Theorem Proving
Principles, Techniques, Applications

Slide 1

Slide 2

Content

→ Intro & motivation, getting started with Isabelle
→ Foundations & Principles
 • Lambda Calculus
 • Higher Order Logic, natural deduction
 • Term rewriting
→ Proof & Specification Techniques
 • Datatypes, recursion, induction
 • Inductively defined sets, rule induction
 • Calculational reasoning, mathematics style proofs
 • Hoare logic, proofs about programs

Slide 3

λ calculus is inconsistent

From last lecture:
Can find term R such that $R \Rightarrow \neg(R R)$

There are more terms that do not make sense:
12, $true false$, etc.

Solution: rule out ill-formed terms by using types.
(Church 1940)

Slide 4

Introducing types

Idea: assign a type to each “sensible” λ term.

Examples:

→ for term t has type α write $t :: \alpha$
→ if x has type α then $\lambda x. x$ is a function from α to α
 Write: $(\lambda x. x) :: \alpha \Rightarrow \alpha$
→ for $s \tau$ to be sensible:
 s must be function
 τ must be right type for parameter
 If $s :: \alpha \Rightarrow \beta$ and $t :: \alpha$ then $(s \ t) :: \beta$
That’s about it

Now formally, again

Syntax for λ^-

Terms: $t ::= v | c | (t \; t) | (\lambda x. \; t)$

$v, x \in \mathbf{V}, \; c \in \mathbf{C}, \; \mathbf{V, C}$ sets of names

Types: $\tau ::= \mathbf{b} | \nu \mid \tau \Rightarrow \tau$

$\mathbf{b} \in \{\text{bool}, \text{int}, \ldots\}$ base types

$\nu \in \{\alpha, \beta, \ldots\}$ type variables

$\alpha \Rightarrow \beta \Rightarrow \gamma = \alpha \Rightarrow (\beta \Rightarrow \gamma)$

Contexts Γ:

Γ: function from variable and constant names to types.

Term t has type τ in context Γ:

$\Gamma \vdash t :: \tau$

Examples

$\Gamma \vdash (\lambda x. \; x) :: \alpha \Rightarrow \alpha$

$[y \leftarrow \text{int}] \vdash y :: \text{int}$

$[z \leftarrow \text{bool}] \vdash (\lambda y. \; y) \; z :: \text{bool}$

$[] \vdash \lambda f. \; f \; x :: (\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta$

A term t is well typed or type correct

if there are Γ and τ such that $\Gamma \vdash t :: \tau$
Type Checking Rules

Variables: \[\Gamma \vdash x :: \Gamma(x) \]

Application: \[\begin{array}{l} \Gamma \vdash t_1 :: \tau_1, \Gamma \vdash t_2 :: \tau_2 \\ \Gamma \vdash (t_1 \, t_2) :: \tau_1 \end{array} \]

Abstraction: \[\Gamma[x \leftarrow \tau_1] \vdash t :: \tau_2 \]
\[\Gamma \vdash (\lambda x. \, t) :: \tau_1 \Rightarrow \tau_2 \]

Example Type Derivation:

\[\begin{array}{l} [x \leftarrow \alpha, y \leftarrow \beta] \vdash x :: \alpha \\ [x \leftarrow \alpha] \vdash \lambda y. \, x :: \beta \Rightarrow \alpha \\ [\lambda \vdash \lambda x \, y. \, x :: \alpha \Rightarrow \beta \Rightarrow \alpha] \end{array} \]

More Complex Example

\[\begin{array}{l} \Gamma \vdash f :: \alpha \Rightarrow (\alpha \Rightarrow \beta) \\ \Gamma \vdash x :: \alpha \\ \Gamma \vdash \lambda f. \, f \, x :: \beta \\ \Gamma \vdash \lambda x. \, f \, x \, x :: (\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta \\ \Gamma \vdash [f \leftarrow \alpha \Rightarrow \beta, x \leftarrow \alpha] \end{array} \]

More General Types

A term can have more than one type.

Example: \[[] \vdash \lambda x. \, x :: \text{bool} \Rightarrow \text{bool} \]
\[[] \vdash \lambda x. \, x :: \alpha \Rightarrow \alpha \]

Some types are more general than others:

\[\tau \leq \sigma \quad \text{if there is a substitution } S \text{ such that } \tau = S(\sigma) \]

Examples:

\[\text{int} \Rightarrow \text{bool} \leq \alpha \Rightarrow \beta \leq \beta \Rightarrow \alpha \leq \alpha \Rightarrow \alpha \]

More Complex Example

5

Most General Types

6

MOST GENERAL TYPES

Fact: each type correct term has a most general type

Formally:
\[
\Gamma \vdash t : \sigma \implies \exists \sigma'. \Gamma \vdash t : \sigma \land (\forall \sigma'. \Gamma \vdash t : \sigma' \implies \sigma' \subseteq \sigma)
\]

It can be found by executing the typing rules backwards.

- **type checking:** checking if \(\Gamma \vdash t : \sigma \) for given \(\Gamma \) and \(\sigma \)
- **type inference:** computing \(\Gamma \) and \(\sigma \) such that \(\Gamma \vdash t : \sigma \)

Type checking and type inference on \(\lambda^- \) are decidable.

WHAT ABOUT \(\beta \) REDUCTION?

Definition of \(\beta \) reduction stays the same.

Fact: Well typed terms stay well typed during \(\beta \) reduction

Formally:
\[
\Gamma \vdash s : \tau \land s \rightarrow_{\beta} t \implies \Gamma \vdash t : \tau
\]

This property is called **subject reduction**

WHAT ABOUT TERMINATION?

\(\beta \) reduction in \(\lambda^- \) always terminates.

(Alan Turing, 1942)

- **\(\Rightarrow_{\beta} \)** **is decidable**

 To decide if \(s \Rightarrow_{\beta} t \), reduce \(s \) and \(t \) to normal form (always exists, because \(\rightarrow_{\beta} \) terminates), and compare result.

- **\(\Rightarrow_{\eta} \)** **is decidable**

 This is why Isabelle can automatically reduce each term to \(\beta \eta \) normal form.

WHAT DOES THIS MEAN FOR EXPRESSIVENESS?

Not all computable functions can be expressed in \(\lambda^- \)!

How can typed functional languages then be turing complete?

Fact:

Each computable function can be encoded as closed, type correct \(\lambda^- \) term using \(Y : (\tau \Rightarrow \tau) \Rightarrow \tau \) with \(Y t \rightarrow_{\beta} t (Y t) \) as only constant.

- \(Y \) is called fix point operator
- used for recursion
Types and Terms in Isabelle

Types: \[\tau ::= \mathbf{b} \mid 'v \mid 'v : C \mid \tau \Rightarrow \tau \mid (\tau, \ldots, \tau) K \]
\(\mathbf{b} \in \{\text{bool, int, ...}\} \) base types
\(\nu \in \{\alpha, \beta, \ldots\} \) type variables
\(K \in \{\text{set, list, ...}\} \) type constructors
\(C \in \{\text{order, linord, ...}\} \) type classes

Terms: \[t ::= v \mid c \mid ?v \mid (tt) \mid (\lambda x. t) \]
\(v, x \in V, \ c \in C, \ V, C \) sets of names

- **type constructors**: construct a new type out of a parameter type.
 Example: \(\text{int list} \)
- **type classes**: restrict type variables to a class defined by axioms.
 Example: \(\alpha : \text{order} \)
- **schematic variables**: variables that can be instantiated.

Type Classes

- Similar to Haskell’s type classes, but with semantic properties
 - axclass order < ord
 - order_refl: "\(x \leq x " \)
 - order_trans: "\([x \leq y; y \leq z] \Rightarrow x \leq z " \)
 ...

 - theorems can be proved in the abstract
 - lemma order_lemma: "\(\exists x :: \alpha : \text{order}. \ [x < y; y < z] \Rightarrow x < z " \)
 - can be used for subtyping
 - axclass linorder < order
 - linorder_linear: "\(x \leq y \lor y \leq x " \)
 - can be instantiated
 - instance nat :: "\(\{\text{order, linorder}\} \) " by ...

Schematic Variables

- \(X \land Y \)
- \(X \) and \(Y \) must be instantiated to apply the rule

 But: lemma "\(x + 0 = 0 + x " \)

- \(x \) is free
- convention: lemma must be true for all \(x \)
- during the proof, \(x \) must not be instantiated

Solution:
Isabelle has free (\(x \)), bound (\(x \)), and schematic (?X) variables.

Only schematic variables can be instantiated.
Free converted into schematic after proof is finished.

Higher Order Unification

Unification:
Find substitution \(\sigma \) on variables for terms \(s, t \) such that \(\sigma(s) = \sigma(t) \)

In Isabelle:
Find substitution \(\sigma \) on schematic variables such that \(\sigma(s) =_{\alpha, \beta, \gamma} \sigma(t) \)

Examples:
- \(?X \land ?Y \quad \alpha \beta \gamma \quad x \land x \quad [?X \leftarrow x, ?Y \leftarrow x] \)
- \(?P \ x \quad \alpha \beta \gamma \quad x \land x \quad [?P \leftarrow \lambda x. x \land x] \)
- \(P \ (?f \ x) \quad \alpha \beta \gamma \quad ?Y \ x \quad [?f \leftarrow \lambda x. x, ?Y \leftarrow P] \)

Higher Order: schematic variables can be functions.
HIGHER ORDER UNIFICATION

- Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- Unification modulo $\alpha\beta\eta$ is undecidable
- Higher Order Unification has possibly infinitely many solutions

But:
- Most cases are well-behaved
- Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:
- is a term in β normal form where
- each occurrence of a schematic variable is of the form $?f \, t_1 \ldots t_n$
- and the $t_1 \ldots t_n$ are η-convertible into n distinct bound variables

WE HAVE LEARNED SO FAR...

- Simply typed lambda calculus: λ^-
- Typing rules for λ^-, type variables, type contexts
- β-reduction in λ^- satisfies subject reduction
- β-reduction in λ^- always terminates
- Types and terms in Isabelle

PREVIEW: PROOFS IN ISABELLE

General schema:

```
lemma name: "<goal>"
apply <method>
apply <method>
done
```

- Sequential application of methods until all subgoals are solved.
THE PROOF STATE

1. $\bigwedge x_1 \ldots x_p \cdot [A_1; \ldots; A_n] \Rightarrow B$
2. $\bigwedge y_1 \ldots y_q \cdot [C_1; \ldots; C_m] \Rightarrow D$

ISABELLE THEORIES

Syntax:

```plaintext
theory MyTh = ImpTh_1 + \ldots + ImpTh_n:
  (declarations, definitions, theorems, proofs, \ldots)
end
```

- $MyTh$: name of theory. Must live in file $MyTh.thy$
- $ImpTh_i$: name of imported theories. Import transitive.

Unless you need something special:

```plaintext
theory MyTh = Main:
```

NATURAL DEDUCTION RULES

Slide 27

- **Introduction** and **elimination** rules

Slide 25

- Parameters
- Local assumptions
- Actual (sub)goal

NATURAL DEDUCTION RULES

- **Conjunction** (\wedge):
 - $A \wedge B \Rightarrow \vdash C$
 - $A \wedge B \Rightarrow \vdash C$

- **Disjunction** (\vee):
 - $A \vee B \Rightarrow \vdash C$
 - $A \vee B \Rightarrow \vdash C$

- **Implication** (\Rightarrow):
 - $A \Rightarrow B \Rightarrow \vdash C$
 - $A \Rightarrow B \Rightarrow \vdash C$

Slide 28

- **Proof by assumption**
 - **apply** assumption

- **Backtracking!**
 - Backtracking command: **back**
Intro Rules

Intro rules decompose formulae to the right of \implies.

apply (rule <intro-rule>)

Intro rule \([A_1; \ldots; A_n] \implies A \) means

- To prove \(A \) it suffices to show \(A_1 \ldots A_n \)

Applying rule \([A_1; \ldots; A_n] \implies A \) to subgoal \(C \):

- unify \(A \) and \(C \)
- replace \(C \) with \(n \) new subgoals \(A_1 \ldots A_n \)

Elim Rules

Elim rules decompose formulae on the left of \implies.

apply (erule <elim-rule>)

Elim rule \([A_1; \ldots; A_n] \implies A \) means

- If I know \(A_1 \) and want to prove \(A \) it suffices to show \(A_2 \ldots A_n \)

Applying rule \([A_1; \ldots; A_n] \implies A \) to subgoal \(C \):

Like rule but also

- unifies first premise of rule with an assumption
- eliminates that assumption

Exercises

- what are the types of \(\lambda x \ y \ x \) and \(\lambda x \ y \ z \ x \ y \ (y\ z) \)
- construct a type derivation tree on paper for \(\lambda x \ y \ z \ x \ y \ (y\ z) \)
- find a unifier (substitution) such that \(\lambda x \ y \ ?F \ x = \lambda x \ y \ c \ (y\ y) \)
- prove \((A \rightarrow B \rightarrow C) = (A \wedge B \rightarrow C) \) in Isabelle
- prove \(\neg(A \wedge B) \implies \neg A \vee \neg B \) in Isabelle (tricky!)