Overview

- Memory Interfacing
 - Memory Type
 - Memory Decoding
 - D-RAM Access
 - Making DRAM Access fast

Review: Buses in a PC: Connect a few devices

- Data rates
 - Memory: 133 MHz, 8 bytes ⇒ 1064 MB/s (peak)
 - PCI: 33 MHz, 8 bytes wide ⇒ 264 MB/s (peak)
 - SCSI: “Ultra3” (80 MHz), “Wide” (2 bytes) ⇒ 160 MB/s (peak)
 - Ethernet: 12.5 MB/s (peak)

Review: Computers with Memory Mapped I/O

- I/O devices Accessed like memory
Big Picture: A System on a Chip

Integration of Core Processor and many subsystem micro-cells
- ARM7TDMI core
- Cache RAM
- Embedded Co-processors
- External Mem Interface
- Low bandwidth I/O devices
- Timers
- I/O ports

ARM System Architecture

Need a Mechanism to access various memory units and I/O devices, uniquely, to avoid access conflicts

ARM System Architecture with Multiple Masters

Need a Mechanism to allow various Processing units to access the Memory Bus without causing conflict

ARM Core Interface Signals

Memory Interface
ARM Core Memory Interface Signals

- Internal clock is mclk AND wait
- 32 bit address A[31:0]
- 32 Bi-directional Data D[31:0]
- Separate Data in and out Din[31:0] & Dout[31:0]
- Bidirectional Data bus D[31:0]
- nmreq and seq for requesting memory access
- nr/w for read/write indication
- mas[1:0] for data size identification: word 10, half-word 01 and byte 00.
- All activities controlled by mclk.

Simple Memory Interface

- 4 SRAMs
 - write enabled separately
 - Read enabled together
- 4 ROMs
 - No write enable
 - Read enabled together
- SRAM Size: $2^n \times 32$
- ROM Size: $2^m \times 32$

Simple Memory Decoder Control

- Controls the Activation of RAM and ROM
 - a[31]: 0 → ROM
 - a[31]: 1 → RAM
- It controls the byte write enables during write
 - mas[1:0]: 00: Byte, 01: H-word, 10: Word
- It ensures that data is ready before processor continues.

SRAM/ROM Memory Timing

- Address should be stable during the falling edge
- SRAM is fast, ROM is slow
 - ROM needs more time. Slows the system
- Solutions?
 - Slow down the MCLK clock; loose performance
 - Use Wait states; more complex control
ROM Wait Control State Transition

- ROM access requires 4 clock cycles
- RAM access is fast

Timing Diagram for ROM Wait States

Improving Performance

- Processor internal operations cycles do not need access to memory
 - Mem. Access is much slower than internal operations.
 - Use wait states for mem Accesses
- $mreq = 1$ internal operation
- $mreq = 0$ memory access

DRAM Interface

- Dynamic RAM Features:
 - much cheaper than SRAM
 - more capacity than SRAM
 - slower than SRAM
- Widely used in Computer Systems
DRAM Organisation

- Two dimensional matrix
- Bits are accesses by:
 - Accepting row and column addresses down the same multiplexed address bus
 - First Row address is presented and latched by ras signal
 - Next column address is presented and latched by cas signal

Making DRAM Access Fast

- Accessing data in the same row using cas-only access is 2 – 3 times faster
 - cas-only access does not activate the cell matrix
 - If next accesses is within the same row, a new column address may be presented just by applying a cas-only access.
- Fact: Most processor addresses are sequential (75%)
- If we had a way of knowing that the next address is sequential with respect with the current address (current address + 4), then we could only assert cas and make DRAM access fast
- Difficulty?
 - Detecting early in memory access cycle that the next address is in the same row.

ARM Solution to cas-only Access

- ARM address register Instruction:
 - 75% of next addresses are current address +4.
 - Sequential addresses flagged by seq signal
 - The external mem device checks previous address and row boundaries to issue cas only or ras-cas

Revised State Transition Diagram

- seq = 1: sequential address
- seq = 0: non-sequential
- mreq = 1 internal operation
- mreg = 0 memory access
DRAM Timing Diagram

- Notice the pipelined memory access
 - Address is presented 1/2 cycle earlier

DRAM Timing Diagram after an Internal Cycle

- During internal operations cycles, a memory access cycle can be set up in advance.
 - This eliminates the wait (New Cycle) state

Memory Access Timing Summary

- Notice the pipelined memory access
 - Address is presented 1/2 cycle earlier

Reading Material

Conclusion

° Memory interfacing can degrade performance

° Can improve performance by increasing the clock frequency and allocating differing clock cycles for each memory access type

° cas-only accesses in DRAM are 2 to 3 times faster than ras – cas accesses.