Overview

- IEEE – 754 Standard
 - Implied Hidden 1
 - Representation for 0
- Decimal to Floating Point conversion, and vice versa
- Big Idea: Type is not associated with data
- ARM floating point instructions, registers

- Summary (single precision):
 - \[0 \text{S Exponent Significand} \]
 - 1 bit 8 bits 23 bits
 - \((-1)^S \times (1 + \text{Significand}) \times 2^{(\text{Exponent} - 127)}\)
- Double precision identical, except with exponent bias of 1023
- Hidden 1 (implied)

- Scientific notation in binary!
 - \(\pm 1.F \times 2 \pm e\)
- Sign Magnitude for the fixed part
 - \((-1)^s \times 1.F \times 2 \pm e\)
- Hidden 1 of the significand
 - \((-1)^s \times 1.ffffffffffffffffffff x 2 \pm e\)
- Excess notation for the exponent
 - \((-1)^s \times 1.ffffffffffffffffffff x 2^{\exp - 127}\)
- Ordering the fields so integer compare works on FP
Representing the Significand Fraction

° In normalized form, fraction is either:
 1.xxx xxxx xxxx xxxx xxxx xxxx
 or
 0.000 0000 0000 0000 0000 0000 (for Zero)

° Trick: If hardware automatically places
 1 in front of binary point of normalized
 numbers, then get 1 more bit for the
 fraction, increasing accuracy “for free”

Hidden Bit

1.xxx xxxx xxxx xxxx xxxx xxxx
becomes

(1).xxx xxxx xxxx xxxx xxxx xxxx

• Comparison OK; “subtracting” 1 from both

How differentiate from Zero in Trick Format?

° .0000 ... 000 => . 0000 ... 000
° .0000 ... 000 => . 0000 ... 000

° Solution: Reserve most negative (value 0)
 exponent to be only used for Zero; rest are
 normalized so prepend an implied 1

° Convention is

 0 –Big 0000 ➞ 0.00000
 0 >–Big 0000 ➞ 1.00000 \times 2^{-127}

0 00000000
31 30
23 22
1 bit 8 bits 23 bits

Understanding the Significand (#1/2)

° Method 1 (Fractions):
 • In decimal: \(0.340_{10} \Rightarrow 340_{10}/1000_{10}\)
 ➞ \(34_{10}/100_{10}\)
 • In binary: \(0.110_2 \Rightarrow 110_2/1000_2 = 6_{10}/8_{10}\)
 ➞ \(11_2/100_2 = 3_{10}/4_{10}\)

• Advantage: less purely numerical, more
 thought oriented; this method usually
 helps people understand the meaning of
 the significand better

Understanding the Significand (#2/2)

° Method 2 (Place Values):
 • Convert from scientific notation
 • In decimal: \(1.6732 = (1 \times 10^0) + (6 \times 10^{-1}) + (7 \times 10^{-2}) + (3 \times 10^{-3}) + (2 \times 10^{-4})\)
 • In binary: \(1.1001 = (1 \times 2^0) + (1 \times 2^{-1}) + (0 \times 2^{-2}) + (0 \times 2^{-3}) + (1 \times 2^{-4})\)

• Interpretation of value in each position
 extends beyond the decimal/binary point

• Advantage: good for quickly calculating
 significand value; use this method for
 translating FP numbers
Example: Converting Binary FP to Decimal

- **Sign**: 0 => positive
- **Exponent**: 0110 1000\textsubscript{two} = 104\textsubscript{ten}
 - Bias adjustment: 104 - 127 = -23
- **Significand**: 1 + 1\cdot2^{-1} + 0\cdot2^{-2} + 1\cdot2^{-3} + 0\cdot2^{-4} + 1\cdot2^{-5} + ... = 1.0 + 0.666\ldots = 1.6661175\textsubscript{ten} * 2^{-23} \approx 1.986*10^{-7}
 - Represents: 1.6661175\textsubscript{ten} * 2^{-23} \approx 1.986*10^{-7}
 - (about 2/10,000,000)

Continuing Example: Binary to ???

- **Convert 2's Comp. Binary to Integer**:
 \begin{align*}
 0011 0100 0101 0101 0100 0011 0100 0011 \\
 &= 2^{29} + 2^{28} + 2^{26} + 2^{22} + 2^{20} + 2^{18} + 2^{16} + 2^{14} + 2^9 + 2^8 + 2^6 + 2^1 + 2^0 \\
 &= 878,003,011\textsubscript{ten}
 \end{align*}

- **Convert Binary to Instruction**: 0011 01 0 0 0 1 0 1 0101 0011 0100 0011

- **Convert Binary to ASCII**: 0011 0100 0101 0101 0100 0011 0100 0011

Big Idea: Type not associated with Data

- **What does bit pattern mean**: 0.1986 *10^{-7}? 878,003,011? “4UCC”? ldrb_\textit{lo} r4, [r5], #\textbar{-835}?

- **Data can be anything; operation of instruction that accesses operand determines its type!**
 - Side-effect of stored program concept: instructions stored as numbers

- **Power/danger of unrestricted addresses/pointers**: use ASCII as Fl. Pt., instructions as data, integers as instructions, ...
 - (Leads to security holes in programs)

Converting Decimal to FP (#1/3)

- **Simple Case**: If denominator is an exponent of 2 (2, 4, 8, 16, etc.), then it’s easy.

- **Show IEEE 754 representation of -0.75**
 \begin{align*}
 -0.75 &= -3/4 \\
 -11\textsubscript{two}/100\textsubscript{two} &= -0.11\textsubscript{two}/1.00\textsubscript{two} = -0.11\textsubscript{two} \\
 \text{Normalized to } -1.1\textsubscript{two} &\times 2^{-1} \\
 (-1)^{\text{S}} \times (1 + \text{Significand}) &\times 2^{(\text{Exponent}-127)} \\
 (-1)^1 \times (1 + .100 0000 \ldots 0000) &\times 2^{(126-127)}
 \end{align*}

\begin{align*}
1 &\ 0111 1110 100 0000 0000 0000 0000 0000
\end{align*}
Converting Decimal to FP (#2/3)

° Not So Simple Case: If denominator is not an exponent of 2.
 • Then we can’t represent number precisely, but that’s why we have so many bits in significand: for precision
 • Once we have significand, normalizing a number to get the exponent is easy.
 • So how do we get the Significand of a never ending number?

Converting Decimal to FP (#3/3)

° Fact: All rational numbers have a repeating pattern when written out in decimal (eg 1/7 = 0.142857142857…)
° Fact: This still applies in binary as well (eg 1/111 = 0.001001001…)
° To finish conversion:
 • Write out binary number with repeating pattern.
 • Cut it off after correct number of bits (different for single vs double precision).
 • Derive Sign, Exponent and Significand fields.

Hairy Example (#1/2)

° How to represent 1/3 in IEEE 754?
° 1/3
 = 0.33333…10
 = 0.25 + 0.0625 + 0.015625 + 0.00390625 + 0.0009765625 + …
 = 1/4 + 1/16 + 1/64 + 1/256 + 1/1024 + …
 = 2^{-2} + 2^{-4} + 2^{-6} + 2^{-8} + 2^{-10} + …
 = 0.0101010101…2 * 2^{0}
 = 1.0101010101…2 * 2^{-2} (Normalized)

Hairy Example (#2/2)

° 1/3 = 1.0101010101…2 * 2^{-2}
° Sign: 0
° Exponent = -2 + 127 = 125_{10} = 01111101_{2}
° Significand = 0101010101…

° 0 0111 1101 0101 0101 0101 0101 0101 0101 0101 010
What's this stuff good for? Mow Lawn?
- Robot lawn mower: “Robomow RL-800”
- Surround lawn, trees with perimeter wire
- Sense tall grass to spin blades faster: up to 5800 RPM
- Slow if senses object, stop if bumps
- US$700

Representation for +/- Infinity
- In FP, divide by zero should produce +/- infinity, not overflow.
- Why?
 - OK to do further computations with infinity
e.g., \(1/(X/0) = (1/\infty) = 0\) is a valid Operation
 or, \(X/0 > Y\) may be a valid comparison
 (Ask math prof.)
- IEEE 754 represents +/- infinity
 - Most positive exponent reserved for infinity
 - Significands all zeroes

Two Representation for 0!
- Represent 0?
 - exponent all zeroes
 - significand all zeroes too
 - What about sign?
 - +0: 0 00000000 00000000000000000000000
 - -0: 1 00000000 00000000000000000000000
- Why two zeroes?
 - Helps in some limit comparisons
 - Ask math prof.

Special Numbers
- What have we defined so far? (Single Precision)
 - Exponent Significand Object
 - 0 0 0
 - 0 nonzero ???
 - 1-254 anything +/- fl. pt. #
 - 255 0 +/- infinity
 - 255 nonzero ???
- Professor Kahan had clever ideas; “Waste not, want not”
 - We will talk about \(\text{Exp}=255\) & Significand \(!=0\) later
Recall: arithmetic in scientific notation

Addition:
- \(3.2 \times 10^4 + 2.3 \times 10^3 \) => common exp
- \(3.2 \times 10^4 + 0.23 \times 10^4 \) => add
- \(3.43 \times 10^4 \) => normalize and round
- \(\approx 3.4 \times 10^4 \)

Multiplication:
- \(3.2 \times 10^4 \times 2.3 \times 10^5 \)
- \(3.2 \times 2.3 \times 10^9 = 7.36 \times 10^9 \approx 7.4 \times 10^9 \)

Basic Fl. Pt. Addition Algorithm

- Much more difficult than with integers
- For addition (or subtraction) of X to Y (X<Y):
 1. Compute \(D = \text{Exp}_Y - \text{Exp}_X \) (align binary point)
 2. Right shift \((1+\text{Sig}_X) D\) bits => \((1+\text{Sig}_X)*2^{(\text{Exp}_X-\text{Exp}_Y)}\)
 3. Compute \((1+\text{Sig}_X)*2^{(\text{Exp}_X-\text{Exp}_Y)} + (1+\text{Sig}_Y)\)
 Normalize if necessary; continue until MS bit is 1
 4. Too small (e.g., 0.001xx...)
 - Left shift result, decrement result exponent
 4'. Too big (e.g., 101.1xx...)
 - Right shift result, increment result exponent
 5. If result significand is 0, set exponent to 0

FP Addition/Subtraction Problems

- Problems in implementing FP add/sub:
 - If signs differ for add (or same for sub), what will be the sign of the result?
 - Question: How do we integrate this into the integer arithmetic unit?
 - Answer: We don’t!

ARM’s Floating Point Architecture (#1/4)

- Separate floating point instructions:
 - Single Precision:
 - fcmps, fadds, fsubs, fmuls, fdivs
 - Double Precision:
 - fcmpd, fadd, fsubd, fmuld, fdivd
 - These instructions are far more complicated than their integer counterparts, so they can take much longer.
ARM's Floating Point Architecture (#2/4)

° Problems:
 • It's inefficient to have different instructions take vastly differing amounts of time.
 • Generally, a particular piece of data will not change from FP to int, or vice versa, within a program. So only one type of instruction will be used on it.
 • Some programs do no floating point calculations
 • It takes lots of hardware relative to integers to do Floating Point fast

ARM Floating Point Architecture (#3/4)

° ARM Solution: Make completely separate Co-processors that handles only IEEE-754 FP.
 ° Coprocessor 10 (for SP) & 11 (for DP):
 • Actually a Single hardware used differently for Single Precision and Double Precision
 • contains 32 32-bit registers: s0 – s31
 • Arithmetic instructions use this register set
 • separate load and store: flds and fsts ("Float loA D Single Coprocessor 10", "Float STore")
 • Double Precision: even/odd pair overlap one DP FP number: s0/s1 = d0, s2/s3 = d1, ..., s30/s31 =d15
 • separate double load and store: fldd and fstd ("Float loA D Double Coprocessor 11", "Float STore")

° ARM Solution:
 • Processor: handles all the normal stuff
 • Coprocessor 10 & 11: handles FP and only FP;
 • more coprocessors?... Yes, later
 • Today, cheap chips may leave out FP HW (Example: Chip on Lab's DSLMU Board)

° Instructions to move data between main processor and coprocessors:
 • fmsr (Sn = Rd), fmrs (Rd = Sn), etc.

° Check ARM instruction reference manual on CD-ROM for many, many more FP operations.

In Conclusion…

° Floating Point numbers approximate values that we want to use.

° IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers ($1T)

° New ARM registers(s0-s31), instruct.:
 • Single Precision (32 bits, 2×10^{-38}... 2×10^{38}): fcmps, fadds, fsubs, fmuls, fdivs
 • Double Precision (64 bits, 2×10^{-308}...2×10^{308}): fcmpd, faddl, fsubd, fmlsd, fdivl

° Type is not associated with data, bits have no meaning unless given in context