1 What is this lecture about?

This lecture presents the design of a simple numerical algorithm, namely integer square root.

The focus of the development is on understanding how each step fits, so that the correctness of the development as a whole is clear from the steps.

Discharge of proof obligations gives greater confidence in the correctness in the final algorithm.
It is important to appreciate that our focus is not principally on numeric algorithms; square root gives us a simple starting point.

2 The Problem

The problem is to compute the integer square root of some natural number value num.

The definition of the integer square root of num is the largest natural number that when squared does not exceed num, that is

$$\sqrt{num} \times \sqrt{num} \leq num$$ \hspace{1cm} (1)

$$\left(\sqrt{num} + 1\right) \times \left(\sqrt{num} + 1\right) > num$$ \hspace{1cm} (2)

2.1 Contexts

Theories: context

We also use a context to present a number of theorems concerning natural numbers. These will be useful for assisting the discharge of proof obligations.

CONTEXT Theories

AXIOMS

thm1: $(\forall n \cdot n \in \mathbb{N} \Rightarrow (\exists m \cdot m \in \mathbb{N} \land (n = 2 \times m \lor n = 2 \times m + 1)))$

thm2: $(\forall n \cdot n \in \mathbb{N} \Rightarrow n < (n + 1) \times (n + 1))$

thm3: $(\forall m, n \cdot m \in \mathbb{N} \land n \in \mathbb{N} \land m < n \Rightarrow (m + n)/2 < n)$

thm4: $(\forall m, n \cdot m \in \mathbb{N} \land n \in \mathbb{N} \land m < n \Rightarrow (m + n)/2 \geq m)$

END

SquareRoot_ctx: context

We use a context to define a constant num that is any natural number. num is essentially used as an argument of the event $\sqrt{}$ in the SquareRoot machine.

This context extends the Theories context.

CONTEXT SquareRoot_ctx

EXTENDS Theories

CONSTANTS

num

AXIOMS

axm1: $num \in \mathbb{N}$

END
2.2 Substitution

Event-B has three forms of substitution for changing the value assigned to a variable:

1. becomes equal: \(x := e \), \(x \) becomes equal to the value of the expression \(e \);

2. becomes such that: \(x \mid p \), \(x \) becomes a value that satisfies the predicate \(p \). Within the predicate \(p \)
 \(x \) represents the value of the variable \(x \) before the substitution and \(x' \) represents the value of the variable \(x \) after the substitution.

3. becomes in: \(x :\in s \), \(x \) becomes any value in the set \(s \)

\(x := x + 1 \) and \(x \mid x' = x + 1 \) are equivalent.

2.3 The SquareRoot machine

We now develop a SquareRoot machine.

The machine

- sees the context;
- has a variable \(sqrt \) that will be used to store the square root of the constant (parameter) \(num \).
 Initially \(sqrt \) is assigned any natural number \((sqrt :\in \mathbb{N}) \).

MACHINE SquareRoot

SEES SquareRoot_ctx

VARIABLES sqrt

INVARIANTS

inv1: sqrt \(\in \mathbb{N} \)

EVENTS

Initialisation

begin

act1: sqrt :\in \mathbb{N}

end

Event SquareRoot \(\hat{=} \)

begin

act1: sqrt :\mid (sqrt' \in \mathbb{N}

\land sqrt' \ast sqrt' \leq num

\land num < (sqrt' + 1) \ast (sqrt' + 1))

end

END
2.4 SquareRoot event

Note the use of \downarrow to make a declarative assignment to \textit{sqrt} using the predicates determined earlier for the definition of square root.

This form of assignment requires that \textit{sqrt} is assigned a value consistent with the definition of square root given in (1) and (2) above.

3 First refinement

The current assignment to \textit{sqrt}, while obviously correct, is abstract and we have to compute a concrete value.

The problem with the predicate

$$\textit{sqrt}' * \textit{sqrt}' \leq \textit{num} \land \textit{num} < (\textit{sqrt}' + 1) * (\textit{sqrt}' + 1)$$

is that it contains a conjunction of two properties for \textit{sqrt}' each easy to satisfy on their own, but together much more difficult.

We will split this conjunction into two predicates, each with a different variable as follows:

$$\textit{low} * \textit{low} \leq \textit{num}$$

and

$$\textit{num} < \textit{high} * \textit{high}$$

and contrive to bring \textit{low} and \textit{high} closer together until

$$\textit{high} = \textit{low} + 1$$

at which point \textit{low} will be the required square root.

\textbf{MACHINE} \textit{SquareRootR1} \\
\textbf{REFINES} \textit{SquareRoot} \\
\textbf{SEES} \textit{SquareRoot}ctx \\
\textbf{VARIABLES} \textit{sqrt} \textit{low} \textit{high} \\
\textbf{INVARIANTS} \\
inv1: \textit{low} \in \mathbb{N} \\
inv2: \textit{high} \in \mathbb{N} \\
inv3: \textit{low} + 1 \leq \textit{high} \\
inv4: \textit{low} * \textit{low} \leq \textit{num} \\
inv5: \textit{num} < \textit{high} * \textit{high} \\
\textbf{EVENTS} \\
\textbf{Initialisation} \\
begin
act1: $\sqrt{\cdot} \in \mathbb{N}$

act2: $low : | (low' \in \mathbb{N} \land low' \cdot low' \leq num)$

act3: $high : | (high' \in \mathbb{N} \land num < high' \cdot high')$

end

Event $\text{SquareRoot} \trianglerighteq$
refines SquareRoot

when

grd1: $low + 1 = high$

then

act1: $\sqrt{\cdot} := low$

end

Event $\text{Improve} \trianglerighteq$

Status convergent

any l, h

when

grd1: $low + 1 \neq high$

grd2: $l \in \mathbb{N} \land low \leq l \land l \cdot l \leq num$

grd3: $h \in \mathbb{N} \land h \leq high \land num < h \cdot h$

grd4: $l + 1 \leq h$

grd5: $h - l < high - low$

then

act1: $low, high := l, h$

end

VARIANT $high - low$

END
3.1 Improving low and high

As shown in the above, the refinement of SquareRoot fires only when $\text{low} + 1 = \text{high}$. We need a new event to bring that about.

We introduce a new event Improve that brings low and high closer together, while maintaining the invariant relation on those variables.

It is important to observe the parameters l and h together with appropriate guards (constraints) that describe necessary properties, without perhaps knowledge of how those parameters can be instantiated. This style of specification is sometimes called declarative.

The specification of Improve is abstract, simply requiring that either low is increased, or high is decreased, or both, without showing how that may be achieved concretely.

In order to ensure that SquareRoot will eventually fire, the new event must be convergent, so we are required to give a variant expression, which must yield a natural number and is guaranteed to decrease on each execution of Improve.

Since either low is increased or high is decreased and $\text{low} + 1 \leq \text{high}$ an adequate expression is $\text{high} - \text{low}$.

4 Second refinement

We now do a second refinement in which we refine the Improve event, mapping out how we can produce a better value of low or high.

The idea is to take a value mid that is strictly between low and high and test whether mid is a better replacement for low or high and replace those values accordingly.

We know that such a value exists because $\text{low} + 1 \leq \text{high}$ and also $\text{low} + 1 \neq \text{high}$, so $\text{low} + 1 < \text{high}$ implying that there is at least one value between low and high.

In this refinement Improve is refined two ways into Improve1 and Improve2 depending on whether low or high is improved, respectively.

Witnesses: The refinements of Improve have eliminated the parameters l and h, so we are required to show how those parameters are represented by the refinement. This is achieved by the with clause, which shows the values of those parameters.

MACHINE SquareRootR2

REFINES SquareRootR1

SEES SquareRoot_ctx

VARIABLES $\text{sqrt} \; \text{low} \; \text{high}$

EVENTS

Initialisation

begin

act1 : $\text{sqrt} : \in \mathbb{N}$

act2 : $\text{low} : | (\text{low}' \in \mathbb{N} \land \text{low}' \ast \text{low}' \leq \text{num})$

act3 : $\text{high} : | (\text{high}' \in \mathbb{N} \land \text{num} < \text{high}' \ast \text{high}')$
end
Event $SquareRoot \triangleq$
refines $SquareRoot$
when
$grd1: \text{low} + 1 = \text{high}$
then
$act1: \text{sqrt} := \text{low}$
end
Event $Improve1 \triangleq$
refines $Improve$
any m
when
$grd1: \text{low} + 1 \neq \text{high}$
$grd2: m \in \mathbb{N}$
$grd3: \text{low} < m \land m < \text{high}$
$grd4: m \cdot m \leq \text{num}$
with
$l: l = m$
$h: h = \text{high}$
then
$act1: \text{low} := m$
end
Event $Improve2 \triangleq$
refines $Improve$
any m
when
$grd1: \text{low} + 1 \neq \text{high}$
$grd2: m \in \mathbb{N}$
$grd3: \text{low} < m \land m < \text{high}$
$grd4: \text{num} < m \cdot m$
with
The third refinement refines the abstract specifications to concrete expressions.

1. We compute the initial values of \(low \) and \(high \) as 0 and \(num + 1 \) respectively. We could find better initial values, but since the performance is going to be logarithmic, it may not be worth the expense of more complicated computations.

2. In \(SquareRootR3 \) we refine \(Improve \) two ways, each with a parameter \(m \) set to the value \((low + high)/2 \), that is we introduce the midpoint value between \(low \) and \(high \).

 This is not the only option, we could have used \(low + 1 \) or \(high - 1 \); any value that is strictly between —and not equal to— \(low \) and \(high \).

 The difference is one of performance, not correctness. Taking the mid point will give logarithmic performance, while incrementing or decrementing will give linear performance.

MACHINE SquareRootR3

REFINES SquareRootR2

SEES SquareRoot_ctx

VARIABLES sqrt low high

EVENTS

Initialisation

begin

act1 : sqrt :\(\in \mathbb{N} \)

act2 : low := 0

act3 : high := num + 1

end

Event \(SquareRoot \cong \)

refines SquareRoot

when
grd1: \(low + 1 = high \)
then
act1: \(sqrt := low \)
end

Event \(Improve1 \equiv \)
refines \(Improve1 \)
any \(m \)
when
grd1: \(low + 1 \neq high \)
grd2: \(m = (low + high)/2 \)
grd3: \(m \times m \leq num \)
then
act1: \(low := m \)
end

Event \(Improve2 \equiv \)
refines \(Improve2 \)
any \(m \)
when
grd1: \(low + 1 \neq high \)
grd2: \(m = (low + high)/2 \)
grd3: \(num < m \times m \)
then
act1: \(high := m \)
end

END
6 The fourth refinement

In the third refinement we still have an abstract element in the form of the parameter m to the events Improve1 and Improve2.

The value of m has to be produced, nondeterministically, to satisfy the guards of Improve1.

In SquareRootR4 we introduce another variable, mid, to replace the parameter m.

\begin{verbatim}
MACHINE SquareRootR4
REFINES SquareRootR3
SEES SquareRoot_ctx
VARIABLES sqrt low high mid
INVARIANTS
inv1: mid = (low + high)/2
EVENTS
Initialisation
begin
act1: sqrt ∈ N
act2: low := 0
act3: high := num + 1
act4: mid := (num + 1)/2
end
Event SquareRoot ≡
refines SquareRoot
when
grd1: low + 1 = high
then
act1: sqrt := low
end
Event Improve1 ≡
refines Improve1
when
grd1: low + 1 ≠ high
grd2: mid * mid ≤ num
\end{verbatim}
with
\(m : m = \text{mid} \)

then

act1: low := mid
act2: mid := (mid + high)/2

end

Event \(\text{Improve2} \triangleright \)
refines \(\text{Improve2} \)
when

grd1: low + 1 \neq high
grd2: num < mid \ast mid

with
\(m : m = \text{mid} \)

then

act1: high := mid
act2: mid := (low + mid)/2

end

END

7 Alternative refinement sequence

Instead of the refinement sequence \(\text{SquarerootR3A, SquarerootR4} \) we could have effectively gone directly to \(\text{SquareRootR4} \) from \(\text{SquareRootR2} \) and this is shown in \(\text{SquareRootR3B} \)

Historical note: the presentation sequence of a model development is frequently different to the chronological sequence. Refinement to \(\text{SquarerootR3B} \) was the original refinement step from \(\text{Square-rootR2} \). The extra step via \(\text{SquarerootR3A} \) to \(\text{SquarerootR4} \) was added later.

MACHINE \(\text{SquareRootR3B} \)
REFINES \(\text{SquareRootR2} \)
SEES \(\text{SquareRoot_ctx} \)
VARIABLES \(\text{sqrt, low, high, mid} \)
INVariantS
\(\text{inv1: mid} \in \mathbb{N} \)
\[\text{inv2: mid} = \frac{\text{low} + \text{high}}{2} \]

\[\text{inv3: low} \leq \text{mid} \]

\[\text{inv4: mid} < \text{high} \]

EVENTS

Initialisation

\[
\begin{align*}
\text{act1: } & \sqrt{\text{act} : \in \mathbb{N}} \\
\text{act2: } & \text{low} := 0 \\
\text{act3: } & \text{high} := \text{num} + 1 \\
\text{act4: } & \text{mid} := \frac{(\text{num} + 1)}{2}
\end{align*}
\]

Event SquareRoot

\[
\text{refines SquareRoot when}
\text{grd1: } \text{low} + 1 = \text{high then}
\text{act1: } \sqrt{\text{act} := \text{low}}
\]

Event Improve1

\[
\text{refines Improve1 when}
\text{grd1: } \text{low} + 1 \neq \text{high} \\
\text{grd2: } \text{mid} \cdot \text{mid} \leq \text{num with}
\text{m: } m = \text{mid then}
\text{act1: } \text{low} := \text{mid}
\text{act2: } \text{mid} := \frac{(\text{mid} + \text{high})}{2}
\]

Event Improve2

\[
\text{refines Improve2}
\]
\begin{verbatim}
when

grd1: low + 1 \neq high

grd2: num < mid * mid

with

m : m = mid

then

act1: high := mid

act2: mid := (low + mid)/2

end

END

8 Extracting code

If the final refinement is examined carefully, it is clear that the events can be replaced by a loop:

- the subsidiary events Improve_1 and Improve_2 execute until $low + 1 = high$
- at which point the loop terminates and the final square root is computed.

Thus we can manually refine the final refinement to the following pseudo code.

\begin{verbatim}
low := 0;

high := num + 1;

while low + 1 \neq high {
 mid := (low + high)/2
 if mid * mid \leq num{
 low := mid
 }
 else high := mid
}

sqrt := low
\end{verbatim}
\end{verbatim}