.
- Intersystem bus is used to connect different systems.

Information Sources – The Input Interface

- The input interface provides three-state buffers between the source and the data bus.
 - For example, a parallel, eight-bit input interface can be constructed with eight three-state gates whose enable lines are tied together.
 - The open-collector gate is often used for control signals such as request for interrupts.

Computer Buses (Cont.)

- Each line of a bus may have multiple sources and destinations.

Typical Bus Interface Gates

(a) Three-state gate
(b) Typical open-collector gate
Information Destinations – The Output Interface

- The output interface between the data bus and a destination or output device is a latch.

Address Decoding

- The interface must provide the ability for CPU to select one of many sources and destinations.
 - Addressing and address decoding can select one out of many sources and destinations.

Address Decoding for Input Devices

Address Decoding for Output Devices
CPU Timing Signals

- CPU must provide timing and synchronization so that the transfer of information occurs at the right time.
 - CPU has its own clock.
 - I/O devices may have a separate I/O clock.
 - Typical timing signals include **READ** and **WRITE**.

Typical CPU Read Cycle

- CPU places the address on the address bus at point A.
- The control signal **READ** is asserted at point B to signal the external device that CPU is ready to take the data from the data bus.
- CPU reads the data bus at point C whether or not the input device has put it ready
 - If NOT, some form of synchronization is required.
Typical CPU Write Cycle

- CPU places the address on the address bus at point A.
- The data bits are supplied by CPU at point B.
- The control signal \textbf{WRITE} is asserted by CPU at point C to signal the external device that CPU is ready to take the data from the data bus.
- This signal is used to create the clock to latch the data at the correct time.
- Depending on the type of latch and when \textbf{WRITE} is asserted, the data may be captured on the falling edge or rising edge.

Complete I/O Interface

- \textbf{READ} and \textbf{WRITE} control the enable (E).
- Three state enables and the latch clock signals are not asserted until the correct address is on the address bus AND the correct time in the read or write cycle has arrived.

I/O Addressing

- If the same address bus is used for both memory and I/O, how does hardware distinguish between memory reads and writes and I/O reads and writes when a address?
- Two approaches:
 - Memory-mapped I/O.
 - Separate I/O.
- AVR supports both.
Memory Mapped I/O

- The entire memory space is divided into memory space and I/O space.

```
0x0000
Memory

0xFBFF
0xFC00
I/O

0xFFFF
```

Memory Mapped I/O (Cont.)

- Advantages:
 - Simpler CPU design.
 - No special instructions for I/O accesses.
- Disadvantages:
 - I/O devices reduce the amount of memory available for application programs.
 - The address decoder needs to decode the full address bus to avoid conflict with memory addresses.

I/O Interface for Memory-Mapped I/O

Separate I/O

- Two separate spaces for memory and I/O.
 - Less expensive address decoders than those needed for memory-mapped I/O.
- Additional control signal, called IO/M, is required to prevent both memory and I/O trying to place data on the bus simultaneously.
 - IO/M is high for I/O use and low for memory use.
- Special I/O instructions such as in and out are required.
I/O Interface for Separate I/O

I/O Synchronization

- CPU is typically much faster than I/O devices.
- I/O devices need to transfer data at unpredictable intervals.

Therefore, synchronization between CPU and I/O devices is required.

Two synchronization approaches:
- Software synchronization.
- Hardware synchronization.

Software Synchronization

Two software synchronization approaches:
- Real-time synchronization.
 - Uses a software delay to match CPU to the timing requirements of the I/O device.
 - Sensitive to CPU clock frequency.
 - Wastes CPU time.
- Polled I/O.
 - A status register, with a DATA READY bit, is added to the device. The software keeps reading the status register until the DATA READY bit is set.
 - Not sensitive to CPU clock frequency.
 - Still wastes CPU time, but CPU can do other tasks.

Handshaking I/O

- This hardware synchronization approach needs a control signal READY or WAIT.
 - For an input device, when CPU is asking for input data, the input device will assert WAIT if the input data is NOT available. When the input data is available, it will deassert WAIT. While WAIT is asserted, CPU must wait until this control signal is deasserted.
 - For an output device, when CPU is sending output data via the data bus, the output device will assert WAIT if it is not ready to take the data. When it is ready, it will deassert WAIT. While WAIT is asserted, CPU must wait until this control signal is deasserted.
Input Handshaking Hardware

Reading