Breadth-First Search

- Breadth-first search (BFS) is a general technique for traversing a graph.
- A BFS traversal of a graph G:
 - Visits all the vertices and edges of G.
 - Determines whether G is connected.
 - Computes the connected components of G.
 - Computes a spanning forest of G.

BFS on a graph with n vertices and m edges takes $O(n + m)$ time.
BFS can be further extended to solve other graph problems:
- Find and report a path with the minimum number of edges between two given vertices.
- Find a simple cycle, if there is one.

Algorithm BFS

```
Algorithm BFS(G)
Input graph G
Output labeling of the edges and partition of the vertices of G.
for all u ∈ G.vertices():
    setLabel(u, UNEXPLORED)
for all e ∈ G.edges():
    setLabel(e, UNEXPLORED)
for all v ∈ G.vertices():
    if getLabel(v) = UNEXPLORED:
        BFS(G, v)
```

Example

- Unexplored vertex
- Visited vertex
- Unexplored edge
- Discovery edge
- Cross edge
Example (cont.)

Properties
Notation
\(G_s \): connected component of \(s \)

Property 1
\(BFS(G, s) \) visits all the vertices and edges of \(G_s \)

Property 2
The discovery edges labeled by \(BFS(G, s) \) form a spanning tree \(T_s \) of \(G_s \)

Property 3
For each vertex \(v \) in \(L_i \)
- The path of \(T_i \) from \(s \) to \(v \) has \(i \) edges
- Every path from \(s \) to \(v \) in \(G_s \) has at least \(i \) edges

Analysis
- Setting/getting a vertex/edge label takes \(O(1) \) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- Each vertex is inserted once into a sequence \(L_i \)
- Method incidentEdges is called once for each vertex
- BFS runs in \(O(n + m) \) time provided the graph is represented by the adjacency list structure
 - Recall that \(\sum_v \deg(v) = 2m \)
Applications

- Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in $O(n + m)$ time:
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

DFS vs. BFS

<table>
<thead>
<tr>
<th>Applications</th>
<th>DFS</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning forest, connected components, paths, cycles</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Shortest paths</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Biconnected components</td>
<td>✓</td>
<td>-</td>
</tr>
</tbody>
</table>