NICTA Advanced Course

Theorem Proving
Principles, Techniques, Applications
Intro & motivation, getting started with Isabelle

Foundations & Principles
- Lambda Calculus
- Higher Order Logic, natural deduction
- Term rewriting

Proof & Specification Techniques
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- Calculational reasoning, mathematics style proofs
- Hoare logic, proofs about programs
LAST TIME

→ Introducing new Types
LAST TIME

→ Introducing new Types
→ Equations and Term Rewriting
LAST TIME

- Introducing new Types
- Equations and Term Rewriting
- Confluence and Termination of reduction systems
LAST TIME

- Introducing new Types
- Equations and Term Rewriting
- Confluence and Termination of reduction systems
- Term Rewriting in Isabelle
LAST TIME

➤ Introducing new Types
➤ Equations and Term Rewriting
➤ Confluence and Termination of reduction systems
➤ Term Rewriting in Isabelle
➤ First structured proofs (Isar)
Applying a Rewrite Rule

⇒ \(l \rightarrow r \) applicable to term \(t[s] \)
Applying a Rewrite Rule

$\rightarrow l \rightarrow r \text{ applicable to term } t[s]$

if there is substitution σ such that $\sigma l = s$
Applying a Rewrite Rule

→ l → r applicable to term t[s]
 if there is substitution σ such that σ l = s

→ Result: t[σ r]
Applying a Rewrite Rule

$\Rightarrow l \rightarrow r$ applicable to term $t[s]$ if there is substitution σ such that $\sigma l = s$

\Rightarrow Result: $t[\sigma r]$

\Rightarrow Equationally: $t[s] = t[\sigma r]$

Example:
APPPLYING A REWRITE RULE

→ *l* → *r* applicable to term *t*[s]
 if there is substitution σ such that σ *l* = *s*

→ Result: *t*[σ *r*]

→ Equationally: *t*[s] = *t*[σ *r*]

Example:

Rule: 0 + *n* → *n*

Term: *a* + (0 + (b + c))
Applying a Rewrite Rule

→ \(l \rightarrow r \) applicable to term \(t[s] \)
 if there is substitution \(\sigma \) such that \(\sigma \ l = s \)

→ **Result:** \(t[\sigma \ r] \)

→ **Equationally:** \(t[s] = t[\sigma \ r] \)

Example:

Rule: \(0 + n \rightarrow n \)

Term: \(a + (0 + (b + c)) \)

Substitution: \(\sigma = \{ n \mapsto b + c \} \)
Applying a Rewrite Rule

$\rightarrow \quad l \longrightarrow r$ applicable to term $t[s]$ if there is substitution σ such that $\sigma \; l = s$

$\rightarrow \quad$ Result: $t[\sigma \; r]$

$\rightarrow \quad$ Equationally: $t[s] = t[\sigma \; r]$

Example:

Rule: $0 + n \longrightarrow n$

Term: $a + (0 + (b + c))$

Substitution: $\sigma = \{n \mapsto b + c\}$

Result: $a + (b + c)$
Rewrite rules can be conditional:

$$\left[P_1 \ldots P_n \right] \implies l = r$$
Rewrite rules can be conditional:

\[
[P_1 \ldots P_n] \quad \Rightarrow \quad l = r
\]

is **applicable** to term \(t[s] \) with \(\sigma \) if

\(\sigma l = s \) and

\(\sigma P_1, \ldots, \sigma P_n \) are provable by rewriting.
Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.
Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

\[\text{lemma} \quad \left(f \ x = g \ x \land g \ x = f \ x \right) \implies f \ x = 2 \]
Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

\[\text{lemma} \quad " f\ x = g\ x \land g\ x = f\ x \implies f\ x = 2" \]

simp \quad \text{use and simplify assumptions}

(simp (no_asm)) \quad \text{ignore assumptions}

(simp (no_asm_use)) \quad \text{simplify, but do not use assumptions}

(simp (no_asm_simp)) \quad \text{use, but do not simplify assumptions}
Preprocessing (recursive) for maximal simplification power:

\[-A \iff A = False\]

\[A \rightarrow B \iff A \implies B\]

\[A \land B \iff A, B\]

\[\forall x. \ A \ x \iff A \ ?x\]

\[A \iff A = True\]
Preprocessing (recursive) for maximal simplification power:

\[\neg A \iff A = False \]
\[A \rightarrow B \iff A \implies B \]
\[A \land B \iff A, B \]
\[\forall x. A \ x \iff A \ ?x \]
\[A \iff A = True \]

Example:
\[(p \rightarrow q \land \neg r) \land s \]
\[\rightarrow \]
Preprocessing (recursive) for maximal simplification power:

\[\neg A \iff A = False \]
\[A \rightarrow B \iff A \rightarrowrightarrow B \]
\[A \land B \iff A, B \]
\[\forall x. A x \iff A ?x \]
\[A \iff A = True \]

Example:

\[(p \rightarrowrightarrow q \land \neg r) \land s \]

\[\iff \]

\[p \rightarrowrightarrow q = True \quad r = False \quad s = True \]
DEMO
CASE SPLITTING WITH SIMP

\[P (\text{if } A \text{ then } s \text{ else } t) = (A \rightarrow P \ s) \land (\neg A \rightarrow P \ t) \]
CASE SPLITTING WITH SIMP

\[P \text{ (if } A \text{ then } s \text{ else } t) = (A \rightarrow P \ s) \land (\neg A \rightarrow P \ t) \]

Automatic
Case splitting with simp

\[P \ (\text{if } A \text{ then } s \text{ else } t) \]
\[= \]
\[(A \rightarrow P \ s) \land (\neg A \rightarrow P \ t) \]

Automatic

\[P \ (\text{case } e \text{ of } 0 \Rightarrow a \mid \text{Suc } n \Rightarrow b) \]
\[= \]
\[(e = 0 \rightarrow P \ a) \land (\forall n. \ e = \text{Suc } n \rightarrow P \ b) \]
CASE SPLITTING WITH SIMP

\[P \ (\text{if } A \text{ then } s \text{ else } t) = (A \to P \ s) \land (\neg A \to P \ t) \]

Automatic

\[P \ (\text{case } e \text{ of } 0 \Rightarrow a \mid \text{Suc } n \Rightarrow b) = (e = 0 \to P \ a) \land (\forall n. \ e = \text{Suc } n \to P \ b) \]

Manually: apply (simp split: nat.split)
CASE SPLITTING WITH SIMP

\[P \ (\text{if } A \text{ then } s \text{ else } t) = (A \rightarrow P \ s) \land (\neg A \rightarrow P \ t) \]

Automatic

\[P \ (\text{case } e \text{ of } 0 \Rightarrow a \mid \text{Suc } n \Rightarrow b) = (e = 0 \rightarrow P \ a) \land (\forall n. \ e = \text{Suc } n \rightarrow P \ b) \]

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split
congruence rules are about using context

Example: in $P \rightarrow Q$ we could use P to simplify terms in Q
CONGRUENCE RULES

congruence rules are about using context

Example: in $P \rightarrow Q$ we could use P to simplify terms in Q

For \Rightarrow hardwired (assumptions used in rewriting)
Congruence Rules

Congruence rules are about using context.

Example: in $P \rightarrow Q$ we could use P to simplify terms in Q

For \equiv hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: $[P = P'; P' \Rightarrow Q = Q'] \Rightarrow (P \rightarrow Q) = (P' \rightarrow Q')$

Read: to simplify $P \rightarrow Q$
Congruence Rules

Congruence rules are about using context.

Example: in $P \rightarrow Q$ we could use P to simplify terms in Q.

For \iff hardwired (assumptions used in rewriting).

For other operators expressed with conditional rewriting.

Example: $[P = P'; P' \iff Q = Q'] \iff (P \rightarrow Q) = (P' \rightarrow Q')$.

Read: to simplify $P \rightarrow Q$.

\rightarrow first simplify P to P'.
Congruence Rules

Congruence rules are about using context

Example: in \(P \rightarrow Q \) we could use \(P \) to simplify terms in \(Q \)

For \(\rightarrow \) hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: \([P = P'; P' \rightarrow Q = Q'] \rightarrow (P \rightarrow Q) = (P' \rightarrow Q')\)

Read: to simplify \(P \rightarrow Q \)

→ first simplify \(P \) to \(P' \)

→ then simplify \(Q \) to \(Q' \) using \(P' \) as assumption
CONGRUENCE RULES

congruence rules are about using context

Example: in $P \rightarrow Q$ we could use P to simplify terms in Q

For \Rightarrow hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: \[[P = P'; P' \Rightarrow Q = Q'] \Rightarrow (P \rightarrow Q) = (P' \rightarrow Q') \]

Read: to simplify $P \rightarrow Q$

\Rightarrow first simplify P to P'
\Rightarrow then simplify Q to Q' using P' as assumption
\Rightarrow the result is $P' \rightarrow Q'$
Sometimes useful, but not used automatically (slowdown):

\texttt{conj_cong}: \([P = P'; P' \implies Q = Q'] \implies (P \land Q) = (P' \land Q') \)
\textbf{MORE CONGRUENCE}

Sometimes useful, but not used automatically (slowdown):

\textbf{conj_cong}: \([P = P'; P' \implies Q = Q'] \implies (P \land Q) = (P' \land Q')\)

Context for if-then-else:

\textbf{if_cong}: \([b = c; c \implies x = u; \neg c \implies y = v] \implies \)

\((\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } u \text{ else } v)\)
MORE CONGRUENCE

Sometimes useful, but not used automatically (slowdown):

conj_cong: \[P = P'; P' \implies Q = Q' \] \implies (P \land Q) = (P' \land Q')

Context for if-then-else:

if_cong: \[[b = c; c \implies x = u; \neg c \implies y = v] \implies \]

\[(\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } u \text{ else } v)\]

Prevent rewriting inside then-else (default):

if_weak_cong: \[b = c \implies (\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } x \text{ else } y)\]
MORE CONGRUENCE

Sometimes useful, but not used automatically (slowdown):

conj_cong: \[P = P'; P' \implies Q = Q' \] \implies (P \land Q) = (P' \land Q')

Context for if-then-else:

if_cong: \[b = c; c \implies x = u; \neg c \implies y = v \] \implies (if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):

if_weak_cong: b = c \implies (if b then x else y) = (if c then x else y)

→ declare own congruence rules with [cong] attribute
MORE CONGRUENCE

Sometimes useful, but not used automatically (slowdown):

conj_cong: \([P = P'; P' \implies Q = Q'] \implies (P \land Q) = (P' \land Q')\)

Context for if-then-else:

if_cong: \([b = c; c \implies x = u; \neg c \implies y = v] \implies (\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } u \text{ else } v)\)

Prevent rewriting inside then-else (default):

if_weak_cong: \(b = c \implies (\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } x \text{ else } y)\)

- declare own congruence rules with `[cong]` attribute
- delete with `[cong del]`
Problem: $x + y \rightarrow y + x$ does not terminate
Problem: $x + y \rightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes lexicographically smaller.

Example:
Problem: \(x + y \rightarrow y + x \) does not terminate

Solution: use permutative rules only if term becomes lexicographically smaller.

Example: \(b + a \not\rightarrow a + b \) but not \(a + b \not\rightarrow b + a \).
ORDERED REWRITING

Problem: $x + y \rightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes lexicographically smaller.

Example: $b + a \sim a + b$ but not $a + b \sim b + a$.

For types nat, int etc:

- lemmas **add_ac** sort any sum ($+$)
- lemmas **times_ac** sort any product ($*$)

Example: apply (simp add: add_ac) yields

$$(b + c) + a \sim \cdots \sim a + (b + c)$$
AC Rules

Example for associative-commutative rules:

Associative: \[(x \mathbin{\circ} y) \mathbin{\circ} z = x \mathbin{\circ} (y \mathbin{\circ} z)\]

Commutative: \[x \mathbin{\circ} y = y \mathbin{\circ} x\]
AC Rules

Example for associative-commutative rules:

Associative: \((x \odot y) \odot z = x \odot (y \odot z)\)

Commutative: \(x \odot y = y \odot x\)

These 2 rules alone get stuck too early (not confluent).

Example: \((z \odot x) \odot (y \odot v)\)
Example for associative-commutative rules:

Associative: \((x \circ y) \circ z = x \circ (y \circ z)\)

Commutative: \(x \circ y = y \circ x\)

These 2 rules alone get stuck too early (not confluent).

Example: \((z \circ x) \circ (y \circ v)\)

We want: \((z \circ x) \circ (y \circ v) = v \circ (x \circ (y \circ z))\)
AC Rules

Example for associative-commutative rules:

Associative: \((x \odot y) \odot z = x \odot (y \odot z)\)

Commutative: \(x \odot y = y \odot x\)

These 2 rules alone get stuck too early (not confluent).

Example: \((z \odot x) \odot (y \odot v)\)

We want: \((z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))\)

We get: \((z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))\)
AC Rules

Example for associative-commutative rules:

Associative: \((x \circ y) \circ z = x \circ (y \circ z)\)

Commutative: \(x \circ y = y \circ x\)

These 2 rules alone get stuck too early (not confluent).

Example: \((z \circ x) \circ (y \circ v)\)

We want: \((z \circ x) \circ (y \circ v) = v \circ (x \circ (y \circ z))\)

We get: \((z \circ x) \circ (y \circ v) = v \circ (y \circ (x \circ z))\)

We need: **AC rule** \(x \circ (y \circ z) = y \circ (x \circ z)\)
Example for associative-commutative rules:

Associative: \[(x \circ y) \circ z = x \circ (y \circ z)\]

Commutative: \[x \circ y = y \circ x\]

These 2 rules alone get stuck too early (not confluent).

Example: \[(z \circ x) \circ (y \circ v)\]

We want: \[(z \circ x) \circ (y \circ v) = v \circ (x \circ (y \circ z))\]

We get: \[(z \circ x) \circ (y \circ v) = v \circ (y \circ (x \circ z))\]

We need: **AC rule** \[x \circ (y \circ z) = y \circ (x \circ z)\]

If these 3 rules are present for an AC operator

Isabelle will order terms correctly
Last time: confluence in general is undecidable.
Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.
Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let $l_1 \rightarrow r_1$ and $l_2 \rightarrow r_2$ be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of l_1 unifies with l_2.
Last time: confluence in general is undecidable.

But: confluence for terminating systems is decidable!

Problem: overlapping lhs of rules.

Definition:

Let \(l_1 \rightarrow r_1 \) and \(l_2 \rightarrow r_2 \) be two rules with disjoint variables.

They form a **critical pair** if a non-variable subterm of \(l_1 \) unifies with \(l_2 \).

Example:

Rules: \((1) \ f \ x \rightarrow a \quad (2) \ g \ y \rightarrow b \quad (3) \ f \ (g \ z) \rightarrow b \)

Critical pairs:
Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let \(l_1 \rightarrow r_1 \) and \(l_2 \rightarrow r_2 \) be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of \(l_1 \) unifies with \(l_2 \).

Example:
Rules: (1) \(f \ x \rightarrow a \) (2) \(g \ y \rightarrow b \) (3) \(f \ (g \ z) \rightarrow b \)
Critical pairs:
\((1)+(3) \) \(\{ x \leftarrow g \ z \} \) \(a \overset{(1)}{\leftarrow} f \ g \ t \overset{(3)}{\rightarrow} b \)
\((3)+(2) \) \(\{ z \leftarrow y \} \) \(b \overset{(3)}{\leftarrow} f \ g \ t \overset{(2)}{\rightarrow} b \)
(1) $f \ x \rightarrow a$ (2) $g \ y \rightarrow b$ (3) $f \ (g \ z) \rightarrow b$

is not confluent
COMPLETION

(1) $f \ x \rightarrow a$ \quad (2) $g \ y \rightarrow b$ \quad (3) $f \ (g \ z) \rightarrow b$

is not confluent

But it can be made confluent by adding rules!
(1) \(f \ x \rightarrow a \) (2) \(g \ y \rightarrow b \) (3) \(f \ (g \ z) \rightarrow b \)

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs
(1) \(f \ x \rightarrow a \) (2) \(g \ y \rightarrow b \) (3) \(f \ (g \ z) \rightarrow b \)

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

\[(1) + (3) \quad \{x \mapsto g \ z\} \quad a \xleftarrow{(1)} f \ g \ t \xrightarrow{(3)} b\]

shows that \(a = b \) (because \(a \xleftrightarrow{*} b \)),

\[\]
COMPLETION

(1) $f \ x \rightarrow a$ (2) $g \ y \rightarrow b$ (3) $f \ (g \ z) \rightarrow b$

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) \{x \leftrightarrow g \ z\} \quad a \xleftarrow{(1)} \quad f \ g \ t \quad \xrightarrow{(3)} \quad b

shows that $a = b$ (because $a \xrightarrow{*} b$), so we add $a \rightarrow b$ as a rule
But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1) $f \ x \rightarrow a$ (2) $g \ y \rightarrow b$ (3) $f \ (g \ z) \rightarrow b$

shows that $a = b$ (because $a \rightarrow^{*} b$), so we add $a \rightarrow b$ as a rule

This is the main idea of the Knuth-Bendix completion algorithm.
DEMO: WALDMEISTER
Definitions:
Definitions:

A rule \(l \rightarrow r \) is **left-linear** if no variable occurs twice in \(l \).
Definitions:
A rule \(l \rightarrow r \) is left-linear if no variable occurs twice in \(l \).
A rewrite system is left-linear if all rules are.
Orthogonal Rewriting Systems

Definitions:
A rule $l \rightarrow r$ is left-linear if no variable occurs twice in l.
A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.
Definitions:
A rule \(l \rightarrow r \) is left-linear if no variable occurs twice in \(l \).
A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent
ORTHOGONAL REWRITING SYSTEMS

Definitions:
A rule $l \rightarrow r$ is left-linear if no variable occurs twice in l.
A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages
LAST TIME ON ISAR

➡️ basic syntax
➡️ proof and qed
➡️ assume and show
➡️ from and have
➡️ the three modes of Isar
Backward reasoning: ... have "$A \land B$" proof
Backward reasoning: ... have \(A \land B \) proof

\[\Rightarrow\] proof picks an intro rule automatically
Backward reasoning: ... have \(A \land B \) proof

- proof picks an intro rule automatically
- conclusion of rule must unify with \(A \land B \)
Backward and Forward

Backward reasoning: ... have \(A \land B \) proof

\(\rightarrow \) proof picks an intro rule automatically
\(\rightarrow \) conclusion of rule must unify with \(A \land B \)

Forward reasoning: ...

assume AB: \(A \land B \)
from AB have "..." proof
Backward reasoning: . . . have "\(A \land B \)" proof

- \(\text{proof} \) picks an \text{intro} rule automatically
- conclusion of rule must unify with \(A \land B \)

Forward reasoning: . . .

\text{assume} \ AB: "\(A \land B \)"

\text{from} \ AB \ have "\ldots" \text{proof}

- now \(\text{proof} \) picks an \text{elim} rule automatically
BACKWARD AND FORWARD

Backward reasoning: . . . have "A ∧ B" proof

→ proof picks an intro rule automatically
→ conclusion of rule must unify with A ∧ B

Forward reasoning: . . .

assume AB: "A ∧ B"

from AB have " . . ." proof

→ now proof picks an elim rule automatically
→ triggered by from
Backward and Forward

Backward reasoning: . . . have ”$A \land B$” proof

→ proof picks an intro rule automatically
→ conclusion of rule must unify with $A \land B$

Forward reasoning: . . .

 assume AB: ”$A \land B$”
 from AB have ”. . .” proof

→ now proof picks an elim rule automatically
→ triggered by from
→ first assumption of rule must unify with AB
BACKWARD AND FORWARD

Backward reasoning: . . . have "\(A \land B\)" proof

\[\rightarrow \text{proof} \text{ picks an intro rule automatically} \]
\[\rightarrow \text{conclusion of rule must unify with } A \land B \]

Forward reasoning: . . .

\[\text{assume } AB: "A \land B" \]
\[\text{from } AB \text{ have } "\ldots" \text{ proof} \]

\[\rightarrow \text{now proof picks an elim rule automatically} \]
\[\rightarrow \text{triggered by from} \]
\[\rightarrow \text{first assumption of rule must unify with } AB \]

General case: from \(A_1 \ldots A_n\) have \(R\) proof

\[\rightarrow \text{first } n \text{ assumptions of rule must unify with } A_1 \ldots A_n \]
\[\rightarrow \text{conclusion of rule must unify with } R \]
Fix and Obtain

\[\text{fix } v_1 \ldots v_n \]
\textbf{Fix and Obtain}

\texttt{fix } \nu_1 \ldots \nu_n

Introduces new arbitrary but fixed variables
\((\sim \text{parameters, } \land) \)
Fix and Obtain

$$\textbf{fix } v_1 \ldots v_n$$

Introduces new arbitrary but fixed variables
(\sim parameters, \land)

$$\textbf{obtain } v_1 \ldots v_n \textbf{ where } \langle \text{prop} \rangle \langle \text{proof} \rangle$$
Fix and Obtain

fix $v_1 \ldots v_n$

Introduces new arbitrary but fixed variables (\sim parameters, \land)

obtain $v_1 \ldots v_n$ where \langleprop\rangle \langleproof\rangle

Introduces new variables together with property
this = the previous fact proved or assumed
FANCY ABBREVIATIONS

this = the previous fact proved or assumed
then = from this
Fancy Abbreviations

this = the previous fact proved or assumed
then = from this
thus = then show
Fancy Abbreviations

this = the previous fact proved or assumed

then = from this

thus = then show

hence = then have
FANCY ABBREVIATIONS

this = the previous fact proved or assumed

then = from this

thus = then show

hence = then have

with \(A_1 \ldots A_n \) = from \(A_1 \ldots A_n \) this
Fancy Abbreviations

- **this** = the previous fact proved or assumed
- **then** = from this
- **thus** = then show
- **hence** = then have
- **with** \(A_1 \ldots A_n \) = from \(A_1 \ldots A_n \) this
- **?thesis** = the last enclosing goal statement
Moreover and Ultimately

have $X_1: P_1 \ldots$

have $X_2: P_2 \ldots$

\vdots

have $X_n: P_n \ldots$

from $X_1 \ldots X_n$ show \ldots
Moreover and Ultimately

have X_1: P_1

have X_2: P_2

...

have X_n: P_n

from $X_1 \ldots X_n$ show

wastes lots of brain power

on names $X_1 \ldots X_n$
Moreover and Ultimately

\[
\begin{align*}
\text{have } & \ X_1: P_1 \ldots \\
\text{have } & \ X_2: P_2 \ldots \\
\vdots & \\
\text{have } & \ X_n: P_n \ldots \\
\text{from } & \ X_1 \ldots X_n \text{ show } \\
\text{wastes lots of brain power} \\
\text{on names } & \ X_1 \ldots X_n \\
\text{have } & \ P_1 \ldots \\
\text{moreover have } & \ P_2 \ldots \\
\vdots & \\
\text{moreover have } & \ P_n \ldots \\
\text{ultimately show } & \\
\end{align*}
\]
GENERAL CASE DISTINCTIONS

show \(\text{formula} \)
proof -
General Case Distinctions

show \(\text{formula} \)
proof -
have \(P_1 \lor P_2 \lor P_3 \)
<proof>
show formula

proof -

have $P_1 \lor P_2 \lor P_3$ <proof>

moreover { assume P_1 ... have ?thesis <proof> }

ultimately show ?thesis by blast
General Case Distinctions

show *formula*

proof -

have \(P_1 \lor P_2 \lor P_3 \) *<proof>*

moreover \{ **assume** \(P_1 \) \ldots **have** ?thesis *<proof>* \}

moreover \{ **assume** \(P_2 \) \ldots **have** ?thesis *<proof>* \}

ultimately show ?thesis by blast

qed
GENERAL CASE DISTINCTIONS

show $formula$

proof -

have $P_1 \lor P_2 \lor P_3$ <proof>

moreover \[\{ \text{assume } P_1 \ldots \text{ have } ?\text{thesis} \ <\text{proof}> \} \]

moreover \[\{ \text{assume } P_2 \ldots \text{ have } ?\text{thesis} \ <\text{proof}> \} \]

moreover \[\{ \text{assume } P_3 \ldots \text{ have } ?\text{thesis} \ <\text{proof}> \} \]
show \(formula \)

proof -

\begin{align*}
\text{have } P_1 \lor P_2 \lor P_3 & \quad \text{<proof> } \\
\text{moreover } \{ \text{ assume } P_1 \ldots \text{ have } ?\text{thesis} \text{ <proof> } \} \\
\text{moreover } \{ \text{ assume } P_2 \ldots \text{ have } ?\text{thesis} \text{ <proof> } \} \\
\text{moreover } \{ \text{ assume } P_3 \ldots \text{ have } ?\text{thesis} \text{ <proof> } \} \\
\text{ultimately show } ?\text{thesis by blast} \\
\end{align*}

qed
show \textit{formula}

\textbf{proof -}

\textbf{have} $P_1 \lor P_2 \lor P_3$ \textless proof\textgreater

moreover \quad \{ \textbf{assume} \hspace{0.5em} P_1 \hspace{1em} \ldots \hspace{1em} \textbf{have} \hspace{0.5em} \textit{thesis} \hspace{0.5em} \textless proof\textgreater \}

moreover \quad \{ \textbf{assume} \hspace{0.5em} P_2 \hspace{1em} \ldots \hspace{1em} \textbf{have} \hspace{0.5em} \textit{thesis} \hspace{0.5em} \textless proof\textgreater \}

moreover \quad \{ \textbf{assume} \hspace{0.5em} P_3 \hspace{1em} \ldots \hspace{1em} \textbf{have} \hspace{0.5em} \textit{thesis} \hspace{0.5em} \textless proof\textgreater \}

\textbf{ultimately show} \hspace{0.5em} \textit{thesis} \hspace{0.5em} \textbf{by blast}

\textbf{qed}

\{ \ldots \} \text{ is a proof block similar to} \textbf{proof} \ldots \textbf{qed}
GENERAL CASE DISTINCTIONS

show formula

proof -

have $P_1 \lor P_2 \lor P_3$ <proof>

moreover \{ assume P_1 \ldots have ?thesis <proof> \}

moreover \{ assume P_2 \ldots have ?thesis <proof> \}

moreover \{ assume P_3 \ldots have ?thesis <proof> \}

ultimately show ?thesis by blast

qed

\{ \ldots \} is a proof block similar to proof ... qed

\{ assume P_1 \ldots have P <proof> \}

stands for $P_1 \implies P$
MIXING PROOF STYLES

from ...

have ...

apply - make incoming facts assumptions

apply (....)

:

apply (....)

done
DEMO
WE HAVE LEARNED TODAY ...

→ Conditional term rewriting
WE HAVE LEARNED TODAY ...

- Conditional term rewriting
- Congruence and AC rules
WE HAVE LEARNED TODAY ...

- Conditional term rewriting
- Congruence and AC rules
- More on confluence
WE HAVE LEARNED TODAY ...

- Conditional term rewriting
- Congruence and AC rules
- More on confluence
- Completion
WE HAVE LEARNED TODAY ...

- Conditional term rewriting
- Congruence and AC rules
- More on confluence
- Completion
- Isar: fix, obtain, abbreviations, moreover, ultimately
→ Find critical pairs for your DNF solution from last time

→ Complete rules to a terminating, confluent system

→ Add AC rules for \land and \lor

→ Decide $((C \lor B) \land A) = (\neg(A \land B) \rightarrow C \land A)$ with these simp-rules

→ Give an Isar proof of the rich grandmother theorem
 (automated methods allowed, but proof must be explaining)